Progress on Parton Pseudo-Distributions II

Joe Karpie

William & Mary / Jefferson Lab

Kostas Orginos (W&M / JLab) Sing, MI, USA
Anatoly Radyushkin (Old Dominion U / JLab)
Alexander Rothkopf (Stavanger U)
Savvas Zafeiropoulos (Heidelberg U)

Jefferson Lab

ILLIAM & MARY

Introduction

- Lattice calculations of Distribution functions are maturing to the point of realistic comparison with experiment
- EIC will be able to measure more PDFs with more precision than ever before
- **Project Goals**
 - Long Term: Study methods of calculating parton distributions from ab initio Lattice QCD
 - Short Term: Understand systematic effects in the simple case of iso-vector quark unpolarized **PDF**
- Mellin moments and OPE
 - Restricted to low moments by reduced rotational symmetry
- Hadronic Tensor Methods

A Chambers et.al (2017) 1703.01153

- "Light-like" separated Hadronic TensorK-F Liu et al Phys. Rev. Lett. 72 1790 (1994), Phys. Rev. D62 (2000) 074501
- Good lattice cross sections Y.-Q. Ma J.-W. Qiu (2014) 1404.6860 Y.-Q. Ma, J.-W. Qiu (2017) 1709.03018
- loffe Time Pseudo Distribution Methods
 - Quasi PDF X. Ji, Phys.Rev.Lett. 110, (2013)

J.-W. Chen et.al. (2018) 1803.04393 C Alexandrou et.al. (2018) 1803.02685

Pseudo PDF A. Radyushkin Phys.Lett. B767 (2017)

loffe Time distribution

 $v = p \cdot z$ B. L. loffe, Phys. Lett. 30B, 123 (1969)

• $I(\nu, \mu^2) = \int_{-1}^1 dx \ e^{i\nu x} f(x, \mu^2)$

V. Braun, et. al Phys. Rev. D 51, 6036 (1995)
I.I. Balitsky and V.M. Braun, Nucl. Phys. B311, 541 (1988)

- CP Even/Odd combinations
 - Even: $q_{-}(x) = f(x) + f(-x) = q(x) \bar{q}(x) \equiv q_{V}(x)$
 - Odd: $q_+(x) = f(x) f(-x) = q(x) + \bar{q}(x) = 2 q_V(x) + \bar{q}(x)$

$$Re \ [I(v)] = \int_0^1 dx \ \cos(vx) \ q_-(x) = \int_0^1 dx \ \cos(vx) q_V(x) \equiv I_V(v)$$

$$Im \ [I(v)] = \int_0^1 dx \ \sin(vx) q_+(x) = \int_0^1 dx \ \sin(vx) (q(x) + \bar{q}(x))$$

Perturbative position space DGLAP evolution

$$I_{V}(\nu,\mu_{2}^{2}) = I_{V}(\nu,\mu_{1}^{2}) - \frac{C_{F}\alpha_{S}}{2\pi}\log\left(\frac{\mu_{2}^{2}}{\mu_{1}^{2}}\right)\int_{0}^{1}du\left[\frac{1}{2}\delta(1-u) - (1-u) - 2\left(\frac{u}{1-u}\right)_{+}\right]I_{V}(u\nu,\mu_{1}^{2})$$

What is a pseudo-distribution?

- Standard partonic distributions, particularly collinear distributions, are defined via matrix elements with light like separations
 - Describe probability distribution of quark states
 - Not suitable for lattice calculation
- Pseudo distributions are Lorentz invariant generalizations of partonic distributions defined via matrix elements with space like separations
 - Do not have probabilistic interpretation
 - Acceptable for lattice calculation
- In the limit that the space like separation goes to 0, the standard distribution is recovered

Pseudo loffe Time Distributions

A general matrix element of interest

$$M^{\alpha}(z,p) = \langle h(p)|\bar{\psi}(z)\gamma^{\alpha}W(z;0)\psi(0)|h(p)\rangle$$

- Lorentz decomposition
 - Physicists love to use of symmetries
 - Choice of p, z, and α can remove higher twist term

$$M^\alpha(z,p) = 2 \; p^\alpha \; M_p(\nu,z^2) + z^\alpha M_z(\nu,z^2) \label{eq:mass_mass_mass}$$

- Relation to ITDF
 - Perturbatively calculable Wilson coefficients for each parton

$$M(\nu, -z^2) = \sum_i C_i(z^2 \mu^2, \alpha_S) \otimes I_i(\nu, \mu^2) + H.T.$$

A. Radyushkin (2017) 1710.08813 J.-H. Zhang (2018) 1801.03023 T. Izubuchi (2018) 1801.03917

$$M^{\alpha}(z,p) = \langle h(p)|\bar{\psi}(z)\gamma^{\alpha}W(z;0)\psi(0)|\;h(p)\rangle$$

Special Cases

 $M^{\alpha}(z,p) = 2 p^{\alpha} M_p(v,z^2) + z^{\alpha} M_z(v,z^2)$

Light cone PDF

$$M_p((p^+z^-), 0) = \int_{-1}^1 dx \ e^{ix(p^+z^-)} f(x)$$

Straight Link "Primordial" TMD

$$p = (p^+, p^-, 0_T)$$
 $z = (0, z^-, z_T)$ $\alpha = +$

 $p = (p^+, p^-, 0_T)$ $z = (0, z^-, 0_T)$ $\alpha = +$

$$M_p((p^+z^-), -z_T^2) = \int_{-1}^1 dx \ e^{ix(p^+z^-)} \int d^2k_T \ e^{ik_T \cdot z_T} F(x, k_T^2)$$

Pseudo PDF

$$M_P\left((-z_3p_3), -z_3^2\right) = \int_{-1}^1 dx \ e^{ix(-z_3p_3)} P(x, -z_3^2)$$

$$p = (E, 0, 0, p_3)$$
 $z = (0, 0, 0, z_3)$ $\alpha = 0$

Matching Lattice data to loffe distribution

- Matching between pseudo ITDF and MS bar scheme ITDF via factorization of IR divergences.
- At 1-loop, scale evolution and matching can be simultaneous
- Allows for a direct relationship between ITDF/PDF and pseudo ITDF
 - No more need for extrapolations in the scale
 - Does require scale to be in regime dominated by pertubative effects
- No real need for pseudo PDFs. Go directly from pseudo ITDF to PDF
- Only perturbative correction propotional to α_S (around 10%)

$$I(\nu,\mu^{2}) = \mathcal{M}(\nu,z^{2}) + \frac{C_{F}\alpha_{S}}{2\pi} \int_{0}^{1} du \left[B(u) \left(\log \left(z^{2}\mu^{2} \frac{e^{2\gamma_{E}}}{4} \right) + 1 \right) + \left(\frac{4 \log(1-u)}{1-u} - 2(1-u) \right)_{+} \right] \mathcal{M}(u\nu,z^{2})$$

Pseudo ITD as a Good Lattice Cross Section

- Good Experimental Cross Section An experiment whose results, Form Factors or asymmetries, is sensitive to a particular PDF.
 - o DIS, SIDIS, DY,
- Good Lattice Cross Section A lattice QCD calculable matrix element whose result is sensitive to a particular PDF (Matrix element and not actually a cross section)
 - Vector-vector currents, Axial-vector currents, Quark fields separated by Wilson line,

Numerical Study

Both use Wilson-Clover Stout smeared Fermions

Quenched Wilson plaquette gauge action

K. Orginos, A Radyushkin, JK, S Zafeiropoulos (2017) 1706.05373

•
$$\beta = 6.0$$
 $m_{\pi} = 600$ MeV $32^3 \times 64$ $a = 0.1$ fm

Dynamical Tree level tadpole Symanzik improved gauge action (Preliminary)

•
$$a127m440$$
 : $\beta=6.1$ $m_\pi=440$ MeV $24^3\times 64$ $a=0.127$ fm

•
$$a127m440L$$
: $\beta = 6.1$ $m_{\pi} = 440$ MeV $32^3 \times 96$ $a = 0.127$ fm

Summation method for Matrix element extraction

Correlation functions

$$\begin{split} C_2(\vec{p},T) &= \langle O_N(-\vec{p},T)\bar{O}_N(\vec{p},0)\rangle \\ C_{op}(O_{op};\vec{p},T) &= \sum_t \sum_{\vec{r}} \langle O_N(-\vec{p},T)O_{op}(\vec{x},t)\bar{O}_N(\vec{p},0)\rangle \end{split}$$

• Summation method extraction C. Bouchard et.al Phys. Rev. D 96, no. 1, 014504 (2017)

$$\frac{\langle N(p)|O_{op}|N(p)\rangle}{2E_{N}(p)} = \lim_{T\to\infty} \frac{1}{\tau} (R(T+\tau)-R(T)) \qquad R(T) = \frac{C_{op}(O_{op};\vec{p},T)}{C_2(\vec{p},T)}$$

$$O_q^{\alpha}(z;T) = \sum_{\vec{x}} \bar{\psi}_q(\vec{x} + \vec{z}, T) \lambda^3 \gamma^{\alpha} W((\vec{x} + \vec{z}, T); (\vec{x}, T)) \psi_q(\vec{x}, T)$$

Quenched Results

Imaginary Component and AntiQuarks

- Imaginary component mixes valence, sea, and antiquark distributions
- Use real component to find valence contribution, the rest is the sea and antiquarks
- Identify anti quark distribution without need of needing to perform inaccurate Fourier transforms and requiring the unreliable low x region
 Qualitatively it gives proper sig
 - Qualitatively it gives proper sign for quenched iso-vector quarks

Improved Matrix element Extraction

- Use four different correlation functions
 - Regular Gaussian Smearing
 - Smeared-to-Smeared
 - Smeared-to-Point
 - Momentum smearing
 - Smeared-to-Smeared
 - Smeared-to-Point
- Contact terms from T=0 cancel in the ratio
 - Fits can be over the entire range of interpolator field separations
- Form of excited states

$$O(T) = M + C_1 e^{-\Delta ET} + C_2 T e^{-\Delta ET}$$

Some good extractions

Preliminary

Preliminary

Less good extractions

Renormalization and the Reduced distribution

Vector current

$$Z_p^{-1} = M^4(0,p)$$

- Forces matrix elements to give unit charge
- Reduced distribution $\mathfrak{M}(\nu, z^2) = \frac{\mathcal{M}(\nu, z^2)}{\mathcal{M}(0, z^2)}$
 - TMD "Factorization" and suppression of polynomial corrections

$$F(x, k_T^2) = f(x)g(k_T^2) \Rightarrow M(v, z^2) = M(v, 0)M(0, z^2)$$

 BONUS: Multiplicative UV power divergent corrections from Wilson line cancel away

Pseudo-ITDF Results a127m440

Pseudo-ITDF Results a127m440L

ITDF MS bar matched Results a127m440L

Comparison of Volumes

- Two Current matrix elements can have very large finite volume corrections
 - See talk by Guerrero

Briceno et al. (2018) 1805.01034 Bali et al. (2018) 1807.03073

 Finite volume effects of Wilson line operator has been unstudied

Moments of PDFs

- Taylor Expansion coefficients of loffe Time Distributions are the moments of PDFs
 - Even moments from Real component of ITDF
 - Odd moments from Imaginary component of ITDF
 - With enough data there is no limit on what moments can be calculated
- Comparison of moments from Quenched data

Real component and the Valence Quark distribution

- In first attempt to avoid ill posed inverse Fourier transform
- A general model PDF used by JAM collaboration for fitting

$$f_{abcd}(x) = N_{abcd} x^a (1-x)^b (1+c\sqrt{x}+dx)$$

Lowest order behaviors

- Regge $a = -\frac{1}{2}$
- Quark counting b = 3
- Small Corrections $c \sim 0 \sim d$

Quenched Pseudo PDF Matched to MS bar Compared to Global fit PDFs

Summary

- Qualitative agreement with PDFs despite few systematics under control
- Divergent behavior improves, but not recovered, under proper evolution to 4 GeV²
- To Do List:
 - Systematics left to be thoroughly studied (pion mass, lattice spacing,....)
 - Study PDF reconstruction methods on real lattice data
- Once techniques are understood and controlled then any light cone distribution is within reach of the lattice.

Thank you for your attention!