String breaking with $2+1$ dynamical fermions using the stochastic LapH method

Vanessa Koch
John Bulava, Ben Hörz, Mike Peardon, Francesco Knechtli, Graham Moir, Colin Morningstar

Trinity College Dublin \& Bergische Universität Wuppertal

July 24, 2018

Trinity College Dublin
Coláiste na Tríonóide, Baile Åtha Cliath
The University of Dublin
"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No 642069"

1 Static potential and a short history of string breaking

2 Methods and setup
－Distillation
－Stochastic estimation and Dilution
－Stochastic LapH method

3 Simulation details and numerical results

4 Outlook

- The static potential $V(r)$, is defined as the energy of the ground state containing a static quark Q and static anti-quark Q separated by distance $\mathbf{r}=\mathbf{y}-\mathbf{x}$

$$
Q(\mathbf{x}, t) \cdot \quad \cdot \bar{Q}(\mathbf{y}, t)
$$

- As a consequence of confinement, the energy between the quark-antiquark pair is contained inside a color flux tube, the so called string
- The time correlation function yields the Wilson loop:

$$
\langle W(T, r)\rangle \propto e^{-V(r, T)}
$$

- If no pair creation from vacuum is allowed, $\mathrm{V}(\mathrm{r})$ can be parametrized by:

$$
V(r)=A+\frac{B}{r}+\sigma r
$$

In the full theory with dynamical quarks in the fundamental representaion, the string will break due to creation of a pair of light quarks $q \bar{q}$, which combine into two static light mesons $\mathrm{B}=q \bar{Q}$.

This so called string breaking (SB) is expected as soon as $\left[V(r)-2 E_{B}\right]>0$

In the full theory with dynamical quarks in the fundamental representaion, the string will break due to creation of a pair of light quarks $q \bar{q}$, which combine into two static light mesons $\mathrm{B}=q \overline{\mathrm{Q}}$.

This so called string breaking (SB) is expected as soon as $\left[V(r)-2 E_{B}\right]>0$

Expectation: $\mathrm{V}(\mathrm{r})$ saturates towards $2 E_{B}$

In the full theory with dynamical quarks in the fundamental representaion, the string will break due to creation of a pair of light quarks $q \bar{q}$, which combine into two static light mesons $\mathrm{B}=q \overline{\mathrm{Q}}$.

This so called string breaking (SB) is expected as soon as $\left[V(r)-2 E_{B}\right]>0$

Expectation: $\mathrm{V}(\mathrm{r})$ saturates towards $2 E_{B}$
Problem: This behavior could not be seen in early lattice simulations

Reasons:

- Lattice size has to be $>2 r_{b}$
- weak signal-to-noise ratio for distances $>1 \mathrm{fm}$
- Wilson loop not a good ground state observable after SB

Reasons:

■ Lattice size has to be $>2 r_{b}$
■ weak signal-to-noise ratio for distances $>1 \mathrm{fm}$

- Wilson loop not a good ground state observable after SB

Solution:

$\square S B$ is a mixing phenomenon

- $|Q \bar{Q}\rangle,|B \bar{B}\rangle$ are not QCD eigenstates
- the ground state $|1\rangle$ and first excited state $|2\rangle$ are superpositions of $|Q \bar{Q}\rangle,|B \bar{B}\rangle \rightarrow$ avoided level crossing

Reasons:

■ Lattice size has to be $>2 r_{b}$

- weak signal-to-noise ratio for distances $>1 \mathrm{fm}$
- Wilson loop not a good ground state observable after SB

Solution:

- SB is a mixing phenomenon
- $|Q \bar{Q}\rangle,|B \bar{B}\rangle$ are not QCD eigenstates
- the ground state $|1\rangle$ and first excited state $|2\rangle$ are superpositions of $|Q \bar{Q}\rangle,|B \bar{B}\rangle \rightarrow$ avoided level crossing

Using this Ansatz, evidence for SB was found for the SU(2) Higgs model Knechtli and Sommer [arXiv:hep-lat/9807022], Philipsen and Wittig
[arXiv:hep-lat/arXiv:hep-lat/9807020]
and later for $n_{f}=2$ QCD Bali et al.[arXiv:hep-lat/0505012]

The ground state and first excited state of the static potential are now determined by a variational technique from a correlation matrix $C(t)$

The interpolators \mathcal{O}_{Q} and \mathcal{O}_{B} corresponding to the string and the state consisting of two staticlight mesons are given by:

$$
\begin{aligned}
& \mathcal{O}_{Q}(t) \equiv \bar{Q}(\mathbf{y}, t) \Gamma \mathcal{W}(\mathbf{y}, \mathbf{x}, t) Q(\mathbf{x}, t) \\
& \mathcal{O}_{B}(t) \equiv \bar{Q}(\mathbf{y}, t) \Gamma q^{i}(\mathbf{y}, t) \overline{q^{i}}(\mathbf{x}, t) \Gamma Q(\mathbf{x}, t) \\
& C(t)=\quad\left(\begin{array}{ll}
C_{Q \bar{Q}}=\left\langle\mathcal{O}_{Q}(t) \overline{\mathcal{O}}_{Q}(0)\right\rangle & C_{B \bar{Q}}=\left\langle\mathcal{O}_{B}(t) \overline{\mathcal{O}}_{Q}(0)\right\rangle \\
C_{Q \bar{B}}=\left\langle\mathcal{O}_{Q}(t) \overline{\mathcal{O}}_{B}(0)\right\rangle & C_{B \bar{B}}=\left\langle\mathcal{O}_{B}(t) \overline{\mathcal{O}}_{B}(0)\right\rangle
\end{array}\right) \\
& =\binom{\square \sqrt{n_{f}} \times \square}{\sqrt{n_{f}} \times \square}
\end{aligned}
$$

Our aim

Analyze SB using state of the art methods in order to

- examine SB on a bigger lattice with smaller sea quark mass
- examine $n_{f}=2+1$ flavors to observe effect of including strange quark

Challenges

- need for 'all-to-all propagators'
- large lattice size needed
- large set of off-axis distances needed for good resolution of SB

Methods and setup

■ use of stochastic LapH method for 'all to all propagators'
■ use of suitable set of ensembles with $n_{f}=2+1$ generated by the CLS effort Bruno et al.[arXiv:1411.3982]

id	$\mathrm{a}[\mathrm{fm}]$	N_{s}	N_{t}	$m_{\pi}[\mathrm{MeV}]$	$m_{K}[\mathrm{MeV}]$	$m_{\pi} L$
B105	0.086	32	64	280	460	3.9
H101	0.086	32	96	420	420	5.8
H102	0.086	32	96	350	440	4.9
H105	0.086	32	96	280	460	3.9
C101	0.086	48	96	220	470	4.7
D100	0.086	64	128	130	480	3.7
H200	0.064	32	96	420	420	4.4
N200	0.064	48	128	280	460	4.4
D200	0.064	64	128	200	480	4.2
N300	0.05	48	128	420	420	5.1
N301	0.05	48	128	410	410	4.9
J303	0.05	64	192	260	470	4.1

■ Distillation is a form of quark smearing that facilitates all-to-all propagators

- the important contributions to the quark propagator are encoded in smaller subspace, spanned by eigenvectors of covariant 3D Laplace operator
\rightarrow smearing matrix S is a projector into LapH subspace

$$
S_{x y}(t)=\sum_{k}^{N_{e v}} v_{x}^{k}(t) v_{y}^{k}(t)^{\dagger} \equiv V V^{\dagger}
$$

A smeared quark propagator \mathcal{Q} now reads:

$$
\mathcal{Q}=S \Omega^{-1} S=V\left(V^{\dagger} \Omega^{-1} V\right) V^{\dagger}
$$

where $\Omega^{-1}=\gamma_{4} D^{-1}$
■ computation and storage of the much smaller matrix $\left(V^{\dagger} \Omega^{-1} V\right)$
■ to get constant physical smearing: $N_{i n v} \propto N_{e v} \sim V$

- Stochastically estimate the inverse of the large matrix using random noise vectors η

$$
E\left(\eta_{i}\right)=0 \quad E\left(\eta_{i} \eta_{j}^{*}\right)=\delta_{i j}
$$

- path integrals evaluated using MC, statistical errors for the correlators limited by the statistical fluctuations from gauge-field sampling
■ \rightarrow propagators only have to be estimated to a comparable accuracy
If for N_{R} noise sources, $\Omega X^{r}=\eta^{r}$ is solved

$$
\Omega_{i j}^{-1} \approx N_{R}^{-1} \sum_{r=1}^{N_{R}} X_{i}^{r} \eta_{j}^{r *} .
$$

"Monte Carlo within a Monte Carlo"
Use dilution of the noise vectors to reduce variance
Foley et al. [arXiv:hep-lat/0505023]

A Dilution scheme amounts to the application of a complete set of projection operators $P^{(b)}$

Define diluted noise $\quad \rho^{r[b]}=P^{(b)} \rho^{r}$
If $X^{r[b]}$ is solution of $\Omega X^{r[b]}=\rho^{r[b]}$ a 'better' MC estimate is:

$$
\Omega_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{b=1}^{N_{b}} X_{i}^{r[b]} \rho_{j}^{r[b] *}
$$

Noise ρ is introduced only in the LapH-subspace
Morningstar et al. [arXiv:1104.3870]
$\rightarrow N_{i n v} \propto N_{R} N_{b}$ Morningstar, Bulava, Hörz arXiv:1710.04545 [hep-lat]

Steps towards string breaking with $2+1$ dynamical fermions using the stochastic LapH-method:

$$
\mathrm{N} 200\left(128 \times 48^{3}\right), n_{f}=2+1
$$

id	$\mathrm{a}[\mathrm{fm}]$	$m_{\pi}[\mathrm{MeV}]$	$m_{K}[\mathrm{MeV}]$	$m_{\pi} L$
N200	0.064	280	460	4.4

1 test stochastically estimated light quark propagators in correlation functions involving a static color source
2 extract E_{B}, the mass of the static-light meson

$t_{\text {min }}$-plot for the static-light meson on 200 configurations of N200, $t_{\text {min }}$ indicates starting point of exponential fit. The black dot represents the chosen value with a relative uncertainty of 0.4%. arXiv: 1511.04029 [hep-lat]

$t_{\text {min }}$-plot for the static-strange meson, on 100 configurations of $\mathrm{N} 200, t_{\text {min }}$ indicates starting point of exponential fit. The black dot represents the chosen value with a relative uncertainty of 0.3%. arXiv: 1511.04029 [hep-lat]

Steps towards string breaking with $2+1$ dynamical fermions using the stochastic LapH-method:

1 test stochastically estimated light quark propagators in correlation functions involving a static color source $\sqrt{ }$
2 extract E_{B}, the mass of the static-light meson $\sqrt{ }$
3 calculate the static potential $V(r)$ using wilson loops to estimate the string breaking distance r_{b} to observe where the string breaks

Ground state potential $V(r)$ on 1600 configurations of N200, following the method presented in Donnellan et al. [arXiv:1012.3037]

Next step: perform full mixing analysis

Inclusion of the strange quark yields 3×3 correlation matrix, larger if different levels of smearing are used

$$
C(t)=\left(\begin{array}{ccc}
C_{Q \bar{Q}}(t) & C_{B \bar{Q}}(t) & C_{B_{s} \bar{Q}}(t) \\
C_{Q \bar{B}}(t) & C_{B B}(t) & C_{B_{s} \bar{B}}(t) \\
C_{Q \overline{B_{s}}}(t) & C_{B \overline{B_{s}}}(t) & C_{B_{s} \bar{B}_{s}}(t)
\end{array}\right)
$$

id	$N_{e v}$	line type	dilution scheme	N_{r} light/strange	source time
N200	192	fixed	$(\mathrm{TF}, \mathrm{SF}, \mathrm{LI} 8)$	$5 / 2$	32,52
		relative	$(\mathrm{TI} 8, \mathrm{SF}, \mathrm{LI} 8)$	$2 / 1$	-

Preliminary results on 52 configurations (1800 for Wilson loops) of N200, only on-axis distances

[Bali et al. 2005]

Summary

■ stochastic LapH method allows for accurate determinations of temporal correlations involving static quarks
■ we see the effect of the strange sea-quark flavor, which results in a second mixing-phenomenon due to the formation of two static-strange mesons

Outlook

- analysis of N200 (and D200) with full data set (105 configurations) and off-axis distances
- investigate dependence of string breaking distance and shape of gap on sea quark mass
\rightarrow repeat calculation on other ensembles

