
Solving Domain Wall Dirac Equation
Using Multisplitting Preconditioned

Conjugate Gradient

Jiqun Tu1

1Department of Physics, Columbia University

The 36th International Symposium on Lattice Field
Theory, July 23, 2018 @ 16:10

Talk based on: Duo Guo, Robert D. Mawhinney, and Jiqun
Tu, [arXiv:1804.08593].

https://arxiv.org/abs/1804.08593

Special thanks to Norman Christ, Chulwoo Jung, and Christopher

Kelly.

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
Masaaki Tomii
Jiqun Tu
Bigeng Wang

University of Connecticut

Peter Boyle
Guido Cossu
Luigi Del Debbio
Tadeusz Janowski
Richard Kenway
Julia Kettle
Fionn O'haigan
Brian Pendleton
Antonin Portelli
Tobias Tsang
Azusa Yamaguchi

Nicolas Garron

Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
James Richings
Chris Sachrajda

Julien Frison

Xu Feng

Tianle Wang
Evan Wickenden
Yidi Zhao

UC Boulder

Renwick Hudspith

Yasumichi Aoki (KEK)
Mattia Bruno
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

Oliver Witzel

Columbia University

Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

Edinburgh University

York University (Toronto)

University of Southampton

Peking University

University of Liverpool

KEK

Stony Brook University

Jun-Sik Yoo
Sergey Syritsyn (RBRC)

MIT

David Murphy

SUMMIT at ORNL 3/25

Figure 1: The New York Times’s comment on SUMMIT becoming
world’s most powerful supercomputer.

Scaling on SUMMIT at ORNL 4/25

1

10

100

1 10 100 1000

8.85

18.60

94.2

1.55

T
flo

ps
/n

od
e

number of nodes

← single Volta MDWF dslash performance(projected)

← single Volta peak performance(projected)

Figure 2: Half precision Möbius domain wall fermion CG weak
scaling with local volume of 16× 123 × 12. 6 NVIDIA Volta GPUs
on each compute node. Numbers provided by Chulwoo Jung.

Motivation 5/25

• Inter-processor communication is the bottleneck for Dirac
equation solving.

• For measurement there are many approaches available to
improve the situation: Lanczos, EigCG, split-grid,
multigrid, etc.

• Not the case for evolution.

• Need an (better) algorithm to reduce the communication
overhead and exploit the fascinating local GPU flops.

• Do more work locally !

Previous Work 6/25

• Domain Decomposition/Multiplicative Schwarz[M.
Lüscher 2004].

• Addtive Schwarz[Y. Osaki 2000] and
[R. Babich 2011].

Multisplitting Algorithm 7/25

For reference see [D. O’leary 1985].

Ax = b : Alxl + Asxs + Arxr = bs

Al As Ar

xr

xs

xl

bs

× =

A × x = b

Multisplitting Algorithm 8/25

Solve
Alxl + Asxs + Arxr = bs,

Rearrange into an iterative form

Asx
(k+1)
s = bs − Alx(k)l − Arx(k)r

= bs −
(
Ax(k) − Asx(k)s

)

= r(k) + Asx
(k)
s ≡ b̂(k)s

For each cycle,

• use communication to calculate the right-hand-side b̂s.

• solve Asx
(k+1)
s = b̂

(k)
s locally.

• the updated solution x
(k+1)
s will be used to ready the next

cycle.

Get As for each node by chopping off all off-block-diagonal
terms: applying zero Dirichlet boundary condition.

Möbius Domain Wall Fermion 9/25

Even-odd preconditioning:

(
M5 −κbM4

eo

−κbM4
oe M5

)(
ψe
ψo

)
=

(
φe
φo

)
,

then instead we solve

DPCψe = φ̂e, DPC ≡M5 − κ2bM4
eoM

−1
5 M4

oe,

M4
oe/eo = Dw

x,y(b5δs,t + c5D
5)

Dw
x,y =

∑

µ

[
(1 + γµ)U

†
x−µ̂,µδx−µ̂,y + (1− γµ)U †x,µδx+µ̂,y

]
.

Using CG:
D†PCDPCψe = D†PC φ̂e

The Normal Operator 10/25

• 4 hopping terms in the normal operator:

A = D†PCDPC

= (M5 − κ2bM4
eoM

−1
5 M4

oe)
†(M5 − κ2bM4

eoM
−1
5 M4

oe)

• This means we need to enforce Dirichlet boundary
condition on D†PCDPC instead of the individual hopping
terms M4

eo/oe(D
w
x,y).

• Need to include the snake terms: terms that hop out of
the boundary and hop back.

• Seems obvious but not trivial to implement.

The Normal Operator 11/25

The snake terms:

Dslash Implementation 12/25

before 1st hopping term

Dslash Implementation 12/25

before 1st hopping term

Dslash Implementation 12/25

after 1st hopping term

Dslash Implementation 12/25

before 2ed hopping term

Dslash Implementation 12/25

after 2ed hopping term

Dslash Implementation 12/25

before 3rd hopping term

Dslash Implementation 12/25

before 4th hopping term

Multisplitting Algorithm 13/25

• The algorithm converges with inclusion of the snake
terms.

• The convergence rate is slow.

• Similar to [M. Lüscher 2004] we use its first cycle with
zero initial guess as a preconditioner for CG.

• We use plain CG for the preconditioner solve. Instead of
setting a precision stopping condition we iterate for a
fixed number of times(the inner iteration count).

As a Preconditioner 14/25

r0 = b− Ax0
z0 =M−1r0
p0 = z0
k = 0
while have not converged do

αk = 〈rk, zk〉/〈pk, Apk〉
xk+1 = xk + αkpk
rk+1 = rk − αkApk
zk+1 =M−1rk+1 ← Asx

(k+1)
s = r(k) + Asx

(k)
s

only first cycle, zero initial guess, iterate a fixed number of times

βk = 〈zk+1, rk+1〉/〈zk, rk〉
pk+1 = zk+1 + βkpk
k = k + 1

end while

As a Preconditioner 15/25

A M =

s
As

As a Preconditioner 16/25

• Although starting from a different origin, this is now
effectively the same with addtive Schwarz if one treats
the Dirichlet boundary condition correctly.

• Inclusion of the snake terms is crucial.

• Naming issue: [A Unified Representation and Theory of
Algebraic Additive Schwarz and Multisplitting Methods,
A. Frommer 1997].

• Multisplitting Preconditioned CG(MSPCG).

Result: 323 × 64 17/25

10−08

10−07

10−06

10−05

10−04

10−03

10−02

0 2000 4000 6000 8000 10000 12000 14000

re
la

ti
ve

pr
ec

is
io

n
√
r2
/r

2 0

outer iteration count

32x64x12ID, plain CG

MSPCG: 3 inner iter.

MSPCG: 4 inner iter.

MSPCG: 6 inner iter.

Figure 3: MSPCG solve on a 323 × 64 lattice (a−1 = 1.37 GeV)
with physical pion mass. Test performed on CORI at NERSC on
128 KNL nodes.

Result: 323 × 64 18/25

10−10

10−08

10−06

10−04

10−02

10+00

0 5000 10000 15000 20000 25000 30000 35000

%
=

√
r2
/s

2

outer iteration count

plain CG
2 inner iter.
3 inner iter.
4 inner iter.
5 inner iter.
6 inner iter.
7 inner iter.
8 inner iter.
9 inner iter.

10 inner iter.

Figure 4: MSPCG solve on the same lattice. Test performed on 64
nodes at Piz Daint. Solving D†Dx = b instead of D†Dx = D†b.
Numbers from Kate Clark.

Result: 643 × 128 19/25

4000

5000

6000

7000

8000

9000

10000

0 3 6 9 12 15 18

nu
m

be
r

of
ou

te
r

it
er

at
io

ns
to

co
nv

er
ge

number of inner iterations

064 nodes

5464

4237

128 nodes

5631

9993

4492 4298

256 nodes
9741

4800

5823

4655

512 nodes

6008

5083 4948

Figure 5: MSPCG solve on a 643 × 128 lattice (a−1 = 2.36 GeV)
with physical pion mass. Plain CG takes 18092 iterations to
converge to the same precision(10−10). KNL at CORI.

Result: 802 × 96× 192 20/25

10−10

10−09

10−08

10−07

10−06

10−05

10−04

10−03

10−02

0 2000 4000 6000 8000 10000 12000 14000 16000

re
la

ti
ve

pr
ec

is
io

n
√
r2
/r

2 0

outer iteration count

80x80x96x192DED, plain CG

MSPCG: 6 inner iter.

Figure 6: MSPCG solve on a 802 × 96× 192 lattice
(a−1 = 3.00 GeV) with physical pion mass. Test performed on
CORI at NERSC with 1024 KNL nodes.

Sloppy Preconditioner Solve 21/25

• We observe that the number of iterations for outer CG is
greatly reduced even if the inner preconditioner is solved
in a sloppy way, e.g. iterating only 3-6 times.

• Our observation is supported by several theoretical works,
say, [G. Golub 1999] and [V. Simoncini 2003].

• Thus the number of preconditioner solve is a parameter
that can be tuned to achieve maximum speed up.

SUMMIT 22/25

For 16× 123 × 12 local volume on 4 Volta GPUs,

preconditioner 14.13 Tflops

With the same local volume on 1024 6-Volta-nodes,

outer 1.55 Tflops/GPU

Assuming a factor of 3 in outer iteration count reduction with
6 inner iterations, the speed up from MSPCG is:

(
3

1.55

)/(
6×

more work from snake terms︷︸︸︷
1.87

14.13× (6/4)︸ ︷︷ ︸
precon. cost

+
1

1.55︸︷︷︸
outer cost

)
= 1.65

Code Implementation 23/25

• First tested in CPS.

• Fully implemented in Grid1 and Quda2 with help from
Qlattice3.

• Great thanks to Kate Clark from NVIDIA.

1 https://github.com/paboyle/Grid
2 https://github.com/lattice/quda
3 https://github.com/waterret/Qlattice

https://github.com/paboyle/Grid
https://github.com/lattice/quda
https://github.com/waterret/Qlattice

Conclusion 24/25

• The amount of inter-processor communication could be
reduced at the expense of more local floating point
computation by using the multisplitting algorithm as a
preconditioner for CG.

• If the local floating point computation is cheap enough
this greatly speeds up domain wall fermion Dirac equation
solving.

Future Work 25/25

• On going work on Quda: Speed up preconditioner dslash
as much as possible.

• The same approach is expected to work for staggered
fermion as well.

• Spectrum analysis of the matrix A and the preconditioner
M .

