Solving Domain Wall Dirac Equation Using Multisplitting Preconditioned Conjugate Gradient

Jigun Tu¹

¹Department of Physics, Columbia University

The 36th International Symposium on Lattice Field Theory, July 23, 2018 @ 16:10

Talk based on: Duo Guo, Robert D. Mawhinney, and Jiqun Tu, [arXiv:1804.08593].

Special thanks to Norman Christ, Chulwoo Jung, and Christopher Kelly.

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer

Amarjit Soni
UC Boulder

Hiroshi Ohki

Oliver Witzel

Columbia University

Shigemi Ohta (KEK)

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn O'haigan Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

KEK

Julien Frison

University of Liverpool

Nicolas Garron

MIT

David Murphy Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo

Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

Move Over, China: U.S. Is Again Home to World's Speediest Supercomputer

June 8, 2018

Figure 1: The New York Times's comment on SUMMIT becoming world's most powerful supercomputer.

Scaling on SUMMIT at ORNL

Figure 2: Half precision Möbius domain wall fermion CG weak scaling with local volume of $16 \times 12^3 \times 12$. 6 NVIDIA Volta GPUs on each compute node. Numbers provided by Chulwoo Jung.

Motivation 5/25

- Inter-processor communication is the bottleneck for Dirac equation solving.
- For measurement there are many approaches available to improve the situation: Lanczos, EigCG, split-grid, multigrid, etc.
- Not the case for evolution.
- Need an (better) algorithm to reduce the communication overhead and exploit the fascinating local GPU flops.
- Do more work locally!

- Domain Decomposition/Multiplicative Schwarz[M. Lüscher 2004].
- Addtive Schwarz[Y. Osaki 2000] and [R. Babich 2011].

Multisplitting Algorithm

For reference see [D. O'leary 1985].

$$Ax = b: A_l x_l + A_s x_s + A_r x_r = b_s$$

Multisplitting Algorithm

Solve

$$A_l x_l + A_s x_s + A_r x_r = b_s,$$

Rearrange into an iterative form

$$A_s x_s^{(k+1)} = b_s - A_l x_l^{(k)} - A_r x_r^{(k)}$$

$$= b_s - \left(A x^{(k)} - A_s x_s^{(k)} \right)$$

$$= r^{(k)} + A_s x_s^{(k)} \equiv \hat{b}_s^{(k)}$$

For each cycle,

- use communication to calculate the right-hand-side \hat{b}_s .
- solve $A_s x_s^{(k+1)} = \hat{b}_s^{(k)}$ locally.
- the updated solution $x_s^{(k+1)}$ will be used to ready the next cycle.

Get A_s for each node by chopping off all off-block-diagonal terms: applying zero Dirichlet boundary condition.

Möbius Domain Wall Fermion

Even-odd preconditioning:

$$\begin{pmatrix} M_5 & -\kappa_b M_{eo}^4 \\ -\kappa_b M_{oe}^4 & M_5 \end{pmatrix} \begin{pmatrix} \psi_e \\ \psi_o \end{pmatrix} = \begin{pmatrix} \phi_e \\ \phi_o \end{pmatrix},$$

then instead we solve

$$D_{PC}\psi_{e} = \hat{\phi}_{e}, \ D_{PC} \equiv M_{5} - \kappa_{b}^{2} M_{eo}^{4} M_{5}^{-1} M_{oe}^{4},$$

$$M_{oe/eo}^{4} = D_{x,y}^{w} (b_{5} \delta_{s,t} + c_{5} D^{5})$$

$$D_{x,y}^{w} = \sum_{s} \left[(1 + \gamma_{\mu}) U_{x-\hat{\mu},\mu}^{\dagger} \delta_{x-\hat{\mu},y} + (1 - \gamma_{\mu}) U_{x,\mu}^{\dagger} \delta_{x+\hat{\mu},y} \right].$$

Using CG:

$$D_{PC}^{\dagger}D_{PC}\psi_e = D_{PC}^{\dagger}\hat{\phi}_e$$

The Normal Operator

4 hopping terms in the normal operator:

$$A = D_{PC}^{\dagger} D_{PC}$$

= $(M_5 - \kappa_b^2 M_{eo}^4 M_5^{-1} M_{oe}^4)^{\dagger} (M_5 - \kappa_b^2 M_{eo}^4 M_5^{-1} M_{oe}^4)$

- This means we need to enforce Dirichlet boundary condition on $D_{PC}^{\dagger}D_{PC}$ instead of the individual hopping terms $M_{eo/oe}^4(D_{x,y}^w)$.
- Need to include the snake terms: terms that hop out of the boundary and hop back.
- Seems obvious but not trivial to implement.

The Normal Operator

The snake terms:

before 1st hopping term

before 1st hopping term

after 1st hopping term

before 2ed hopping term

after 2ed hopping term

before 3rd hopping term

before 4th hopping term

- The algorithm converges with inclusion of the snake terms.
- The convergence rate is slow.
- Similar to [M. Lüscher 2004] we use its first cycle with zero initial guess as a preconditioner for CG.
- We use plain CG for the preconditioner solve. Instead of setting a precision stopping condition we iterate for a fixed number of times(the inner iteration count).

As a Preconditioner

```
r_0 = b - Ax_0
z_0 = M^{-1}r_0
p_0 = z_0
k = 0
while have not converged do
     \alpha_k = \langle r_k, z_k \rangle / \langle p_k, A p_k \rangle
     x_{k+1} = x_k + \alpha_k p_k
     r_{k+1} = r_k - \alpha_k A p_k
      z_{k+1} = M^{-1}r_{k+1} \leftarrow A_s x_s^{(k+1)} = r^{(k)} + A_s x_s^{(k)}
         only first cycle, zero initial guess, iterate a fixed number of times
     \beta_k = \langle z_{k+1}, r_{k+1} \rangle / \langle z_k, r_k \rangle
     p_{k+1} = z_{k+1} + \beta_k p_k
     k = k + 1
end while
```


- Although starting from a different origin, this is now effectively the same with addtive Schwarz if one treats the Dirichlet boundary condition correctly.
- Inclusion of the snake terms is crucial.
- Naming issue: [A Unified Representation and Theory of Algebraic Additive Schwarz and Multisplitting Methods, A. Frommer 1997].
- Multisplitting Preconditioned CG(MSPCG).

Figure 3: MSPCG solve on a $32^3 \times 64$ lattice ($a^{-1} = 1.37 \; \mathrm{GeV}$) with physical pion mass. Test performed on CORI at NERSC on $128 \; \mathrm{KNL}$ nodes.

Figure 4: MSPCG solve on the same lattice. Test performed on 64 nodes at Piz Daint. Solving $D^{\dagger}Dx = b$ instead of $D^{\dagger}Dx = D^{\dagger}b$. Numbers from Kate Clark.

Figure 5: MSPCG solve on a $64^3 \times 128$ lattice ($a^{-1} = 2.36 \text{ GeV}$) with physical pion mass. Plain CG takes 18092 iterations to converge to the same precision(10^{-10}). KNL at CORI.

Figure 6: MSPCG solve on a $80^2 \times 96 \times 192$ lattice $(a^{-1} = 3.00 \ {\rm GeV})$ with physical pion mass. Test performed on CORI at NERSC with 1024 KNL nodes.

- We observe that the number of iterations for outer CG is greatly reduced even if the inner preconditioner is solved in a sloppy way, e.g. iterating only 3-6 times.
- Our observation is supported by several theoretical works, say, [G. Golub 1999] and [V. Simoncini 2003].
- Thus the number of preconditioner solve is a parameter that can be tuned to achieve maximum speed up.

SUMMIT

For $16 \times 12^3 \times 12$ local volume on 4 Volta GPUs,

preconditioner	14.13 Tflops
----------------	--------------

With the same local volume on $1024\ 6\text{-Volta-nodes}$,

Assuming a factor of 3 in outer iteration count reduction with 6 inner iterations, the speed up from MSPCG is:

$$\left(\frac{3}{1.55}\right) \middle/ \left(\underbrace{\frac{6 \times 1.87}{14.13 \times (6/4)}}_{\text{precon. cost}} + \underbrace{\frac{1}{1.55}}_{\text{outer cost}}\right) = 1.65$$

Code Implementation

- First tested in CPS.
- Fully implemented in Grid¹ and Quda² with help from Qlattice³.
- Great thanks to Kate Clark from NVIDIA.

https://github.com/paboyle/Grid

https://github.com/lattice/quda

³ https://github.com/waterret/Qlattice

- The amount of inter-processor communication could be reduced at the expense of more local floating point computation by using the multisplitting algorithm as a preconditioner for CG.
- If the local floating point computation is cheap enough this greatly speeds up domain wall fermion Dirac equation solving.

- On going work on Quda: Speed up preconditioner dslash as much as possible.
- The same approach is expected to work for staggered fermion as well.
- Spectrum analysis of the matrix A and the preconditioner M.