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SUMMIT at ORNL 3/25

Figure 1: The New York Times’s comment on SUMMIT becoming
world’s most powerful supercomputer.



Scaling on SUMMIT at ORNL 4/25
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Figure 2: Half precision Möbius domain wall fermion CG weak
scaling with local volume of 16× 123 × 12. 6 NVIDIA Volta GPUs
on each compute node. Numbers provided by Chulwoo Jung.



Motivation 5/25

• Inter-processor communication is the bottleneck for Dirac
equation solving.

• For measurement there are many approaches available to
improve the situation: Lanczos, EigCG, split-grid,
multigrid, etc.

• Not the case for evolution.

• Need an (better) algorithm to reduce the communication
overhead and exploit the fascinating local GPU flops.

• Do more work locally !



Previous Work 6/25

• Domain Decomposition/Multiplicative Schwarz[M.
Lüscher 2004].

• Addtive Schwarz[Y. Osaki 2000] and
[R. Babich 2011].
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For reference see [D. O’leary 1985].

Ax = b : Alxl + Asxs + Arxr = bs

Al As Ar

xr

xs

xl

bs

× =

A × x = b
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Solve
Alxl + Asxs + Arxr = bs,

Rearrange into an iterative form

Asx
(k+1)
s = bs − Alx(k)l − Arx(k)r

= bs −
(
Ax(k) − Asx(k)s

)

= r(k) + Asx
(k)
s ≡ b̂(k)s

For each cycle,

• use communication to calculate the right-hand-side b̂s.

• solve Asx
(k+1)
s = b̂

(k)
s locally.

• the updated solution x
(k+1)
s will be used to ready the next

cycle.

Get As for each node by chopping off all off-block-diagonal
terms: applying zero Dirichlet boundary condition.



Möbius Domain Wall Fermion 9/25

Even-odd preconditioning:

(
M5 −κbM4

eo

−κbM4
oe M5

)(
ψe
ψo

)
=

(
φe
φo

)
,

then instead we solve

DPCψe = φ̂e, DPC ≡M5 − κ2bM4
eoM

−1
5 M4

oe,

M4
oe/eo = Dw

x,y(b5δs,t + c5D
5)

Dw
x,y =

∑

µ

[
(1 + γµ)U

†
x−µ̂,µδx−µ̂,y + (1− γµ)U †x,µδx+µ̂,y

]
.

Using CG:
D†PCDPCψe = D†PC φ̂e



The Normal Operator 10/25

• 4 hopping terms in the normal operator:

A = D†PCDPC

= (M5 − κ2bM4
eoM

−1
5 M4

oe)
†(M5 − κ2bM4

eoM
−1
5 M4

oe)

• This means we need to enforce Dirichlet boundary
condition on D†PCDPC instead of the individual hopping
terms M4

eo/oe(D
w
x,y).

• Need to include the snake terms: terms that hop out of
the boundary and hop back.

• Seems obvious but not trivial to implement.
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The snake terms:



Dslash Implementation 12/25

before 1st hopping term
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before 1st hopping term
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after 1st hopping term
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before 2ed hopping term
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after 2ed hopping term
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before 3rd hopping term



Dslash Implementation 12/25

before 4th hopping term
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• The algorithm converges with inclusion of the snake
terms.

• The convergence rate is slow.

• Similar to [M. Lüscher 2004] we use its first cycle with
zero initial guess as a preconditioner for CG.

• We use plain CG for the preconditioner solve. Instead of
setting a precision stopping condition we iterate for a
fixed number of times(the inner iteration count).



As a Preconditioner 14/25

r0 = b− Ax0
z0 =M−1r0
p0 = z0
k = 0
while have not converged do

αk = 〈rk, zk〉/〈pk, Apk〉
xk+1 = xk + αkpk
rk+1 = rk − αkApk
zk+1 =M−1rk+1 ← Asx

(k+1)
s = r(k) + Asx

(k)
s

only first cycle, zero initial guess, iterate a fixed number of times

βk = 〈zk+1, rk+1〉/〈zk, rk〉
pk+1 = zk+1 + βkpk
k = k + 1

end while



As a Preconditioner 15/25

A M =


s
As



As a Preconditioner 16/25

• Although starting from a different origin, this is now
effectively the same with addtive Schwarz if one treats
the Dirichlet boundary condition correctly.

• Inclusion of the snake terms is crucial.

• Naming issue: [A Unified Representation and Theory of
Algebraic Additive Schwarz and Multisplitting Methods,
A. Frommer 1997].

• Multisplitting Preconditioned CG(MSPCG).



Result: 323 × 64 17/25

10−08

10−07

10−06

10−05

10−04

10−03

10−02

0 2000 4000 6000 8000 10000 12000 14000

re
la

ti
ve

pr
ec

is
io

n
√
r2
/r

2 0

outer iteration count

32x64x12ID, plain CG

MSPCG: 3 inner iter.

MSPCG: 4 inner iter.

MSPCG: 6 inner iter.

Figure 3: MSPCG solve on a 323 × 64 lattice (a−1 = 1.37 GeV)
with physical pion mass. Test performed on CORI at NERSC on
128 KNL nodes.
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Figure 4: MSPCG solve on the same lattice. Test performed on 64
nodes at Piz Daint. Solving D†Dx = b instead of D†Dx = D†b.
Numbers from Kate Clark.



Result: 643 × 128 19/25
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Figure 5: MSPCG solve on a 643 × 128 lattice (a−1 = 2.36 GeV)
with physical pion mass. Plain CG takes 18092 iterations to
converge to the same precision(10−10). KNL at CORI.



Result: 802 × 96× 192 20/25
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Figure 6: MSPCG solve on a 802 × 96× 192 lattice
(a−1 = 3.00 GeV) with physical pion mass. Test performed on
CORI at NERSC with 1024 KNL nodes.



Sloppy Preconditioner Solve 21/25

• We observe that the number of iterations for outer CG is
greatly reduced even if the inner preconditioner is solved
in a sloppy way, e.g. iterating only 3-6 times.

• Our observation is supported by several theoretical works,
say, [G. Golub 1999] and [V. Simoncini 2003].

• Thus the number of preconditioner solve is a parameter
that can be tuned to achieve maximum speed up.



SUMMIT 22/25

For 16× 123 × 12 local volume on 4 Volta GPUs,

preconditioner 14.13 Tflops

With the same local volume on 1024 6-Volta-nodes,

outer 1.55 Tflops/GPU

Assuming a factor of 3 in outer iteration count reduction with
6 inner iterations, the speed up from MSPCG is:

(
3

1.55

)/(
6×

more work from snake terms︷︸︸︷
1.87

14.13× (6/4)︸ ︷︷ ︸
precon. cost

+
1

1.55︸︷︷︸
outer cost

)
= 1.65



Code Implementation 23/25

• First tested in CPS.

• Fully implemented in Grid1 and Quda2 with help from
Qlattice3.

• Great thanks to Kate Clark from NVIDIA.

1 https://github.com/paboyle/Grid
2 https://github.com/lattice/quda
3 https://github.com/waterret/Qlattice

https://github.com/paboyle/Grid
https://github.com/lattice/quda
https://github.com/waterret/Qlattice


Conclusion 24/25

• The amount of inter-processor communication could be
reduced at the expense of more local floating point
computation by using the multisplitting algorithm as a
preconditioner for CG.

• If the local floating point computation is cheap enough
this greatly speeds up domain wall fermion Dirac equation
solving.



Future Work 25/25

• On going work on Quda: Speed up preconditioner dslash
as much as possible.

• The same approach is expected to work for staggered
fermion as well.

• Spectrum analysis of the matrix A and the preconditioner
M .


