On Isospin Breaking in τ input for (g-2) from Lattice QCD

Mattia Bruno

in collaboration with T. Izubuchi, C. Lehner and A. Meyer

for the RBC/UKQCD Collaboration

The 36th Annual International Symposium on Lattice Field Theory July $27^{\rm th},\,2018$

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohka (KEK) Amarjit Soni

<u>UC Boulder</u>

Oliver Witzel Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn O'haigan Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

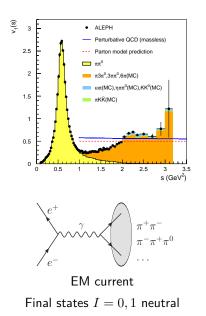
<u>MIT</u>

David Murphy <u>Peking University</u>

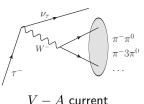
Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda


Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)


York University (Toronto)

Renwick Hudspith

э

MOTIVATIONS

Final states I = 1 charged

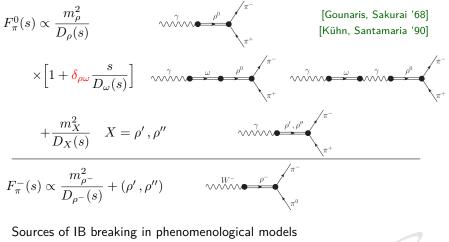
- τ data can improve $a_{\mu}[\pi\pi]$ $a_{\mu}[\text{HVP}] = 693.3(2.5)$ [KNT '18] $\rightarrow a_{\mu}[\pi\pi] = 503.9(2.0)$ [KNT '18] **BROOKHAVEN** NATIONAL LABORATORY
 - 2/9

ISOSPIN CORRECTIONS

Restriction to $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^-\pi^0\,\nu_\tau$

$$v_0(s) = \frac{s}{4\pi\alpha^2}\sigma_{\pi^+\pi^-}(s)$$

$$v_{-}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}} \frac{\mathcal{B}_{\pi\pi^{0}}}{\mathcal{B}_{e}} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{-1} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)^{-1} \frac{1}{S_{\rm EW}}$$
Isospin correction $v_{0} = R_{\rm IB}v_{-}$


$$R_{\rm IB} = \frac{\text{FSR}}{G_{\rm EM}} \frac{\beta_{0}^{3}|F_{\pi}^{0}|^{2}}{\beta_{-}^{3}|F_{\pi}^{-}|^{2}}$$
[Alemani et al. '98]

- **0.** $S_{\rm EW}$ electro-weak radiative correct. [Marciano, Sirlin '88][Braaten, Li '90]
- **1.** Final State Radiation of $\pi^+\pi^-$ system [Schwinger '89][Drees, Hikasa '90]
- 2. $G_{\rm EM}$ (long distance) radiative corrections in τ decays Chiral Resonance Theory [Cirigliano et al. '01, '02] Meson Dominance [Flores-Talpa et al. '06, '07]

3. Phase Space $(\beta_{0,-})$ due to $(m_{\pi^{\pm}} - m_{\pi^0})$

NATIONAL LABORATORY

PION FORM FACTORS

$$m_{
ho^0} \neq m_{
ho^{\pm}}$$
, $\Gamma_{
ho^0} \neq \Gamma_{
ho^{\pm}}$, $m_{\pi^0} \neq m_{\pi^{\pm}}$
 $ho - \omega$ mixing $\delta_{
ho\omega} \simeq O(m_{\rm u} - m_{\rm d}) + O(e^2)$

BROOKHAVEN NATIONAL LABORATORY

Contribution to a_{μ}

5/9

$$\begin{array}{ll} \text{Time-momentum representation} & & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\vec{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \end{array}$$

Isospin decomposition of u, d current

NEUTRAL VS CHARGED

$$\begin{split} &\frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = 0 \end{bmatrix} \rightarrow j^{(1,-)}_{\mu} = \frac{i}{\sqrt{2}} \left(\bar{u} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = -1 \end{bmatrix} \\ &\text{Isospin 1 charged correlator } G^W_{11} = \frac{1}{3} \sum_k \int d\vec{x} \ \langle j^{(1,+)}_k(x) j^{(1,-)}_k(0) \rangle \end{split}$$

$$\begin{split} \delta G^{(1,1)} &\equiv G_{11}^{\gamma} - G_{11}^{W} \\ &= Z_{V}^{4} (4\pi\alpha) \frac{(Q_{u} - Q_{d})^{4}}{4} \Big[\underbrace{ \swarrow_{V_{U}}}_{V_{U}} + \underbrace{ \swarrow_{V}}_{V} \Big] \\ G_{01}^{\gamma} &= Z_{V}^{4} \frac{(Q_{u}^{2} - Q_{d}^{2})^{2}}{2} (4\pi\alpha) \Big[\underbrace{ \swarrow_{V_{U}}}_{V_{U}} + 2 \times \underbrace{ \swarrow_{V}}_{V} + \underbrace{ \swarrow_{V}}_{V} \Big] \\ &+ Z_{V}^{2} \frac{Q_{u}^{2} - Q_{d}^{2}}{2} (m_{u} - m_{d}) \Big[2 \times \underbrace{ \circlearrowright_{V}}_{V} + \dots \Big] \\ &\dots = \text{subleading diagrams currently not included} \end{split}$$

$\Delta a_{\mu}[\pi\pi,\tau]$

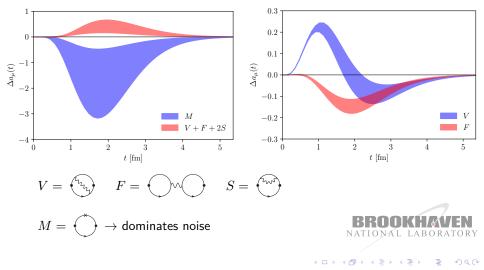
イロト イヨト イヨト イヨト 三日

Restriction to $2\pi \rightarrow$ neglect pure I = 0 part $a^{(0,0)}_{\mu}[\pi^0\gamma, 3\pi, \dots]$

Lattice:
$$\Delta a_{\mu}[\pi\pi, \tau] = 4\alpha^2 \sum_{t} w_t \times [G_{01}^{\gamma}(t) + G_{11}^{\gamma}(t) - G_{11}^{W}(t)]$$

Pheno: $\Delta a_{\mu}[\pi\pi, \tau] = \int_{4m_{\pi}^2}^{m_{\pi}^2} ds K(s) [v_0(s) - v_-(s)]$

Conversion to Euclidean time for direct comparison


$$\Delta a_{\mu}[\pi\pi,\tau] = 4\alpha^2 \sum_t w_t \times \left\{ \frac{1}{12\pi^2} \int d\omega \ \omega e^{-\omega t} \left[R_{\rm IB}(\omega^2) - 1 \right] v_{-}(\omega^2) \right\}$$

FSR, $G_{\rm EM} \rightarrow$ not computed from lattice but doable [C.Sachrajda Wed] required for direct comparison v_- vs G_{11}^W BROCKHAW

LATTICE: PRELIMINARY RESULTS

 Δa_{μ} from G_{01}^{γ} (QED and SIB):

Pure I = 1 only $O(\alpha)$ terms:

8/9

CONCLUSIONS

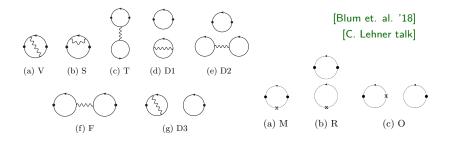
For detailed comparison lattice vs pheno:

study systematic errors \rightarrow ongoing finite volume study

improvement of errs \rightarrow high stat. data set from HLbL

Outlook:

- 1. full lattice calculation of $\Delta a_{\mu}[\pi\pi,\tau]$ on the way
- 2. lattice QCD calculation \rightarrow various comparisons


```
\begin{array}{l} \mbox{comparison } v_{-} \mbox{ with experiment requires FSR, } S_{\rm EW} \mbox{ and } G_{\rm EM} \\ \rightarrow \mbox{ test of long distance QED corrections} \\ \rightarrow \mbox{ direct computation} \\ \mbox{study } G_{01}^{\gamma} \mbox{ alone } \rightarrow \mbox{ } \rho - \omega \mbox{ mixing} \end{array}
```

study $\delta G^{(1,1)}$ alone $ightarrow
ho^0$ vs ho^- properties

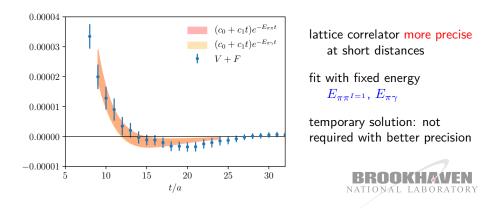
Thanks for your attention

Full QED and SIB

Presently only leading diagrams are computed V, F, S, M [Blum et al. '18] \rightarrow improving precision between 2 and 4 times SU(3) and $1/N_c$ diagrams presently not computed

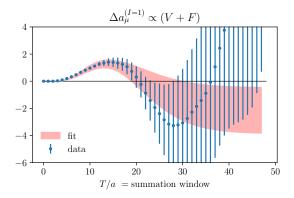
э

イロト イボト イヨト イヨト


PEEKING AT THE DATA - I

イロト 不得 トイラト イラト 一日

Lattice fully inclusive \rightarrow comparison with v_{-} problematic


manipulate correlator to implement energy cut

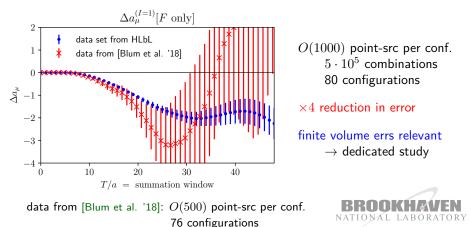
fit lowest energy state $(c_0 + c_1 t)e^{-Et}$

PEEKING AT THE DATA - II

 $\Delta a_{\mu} = 4 \alpha^2 \sum_t w_t \; \delta G(t) \rightarrow {\rm weights \; suppress \; short \; distance}$

lattice correlator more precise at short distances

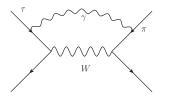
fit $(c_0 + c_1 t)e^{-Et}$ $E \to \pi\pi \text{ or } \pi\gamma$


reduction of stat. noise

temporary solution: not required with better precision

BROOKHAVEN

LATTICE IMPROVEMENTS


Stat. improvements from data of HLbL project \$[Phys.Rev.Lett.~118~(2017)]\$ contribution of diagram <math display="inline">F to pure I=1 part of Δa_{μ}

RADIATIVE CORRECTIONS

Some QED corrections computed in Chiral PT [Cirigliano et al. '01]

e.g. photon exchange between τ and hadrons

relevant to compare lattice data vs v_{-}

is current precision enough?

alternative calculation from lattice possible [Giusti et al. '17] [C. Sachrajda Wed] [J. Richings Wed]

イロト イボト イヨト イヨト

