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Motivations
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τ data can improve aµ[ππ]
aµ[HVP] = 693.3(2.5) [KNT ’18]

→ aµ[ππ] = 503.9(2.0) [KNT ’18]
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Isospin Corrections
Restriction to e+e− → π+π− and τ− → π−π0 ντ

v0(s) = s

4πα2σπ+π−(s)

v−(s) = m2
τ

6|Vud|2
Bππ0

Be
1

Nππ0

dNππ0

ds

(
1− s

m2
τ

)−1(
1 + 2s

m2
τ

)−1 1
SEW

Isospin correction v0 = RIBv− RIB = FSR
GEM

β3
0 |F 0

π |2

β3
−|F−π |2

[Alemani et al. ’98]

0. SEW electro-weak radiative correct. [Marciano, Sirlin ’88][Braaten, Li ’90]

1. Final State Radiation of π+π− system [Schwinger ’89][Drees, Hikasa ’90]

2. GEM (long distance) radiative corrections in τ decays
Chiral Resonance Theory [Cirigliano et al. ’01, ’02]
Meson Dominance [Flores-Talpa et al. ’06, ’07]

3. Phase Space (β0,−) due to (mπ± −mπ0)
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Pion form factors

F 0
π (s) ∝

m2
ρ

Dρ(s)
π+

π−

ρ0γ [Gounaris, Sakurai ’68]
[Kühn, Santamaria ’90]

×
[
1 + δρω

s

Dω(s)

]
ρ0γ

π+

π−

γωρ0γ

π+

π−

ω

+ m2
X

DX(s) X = ρ′ , ρ′′

π+

π−

ρ′ , ρ′′γ

F−π (s) ∝
m2
ρ−

Dρ−(s) + (ρ′ , ρ′′)
π0

π−

ρ−
W −

Sources of IB breaking in phenomenological models
mρ0 6= mρ± , Γρ0 6= Γρ± , mπ0 6= mπ±

ρ− ω mixing δρω ' O(mu −md) +O(e2)
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Contribution to aµ

Time-momentum representation [Bernecker, Meyer, ’11]

Gγ(t) = 1
3

∑
k

∫
d~x 〈jγk (x)jγk (0)〉 → aµ = 4α2

∑
t

wtG
γ(t)

Isospin decomposition of u, d current

jγµ = i
6
(
ūγµu+ d̄γµd

)
+ i

2
(
ūγµu− d̄γµd

)
= j

(0)
µ + j

(1)
µ

Gγ00 ← 〈j
(0)
k (x)j(0)

k (0)〉 = + + + . . .

Gγ01 ← 〈j
(0)
k (x)j(1)

k (0)〉 = + . . .

Gγ11 ← 〈j
(1)
k (x)j(1)

k (0)〉 = + + . . .

Decompose aµ = a
(0,0)
µ + a

(0,1)
µ + a

(1,1)
µ

5 / 9



Neutral vs Charged
i
2
(
ūγµu− d̄γµd

)
,

[
I = 1
I3 = 0

]
→ j

(1,−)
µ = i√

2

(
ūγµd) ,

[
I = 1
I3 = −1

]
Isospin 1 charged correlator GW11 = 1

3

∑
k

∫
d~x 〈j(1,+)

k (x)j(1,−)
k (0)〉

δG(1,1) ≡ Gγ11 −GW11

= Z4
V (4πα) (Qu −Qd)4

4

[
+

]

Gγ01 = Z4
V

(Q2
u −Q2

d)2

2 (4πα)
[

+ 2× + + . . .
]

+Z2
V

Q2
u −Q2

d

2 (mu −md)
[

2× + . . .
]

. . . = subleading diagrams currently not included
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∆aµ[ππ, τ ]

Restriction to 2π → neglect pure I = 0 part a(0,0)
µ [π0γ, 3π , . . . ]

Lattice: ∆aµ[ππ, τ ] = 4α2
∑
t

wt ×
[
Gγ01(t) +Gγ11(t)−GW11(t)

]
Pheno: ∆aµ[ππ, τ ] =

∫ m2
τ

4m2
π

dsK(s)
[

v0(s) − v−(s)
]

Conversion to Euclidean time for direct comparison

∆aµ[ππ, τ ] = 4α2∑
t wt ×

{
1

12π2

∫
dω ωe−ωt

[
RIB(ω2)− 1

]
v−(ω2)

}
FSR, GEM → not computed from lattice but doable [C.Sachrajda Wed]

required for direct comparison v− vs GW11
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Lattice: Preliminary results
∆aµ from Gγ01 (QED and SIB):
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Conclusions
For detailed comparison lattice vs pheno:

study systematic errors → ongoing finite volume study
improvement of errs → high stat. data set from HLbL

Outlook:
1. full lattice calculation of ∆aµ[ππ, τ ] on the way
2. lattice QCD calculation → various comparisons

comparison v− with experiment requires FSR, SEW and GEM
→ test of long distance QED corrections
→ direct computation

study Gγ01 alone → ρ− ω mixing

study δG(1,1) alone → ρ0 vs ρ− properties

Thanks for your attention
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Full QED and SIB

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the up, down, and strange quark masses mup,
mdown, and mstrange such that the ⇡0, ⇡+, K0, and K+

meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

In our numerical implementation, we insert the
photon-quark vertices perturbatively with photons cou-
pled to local lattice vector currents multiplied by the
appropriate renormalization factor ZV [17]. The SIB
correction is computed by inserting scalar operators in
the respective quark lines. The procedure used for e↵ec-
tive masses in such a perturbative expansion is explained
in detail in Ref. [18]. We use the QEDL prescription
[19] to regulate the infrared behavior of the photons in
the finite simulation volume and remove the universal
1/L and 1/L2 corrections [20] with L being the spatial
extend of the lattice. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calculation
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

[Blum et. al. ’18]
[C. Lehner talk]
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).

9

Presently only leading diagrams are computed V , F , S ,M [Blum et al. ’18]

→ improving precision between 2 and 4 times

SU(3) and 1/Nc diagrams presently not computed



Peeking at the data - I
Lattice fully inclusive → comparison with v− problematic

manipulate correlator to implement energy cut
fit lowest energy state (c0 + c1t)e−Et
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temporary solution: not
required with better precision



Peeking at the data - II

∆aµ = 4α2∑
t wt δG(t) → weights suppress short distance
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fit

data

lattice correlator more precise
at short distances

fit (c0 + c1t)e−Et
E → ππ or πγ

reduction of stat. noise
temporary solution: not
required with better precision



Lattice improvements
Stat. improvements from data of HLbL project [Phys.Rev.Lett. 118 (2017)]

contribution of diagram F to pure I = 1 part of ∆aµ
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data set from HLbL

data from [Blum et al. ’18] O(1000) point-src per conf.
5 · 105 combinations
80 configurations

×4 reduction in error

finite volume errs relevant
→ dedicated study

data from [Blum et al. ’18]: O(500) point-src per conf.
76 configurations



Radiative corrections

Some QED corrections computed in Chiral PT [Cirigliano et al. ’01]

e.g. photon exchange between τ and hadrons

W

τ

π

γ

relevant to compare lattice data vs v−

is current precision enough?

alternative calculation from lattice
possible [Giusti et al. ’17]

[C. Sachrajda Wed] [J. Richings Wed]


