
Physics
UNIVERSITY OF COLORADO BOULDERDaniel C. Hackett, William I. Jay, Ethan T. Neil

Relational databases for lattice data analysis

0 1MCMC 2MCMC MCMC …

Flow

Flow

Flow

Make equilibration cut, 
average observables,

solve e.g. !"#(!) = '

!(
)"

*(
)"

…

…

MCMC
Map from gauge config to next gauge config
⇒ Ensemble ∼ configs generated with same 
physical & MCMC parameters

Gradient flow
Map from gauge configs to 
measurements of flowed 
observables like !"#(!)

Scale estimation
Reduce from ensemble of 
measurements to estimates of 
observables

Abstract Structure

Reduction produces different 
estimates for different
• ensembles
• equilibration cuts
• scale observables

[e.g. !"# , !-. !"# , …]
• “magic number” '

[e.g. 0.3 for !(, *(]

id prev_id phys_id mcmc_id ens_id traj nc ns nt …
0 NULL 4 17 121 0 3 24 6
1 0 4 18 121 1 3 24 6
2 1 4 17 121 2 3 24 6

gauge_config

id beta nf kappa …
4 5.85 2 0.127

map_physical

id nsteps code git …
17 10 milc 54ff825
18 20 milc 54ff825

map_mcmc

id epsilon …
0 0.01

map_flow

id gc_id map_id t2e …
0 0 0 [0, 0.11, … ]
1 1 0 [0, 0.12, … ]
2 2 0 [0, 0.09, … ]

result_flow
id scale_obs m …
0 t2e 0.3
1 bmw 0.3

reduce_scale

id ens_id map_id reduce_id scale …
0 121 0 0 (0.89, 0.01)
1 121 0 1 (0.77, 0.02)

result_scale

id nc ns nt beta nf kappa …
121 3 24 6 5.85 2 0.127

ensemble

map_mcmc and map_physical describe 
map from gauge config prev_id
Convenient split: all configs generated with 
same physical parameters share a phys_id

Example Lattice Database

Map from configs to measurements on configs:
result_flow contains results of applying gradient 
flow with parameters in map_id row of map_flow
to config gc_id

Reduce from ensemble of measurements on 
configs to an observable:
result_scale contains results of computing e.g. 
!"# = ' with # calculated using parameters 

specified by map_id and … taken over group 
of configs specified by ens_id

Overview

Smart Updating with Hashes
To start: assign a unique output_hash to each gauge 
config [e.g. checksum, gauge_config.id]

Every result has an input_hash and an output_hash.
input_hash: Hash together output_hashes of all inputs 
& map_ids/reduce_ids
output_hash: Hash together all outputs of a 
measurement/reduction with the input_hash

Compute hashes outwards from gauge_config to 
determine which analyses need update
input_hash changes
→ something upstream has changed – analysis needs 
update
output_hash changes but input_hash does not 
→ analysis has been corrupted – easy integrity checking

4f991a42

!(
)"

z2d67d 89

f544q2 3m

77g2

Gauge configs with 
output_hashes

Flow measurements 
with input_hashes
and output_hashes

Scale estimate with 
input_hash

Generate new config 
for ensemble

New flow measurement 
with its own output_hash

output_hash from new 
measurement added to input 

pool. input_hash changes, 
result needs update.

Idea:
Centrally store and organize all data and analysis results in a relational database
Keep results of all intermediate stages of analysis

[e.g. fitting a correlator – keep fits to all fit ranges, not just the best fit range]
No black boxes: structure DB so that analysis can be traced from raw data to final output

Why?
Enforces standardization for collaborations – everyone uses a common format, all data 
and results live in one place. [Prevents errors converting formats!]
Structure helps avoid “stupid mistakes” like associating data from different trajectories, 
working with an incomplete dataset, using outdated results, etc.
Reproducibility & provenance – entire analysis kept in DB, easy to “check your work”. 
Can keep metadata (e.g. code version, run date) associated without it getting in the way.
Automated analysis becomes straightforward

Relational Databases

In practice, this means: SQL databases
We use PostgreSQL [open source!]

Data is stored in tables
Key columns provide unique specifiers for each entry
Tables can refer to each other’s key columns
→ Use this to encode structure in data

Must specify table structure and relations at initialization. 
After, any data put in must conform to these types and 
relations [Feature, not a bug: enforces conventions!]

Retrieve data from DB using SQL query language

id first last
0 Daniel Hackett
1 William Jay

license_plate owner_id color
ASD123 0 mauve
JKL456 1 chartreuse

people

cars

car.owner_id refers 
to people.id

people.id is a key, 
uniquely specifies people

license_plate is a (non-
integer) key for cars

Automation
Run ”bulk analysis” scripts N times daily:
• Check for newly-generated raw data and sync to DB
• Determine which analyses need to be updated/new 

analyses to perform
• Perform necessary analyses (e.g. computing scales, 

fitting correlators, picking best fits)
No human intervention required to keep analysis up-
to-date (wake up to fresh results every morning)

Closing the automation loop:
• Workflow manager runs simulations

[e.g. taxi github.com/dchackett/taxi]
• Data stored and automatically analyzed in database
• Automated run-specifier looks at analysis in DB, 

tells workflow manager to launch new simulations
• Applications:

Tuning lattice spacing, <=, etc
Phase diagram exploration (ask about video!)


