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Motivation

• Study the confinement-deconfinement phase transition and chiral
symmetry restoration in minimal supersymmetric Yang-Mills theory on the
lattice

• Both phenomena seem to be related in QCD with fundamental matter
(Tdec ∼ Tc)
• In QCD with Nf = 2 adjoint quarks (AdjQCD) crit. temperatures do not

seem to match: Tc ∼ 4Tdec for SU(2) and Tc ∼ 7.8Tdec for SU(3) (with
staggered fermions)

• N = 1 SYM is AdjQCD with Nf = 1/2:

* Do critical temperatures coincide in SYM?
* Are the underlying non-pert phenomena related?

• First investigations support this [Bergner et al. arXiv:1405.3180, ’14]

Take advantage of renormalisaton properties of the gradient flow to get

a better signal of the gluino condensate
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Confinement

• Confining properties similar to YM:

* Unbroken centre symmetry at low temperatures
* Confinement of static external fundamental colour charges
* Zero asymptotic string tension for adjoint charges
* Gluons and gluinos found in bound colourless states (supermultiplets)

• Deconfinement phase transition: Spontaneous breaking of centre
symmetry at some critical temperature

• Bound colourless states melt down near Tc

• Non-perturbative SSB by non-trivial gauge field topology
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Confinement

• Possible order parameter: fundametal Polyakov loop

PL(~x) = TrP exp

(∫ τ

0

dx0A0(~x, x0)

)
→ PL =

1

V

∑
x

Tr

{
Nt∏
x0=0

U0(x)

}
• Polyakov loop related to free energy of isolated fundamental colour sources

〈PL〉 = 0⇒ Fq →∞

• It transforms non trivialy w.r.t the centre of the gauge group

PL → P ′L = exp

(
2πi

n

Nc

)
PL

• A non-zero vev signals the breaking of the centre symmetry and thus
deconfinement phase transition
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Confinement

• Effective 3-d theory of Polyakov loop:

* SU(2): Real scalar field with Z2-invariant action. Universality class of
3-D Ising model → second order phase transition

* SU(3): Complex scalar field with Z3 (and charge conj.) invariant
action with three degenerated vacua at phase transition → first order
phase transition. Similar to 3-d 3-state Potts model

• Adjoint fields do not break centre symmetry → exact phase transition (at
V →∞ limit) for every gluino mass.
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Chiral symmetry

• Clasically,massless N = 1 SYM has a U(1)R-symmetry
λ→ λ′ = exp(−iωγ5)λ

• On the quantum level, U(1)R-symmetry is broken as
∂µJ

µ
5 ∼ Ncg

2εµνρσF
µνF ρσ

• Remanent symmetry is Z2Nc

• At zero temperature the gluino condensate < λ̄λ >6= 0 → vacuum is not
invariant under Z2Nc only under λ→ −λ
• Thus, Z2Nc broken down to Z2:

U(1)R → Z2Nc → Z2
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Chiral symmetry

• SU(2)

* First order phase transition line at mR
g = 0, T = 0 (jump in vev of

< λ̄λ >) Existence of 2 degenerated ground states of the condensate
* Second order phase transition point at Tc with < λ̄λ >= 0 and

restoration of Z4 chiral symmetry

• SU(3)

* Richer phase structure
* First order phase transition line. Similar to Potts model
* Three degenerated vacua at first order phase transition
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• Do both critical temperatures coincide or is there a deconfined phase
with broken chiral symmetry?
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The condensate on the lattice

• The bare condensate can be computed as

〈λ̄λ〉B = −T
V

∂

∂m
log (Z(β,m)) = −T

V

〈
1

2
tr(D−1

W )

〉
• Additive renormalisation constant necessary when using Wilson fermions

(due to explicit chiral violation).

〈λ̄λ〉R = Zλ̄λ(β)
(
〈λ̄λ〉B − b0

)
• Multiplicative constant avoided when choosing a fixed scale approach (fix
β and κ, vary Nt)

• Use the gradient flow to directly compute the renormalised condensate on
the lattice
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Flow equations

• Fields are evolved along a trajectory on field space through the differential
equations

∂tBµ = DνGνµ, Bµ|t=0 = Aµ: flow of gauge fields

∂tχ = DµD
µχ, χ|t=0 = ψ: flow of fermion fields

[Lüscher and Weisz,arXiv:1405.3180]

• t is called flow time and parametrises the trajectory

• At leading order in g0 the flow kernel is Kt(x) = −(4πt)−D/2e−x
2/4t

* Represents UV cut-off
* Field is spread on a spherical region with radius

√
8t

* Smoothing operation. Similar to stout smearing
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Flow equations

• D+1 dimensional field theory developed by Lüscher

• Two point functions:

* Automatically finite for flowed gauge fields. No counter-terms
* For fermions: wave function renormalisation constant required beyond

tree level

• Regularisation scheme independence: easy to implement on the lattice

• Useful to compute composite local operators, e.g. energy densitiy

• On the lattice:

* Wilson (action) flow: used to set scale with t0

V̇t(x, ν) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ)

* Fermion flow: ∂tχt = ∆(Vt)χt
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Gluino condensate from the gradient flow

• The condensate can be measured on the lattice as

〈χt(x)〉 = −
∑
v,w

〈
tr

K(t, x; 0, v)︸ ︷︷ ︸
diff eq kernel

propagator︷ ︸︸ ︷
S(v, w)K(t, x; 0, w)†


〉

• Introducing random sources ηk and averaging over the position x

1

NΓ

∑
x∈Γ

〈χt(x)〉 = − 1

NΓ

∑
v,w

〈
ξk(t; 0, v)†S(v, w)ξk(t; 0, w)

〉
ξk(t; s, w) =

∑
x

K(t, x; s, w)†ηk(x)

• The random source satisfy the adjoint flow equation, is integrated from
s = t down to s = 0 with a third-order Runge-Kutta
[Taniguchi et al.,Phys.Rev. D96 (2017) no.1, 014509]

(∂s + ∆)ξk(t; s, w) = 0, ξk(t; t, w) = ηk
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SU(2), 243 ×Nt, β = 1.75, κ = 0.1480, t = 6.3

Gluino condensate
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SU(2), 243 ×Nt, β = 1.75, κ = 0.1490, t = 9.85

Gluino condensate
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SU(2), 243 ×Nt, β = 1.75, κ = 0.14925, t = 10.5

Gluino condensate
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SU(3) results, 163 × 9, β = 5.50, κ = 0.1673

Condensate
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• Correlation of real part of Polyakov loop with and the scalar condensate.
Pearson coefficient ρ = −0.565.

• Statiscally significant correlation between confinement and chiral
restoration
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Summary

• The gradient flow simplifies the measurement of local densities like the
gluino condensate, on the lattice

• Better signal of chiral symmetry restoration as in previous studies

• Centre symmetry breaking and chiral restoration seem to happen at the
same critical temperature for both SU(2) and SU(3)

• Correlation at phase transition suggests the existence of a common
non-perturbative origin.
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Thank you for your attention
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