

TOWARDS THE P-WAVE $N \pi$ SCATTERING AMPLITUDE IN THE Δ (1232)
Interpolating fields and spectra
July 27, 2018 | Giorgio Silvi | Forschungszentrum Jülich

COLLABORATORS

- Constantia Alexandrou (University of Cyprus / The Cyprus Institute)
- Giannis Koutsou (The Cyprus Institute)
- Stefan Krieg (Forschungszentrum Jülich / University of Wuppertal)
- Luka Leskovec (University of Arizona)
- Stefan Meinel (University of Arizona / RIKEN BNL Research Center)
- John Negele (MIT)
- Srijit Paul (The Cyprus Institute / University of Wuppertal)
- Marcus Petschlies (University of Bonn / Bethe Center for Theoretical Physics)
- Andrew Pochinsky (MIT)
- Gumaro Rendon (University of Arizona)
- G. S. (Forschungszentrum Jülich / University of Wuppertal)

■ Sergey Syritsyn (Stony Brook University / RIKEN BNL Research Center)

THE DELTA(1232)

the first baryon resonance

- In nature: $\Delta^{-} \Delta^{0} \Delta^{+} \Delta^{++}$(u,d quarks) - mass $\sim 1232 \mathrm{MeV}$
- On the lattice: isospin symmetry
- The unstable $\Delta(1232)$ decay predominantly to stable $N \pi$
- Study: Pion-Nucleon scattering $J=3 / 2, I=3 / 2, I_{3}=+3 / 2$
- Orbital angular momentum: $L=1$

EXPERIMENTAL INFO

$N \pi(\rightarrow \Delta(1232)) \rightarrow N \pi$ completely elastic...

EXPERIMENTAL INFO

$N \pi(\rightarrow \Delta(1232)) \rightarrow N \pi$ completely elastic...

.. but there are resonances nearby.

Particle	J^{P}	$\Gamma_{N \pi}[\mathrm{MeV}]$
$\Delta(1232)$	$3 / 2^{+}$	$112.4(5)$
$\Delta(1600)$	$3 / 2^{+}$	$18(4)$
$\Delta(1620)$	$1 / 2^{-}$	$37(2)$
$\Delta(1700)$	$3 / 2^{-}$	$36(2)$
\ldots	\cdots	

LÜSCHER METHOD

Lüscher quantization condition for baryons

$$
\operatorname{det}\left[M_{J I m, J^{\prime} I^{\prime} m^{\prime}}-\delta_{J J^{\prime}} \delta_{\| \prime} \delta_{m m^{\prime}} \cot \delta_{J l}\right]=0 \text { [Gockeler et al. (2012)] }
$$

This relation connect the energy E from a lattice simulation in a finite volume to the unknown phases $\delta_{J /}$ in the infinite volume via the calculable non-diagonal matrix $M_{J m, J^{\prime} I^{\prime} m^{\prime}}$ (depends on symmetry)

East Lamsing, MI, USA

LÜSCHER METHOD

Lüscher quantization condition for baryons

$$
\operatorname{det}\left[M_{J l m, J^{\prime} / I^{\prime} m^{\prime}}-\delta_{J J^{\prime}} \delta_{\| / \prime} \delta_{m m^{\prime}} \cot \delta_{J l}\right]=0 \text { [Gockeler et al. (2012)] }
$$

This relation connect the energy E from a lattice simulation in a finite volume to the unknown phases δ_{J} in the infinite volume via the calculable non-diagonal matrix $M_{J m, J^{\prime} I^{\prime} m^{\prime}}$ (depends on symmetry)

Simplify!

With a proper transformation, the matrix $M_{J I m, J^{\prime} I^{\prime} m^{\prime}}$ can be block diagonalized in the basis of the irreps Λ of the lattice.

MOVING FRAMES

Problem

Due to quantized momenta $p=2 \pi n / L$ we have a energy levels spaced from each other. Chances of hitting the energy region of interest are low.

MOVING FRAMES

Problem

Due to quantized momenta $p=2 \pi n / L$ we have a energy levels spaced from each other. Chances of hitting the energy region of interest are low.

Solution: Moving frames!

The Lorentz boost contracts the box giving a different effective value of the size L. Allow access to phase shift at different energies!

momentum directions

ANGULAR MOMENTUM ON THE LATTICE

- In the continuum, states are classified according to angular momentum J and parity P
- label of the irreps of the symmetry group $S U(2)$

ANGULAR MOMENTUM ON THE LATTICE

- In the continuum, states are classified according to angular momentum J and parity P
- label of the irreps of the symmetry group $\operatorname{SU}(2)$
- On the lattice the rotational symmetry is broken [R.C. Johnson (1982)]:
- The symmetry left is the O_{h} group of 48 elements (13 axis of symmetry)

ANGULAR MOMENTUM ON THE LATTICE

- In the continuum, states are classified according to angular momentum J and parity P
- label of the irreps of the symmetry group $S U(2)$
- On the lattice the rotational symmetry is broken [R.C. Johnson (1982)]:
- The symmetry left is the O_{h} group of 48 elements (13 axis of symmetry)
- For half-integer J we need the double cover O_{h}^{D} (96 elements) which include the negative identity (2π rotation)

ANGULAR MOMENTUM ON THE LATTICE

- In the continuum, states are classified according to angular momentum J and parity P
- label of the irreps of the symmetry group $\operatorname{SU}(2)$
- On the lattice the rotational symmetry is broken [R.C. Johnson (1982)]:
- The symmetry left is the O_{h} group of 48 elements (13 axis of symmetry)
- For half-integer J we need the double cover O_{h}^{D} (96 elements) which include the negative identity (2π rotation)
- Each of the infinite irreps J^{P} in the continuum get mapped to one of the finite irreps Λ of the group O_{h}^{D} on the lattice.

GROUND PLAN

Frames, Groups \& Irreps Λ (with ang. mom. content)

$P_{\text {ref }}\left[N_{\text {dir }}\right]$	Group	$N_{\text {elem }}$	$\Lambda(J): \pi\left(0^{-}\right)$	$\Lambda(J): N\left(\frac{1}{2}^{+}\right)$	$\Lambda(J): \Delta\left(\frac{3}{2}^{+}\right)$
$(0,0,0)[1]$	O_{h}^{D}	96	$A_{14}(0,4, \ldots)$	$G_{1 g}\left(\frac{1}{2}, \frac{7}{2}, \ldots\right) \oplus G_{1 u}\left(\frac{1}{2}, \frac{7}{2}, \ldots\right)$	$H_{g}\left(\frac{3}{2}, \frac{5}{2}, \ldots\right) \oplus H_{u}\left(\frac{3}{2}, \frac{5}{2}, \ldots\right)$
$(0,0,1)[6]$	$C_{4 v}^{D}$	16	$A_{2}(0,1, \ldots)$	$G_{1}\left(\frac{1}{2}, \frac{3}{2}, \ldots\right)$	$G_{1}\left(\frac{1}{2}, \frac{3}{2}, \ldots\right) \oplus G_{2}\left(\frac{3}{2}, \frac{5}{2}, \ldots\right)$
$(0,1,1)[12]$	$C_{2 v}^{D}$	8	$A_{2}(0,1, \ldots)$	$G\left(\frac{1}{2}, \frac{3}{2}, \ldots\right)$	$G\left(\frac{1}{2}, \frac{3}{2}, \ldots\right)$
$(1,1,1)[8]$	$C_{3 v}^{D}$	12	$A_{2}(0,1, \ldots)$	$G\left(\frac{1}{2}, \frac{3}{2}, \ldots\right)$	$G\left(\frac{1}{2}, \frac{3}{2}, \ldots\right) \oplus F_{1}\left(\frac{3}{2}, \frac{5}{2}, \ldots\right) \oplus F_{2}\left(\frac{3}{2}, \frac{5}{2}, \ldots\right)$

East Lansing, MI, USA

SINGLE HADRON OPERATORS

Delta interpolators:

$$
\begin{gather*}
\Delta_{i \mu}^{(1)}=\epsilon_{a b c} u_{\mu}^{a}\left(u^{b T} C \gamma_{i} u^{c}\right) \tag{1}\\
\Delta_{i \mu}^{(2)}=\epsilon_{a b c} u_{\mu}^{a}\left(u^{b T} C \gamma_{i} \gamma_{0} u^{c}\right) \tag{2}
\end{gather*}
$$

Nucleon interpolators:

$$
\begin{gather*}
\mathcal{N}_{\mu}^{(1)}=\epsilon_{a b c} u_{\mu}^{a}\left(u^{b T} C \gamma_{5} d^{c}\right) \tag{3}\\
\mathcal{N}_{\mu}^{(2)}=\epsilon_{a b c} u_{\mu}^{a}\left(u^{b T} C \gamma_{0} \gamma_{5} d^{c}\right) \tag{4}
\end{gather*}
$$

Pion interpolator:

$$
\begin{equation*}
\pi=\bar{d} \gamma_{5} u \tag{5}
\end{equation*}
$$

PROJECTION METHOD

how it works...

$$
O^{G^{D}, \wedge, r, m}(p)=\frac{d_{\Lambda}}{g_{G}^{D}} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) U_{\tilde{R}} \phi(p) U_{\tilde{R}}^{-1} \text { [c. Morningstar et al. (2013)] }
$$

- to get an operators $O^{G^{D}, \wedge, r, m}(p)$ for a specific:

PROJECTION METHOD

how it works...

$$
O^{G^{D}, \Lambda, r, m}(p)=\frac{d_{\Lambda}}{g_{G}^{D}} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) U_{\tilde{R}} \phi(p) U_{\tilde{R}}^{-1} \text { [c. Morningstar et al. (2013)] }
$$

- to get an operators $O^{G^{D}, \Lambda, r, m}(p)$ for a specific:
- momentum p

PROJECTION METHOD

 how it works...$$
O^{G^{D}, \wedge, r, m}(p)=\frac{d_{\wedge}}{g_{G}^{D}} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) U_{\tilde{R}} \phi(p) U_{\tilde{R}}^{-1} \text { [c. Morringstar etal. (2013)] }
$$

- to get an operators $O^{G^{D}, \Lambda, r, m}(p)$ for a specific:
- momentum p
- double group G^{D} and irreducible representation \wedge

PROJECTION METHOD

 how it works...$$
O^{G^{D}, \Lambda, r, m}(p)=\frac{d_{\Lambda}}{g_{G}^{D}} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) U_{\tilde{R}} \phi(p) U_{\tilde{R}}^{-1} \text { [c. Morningstar et al. (2013)] }
$$

- to get an operators $O^{G^{D}, \Lambda, r, m}(p)$ for a specific:
- momentum p
- double group G^{D} and irreducible representation Λ
- row r and occurence m

PROJECTION METHOD

 how it works...$$
O^{G^{D}, \Lambda, r, m}(p)=\frac{d_{\Lambda}}{g_{G}^{D}} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) U_{\tilde{R}} \phi(p) U_{\tilde{R}}^{-1} \text { [c. Morringstar etal. (2013)] }
$$

- to get an operators $O^{G^{D}, \Lambda, r, m}(p)$ for a specific:
- momentum p
- double group G^{D} and irreducible representation Λ
- row r and occurence m
- is needed :

1 representation matrices Γ^{\wedge}

East Lansing MI, USA

PROJECTION METHOD

how it works...

$$
O^{G^{D}, \Lambda, r, m}(p)=\frac{d_{\Lambda}}{g_{G} D} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) U_{\tilde{R}} \phi(p) U_{\tilde{R}}^{-1} \text { [c. Morningstar et al. (2013)] }
$$

- to get an operators $O^{G^{D}, \Lambda, r, m}(p)$ for a specific:
- momentum p
- double group G^{D} and irreducible representation Λ
- row r and occurence m
- is needed :

1 representation matrices Γ^{\wedge}
2 elements \tilde{R} of the double group

- rotations + inversions

East Lansing, MI, USA

PROJECTION METHOD

how it works...

$$
O^{G^{D}, \Lambda, r, m}(p)=\frac{d_{\Lambda}}{g_{G}^{D}} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) U_{\tilde{R}} \phi(p) U_{\tilde{R}}^{-1} \text { [c. Morningstar et al. (2013)] }
$$

- to get an operators $O^{G^{D}, \Lambda, r, m}(p)$ for a specific:
- momentum p
- double group G^{D} and irreducible representation Λ
- row r and occurence m
- is needed :

1 representation matrices Γ^{\wedge}
2 elements \tilde{R} of the double group

- rotations + inversions

3 single/multi hadron operator $\phi(p)$

East Lansing, MI, USA

PROJECTION METHOD

how it works...

$$
O^{G^{D}, \Lambda, r, m}(p)=\frac{d_{\Lambda}}{g_{G}^{D}} \sum_{\tilde{R} \in G^{D}} \Gamma_{r, r}^{\wedge}(\tilde{R}) \cup_{\tilde{R}} \phi(p) \cup_{\tilde{R}}^{-1} \text { [c. Morningstar et al. (2013)] }
$$

- to get an operators $O^{G^{D}, \Lambda, r, m}(p)$ for a specific:
- momentum p
- double group G^{D} and irreducible representation Λ
- row r and occurence m
- is needed :

1 representation matrices Γ^{\wedge}
2 elements \tilde{R} of the double group

- rotations + inversions

3 single/multi hadron operator $\phi(p)$
4 proper transformation matrices $U_{\tilde{R}}$

East Lansing, MI, USA

OCCURENCES OF IRREPS

It is possible to find the occurence (\sim multiplicity) m of the irrep Γ^{\wedge} in the transformation matrices $U_{\tilde{R}}$ using the character χ : [Moore,Feming (2006)]

$$
m=\frac{1}{g_{G} D} \sum_{\tilde{R} \in G^{D}} \chi^{\Gamma^{\wedge}}(\tilde{R}) \chi^{U}(\tilde{R})
$$

NUCLEON		$\begin{aligned} & \mathrm{O}_{\mathrm{h}}{ }^{\mathrm{D}} \\ & {[0,0,0]} \end{aligned}$		$\begin{aligned} & C_{4 v}{ }^{D} \\ & {[0,0,1]} \end{aligned}$		$\begin{aligned} & \mathrm{C}_{2 \mathrm{v}}{ }^{\mathrm{D}} \\ & {[0,1,1]} \end{aligned}$		$\begin{aligned} & \mathrm{C}_{3 \mathrm{v}}{ }^{\mathrm{D}} \\ & {[1,1,1]} \end{aligned}$	
$\mathrm{U}_{\mathrm{R}}[4 \times 4]$	\rightarrow	G_{19}		G_{1}		G		G	
			G_{14}		G_{1}		G		G

OCCURENCES OF IRREPS

DELTA

EXAMPLE OF PROJECTION: NUCLEON

C4v - G1 - first instance (row 1 , row 2)
$\left(\begin{array}{cc}\{\mathrm{Nc}(0,0,1)(3)\} & \{\mathrm{Nc}(0,0,1)(4)\} \\ \{\mathrm{Nc}(0,0,-1)(3)\} & \{\mathrm{Nc}(0,0,-1)(4)\} \\ \{\mathrm{Nc}(1,0,0)(4)-\mathrm{Nc}(1,0,0)(2)\} & \{\mathrm{Nc}(1,0,0)(2)+\mathrm{Nc}(1,0,0)(4)\} \\ \{\mathrm{Nc}(-1,0,0)(4)-\mathrm{Nc}(-1,0,0)(2)\} & \{\mathrm{Nc}(-1,0,0)(2)+\mathrm{Nc}(-1,0,0)(4)\} \\ \{\mathrm{Nc}(0,-1,0)(4)-\mathrm{Nc}(0,-1,0)(2)\} & \{\mathrm{Nc}(0,-1,0)(2)+\mathrm{Nc}(0,-1,0)(4)\} \\ \{\mathrm{Nc}(0,1,0)(4)-\mathrm{Nc}(0,1,0)(2)\} & \{\mathrm{Nc}(0,1,0)(2)+\mathrm{Nc}(0,1,0)(4)\}\end{array}\right)$

C4v - G1 - second instance (row 1, row 2)

$$
\begin{array}{cc}
\{\mathrm{Nc}(0,0,1)(1)\} & \{\mathrm{Nc}(0,0,1)(2)\} \\
\{\mathrm{Nc}(0,0,-1)(1)\} & \{\mathrm{Nc}(0,0,-1)(2)\} \\
\{\mathrm{Nc}(1,0,0)(1)+\mathrm{Nc}(1,0,0)(3)\} & \{\mathrm{Nc}(1,0,0)(3)-\mathrm{Nc}(1,0,0)(1)\} \\
\{\mathrm{Nc}(-1,0,0)(1)+\mathrm{Nc}(-1,0,0)(3)\} & \{\mathrm{Nc}(-1,0,0)(3)-\mathrm{Nc}(-1,0,0)(1)\} \\
\{\mathrm{Nc}(0,-1,0)(1)+\mathrm{Nc}(0,-1,0)(3)\} & \{\mathrm{Nc}(0,-1,0)(3)-\mathrm{Nc}(0,-1,0)(1)\} \\
\{\mathrm{Nc}(0,1,0)(1)+\mathrm{Nc}(0,1,0)(3)\} & \{\mathrm{Nc}(0,1,0)(3)-\mathrm{Nc}(0,1,0)(1)\}
\end{array}
$$

EXAMPLE OF PROJECTION: DELTA

C4v - G1 - row 1 - instance 1

$$
\begin{gathered}
\Delta(0,0,1)(3,1) \\
\frac{\Delta(1,0,0)(1,1)}{\sqrt{2}}-\frac{\Delta(1,0,0)(1,3)}{\sqrt{2}} \\
\frac{1}{2} \Delta(0,-1,0)(1,1)-\frac{1}{2} \Delta(0,-1,0)(1,3)-\frac{1}{2} \Delta(0,-1,0)(3,2)+\frac{1}{2} \Delta(0,-1,0)(3,4)
\end{gathered}
$$

C4v - G1 - row 1 - instance 2

$$
\begin{gathered}
\frac{\Delta(0,0,1)(1,2)}{\sqrt{2}}+\frac{i \Delta(0,0,1)(2,2)}{\sqrt{2}} \\
\frac{1}{2} \Delta(1,0,0)(2,1)-\frac{1}{2} \Delta(1,0,0)(2,3)-\frac{1}{2} i \Delta(1,0,0)(3,2)+\frac{1}{2} i \Delta(1,0,0)(3,4) \\
\frac{\Delta(0,-1,0)(2,1)}{\sqrt{2}}-\frac{\Delta(0,-1,0)(2,3)}{\sqrt{2}}
\end{gathered}
$$

C4v - G1 - row 1 - instance 3

$$
\Delta(0,0,1)(3,3)
$$

$$
\frac{1}{2} i \Delta(1,0,0)(2,2)+\frac{1}{2} i \Delta(1,0,0)(2,4)+\frac{1}{2} \Delta(1,0,0)(3,1)+\frac{1}{2} \Delta(1,0,0)(3,3)
$$

$$
\frac{1}{2} \Delta(0,-1,0)(1,2)+\frac{1}{2} \Delta(0,-1,0)(1,4)+\frac{1}{2} \Delta(0,-1,0)(3,1)+\frac{1}{2} \Delta(0,-1,0)(3,3)
$$

C4v - G1 - row 1 - instance 4

$$
\begin{gathered}
\frac{\Delta(0,0,1)(1,4)}{\sqrt{2}}+\frac{i \Delta(0,0,1)(2,4)}{\sqrt{2}} \\
\frac{\Delta(1,0,0)(1,2)}{\sqrt{2}}+\frac{\Delta(1,0,0)(1,4)}{\sqrt{2}} \\
\frac{\Delta(0,-1,0)(2,2)}{\sqrt{2}}+\frac{\Delta(0,-1,0)(2,4)}{\sqrt{2}}
\end{gathered}
$$

COMPLETE SET OF OPERATOR: $\Delta, N \pi$

Group	$P_{\text {ref }}$ [dir. used]	Irrep[rows]	Op. type	n		Op. per irrep
O_{h}^{D}	$(0,0,0)[1]$	$H_{g}[4]$	$\begin{gathered} \Delta\left(\gamma_{i}\right) \\ \Delta\left(\gamma_{i} \gamma_{0}\right) \\ N \pi\left(\gamma_{5}\right) \\ N \pi\left(\gamma_{0} \gamma_{5}\right) \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 8 \\ & 8 \\ & 18 \end{aligned}$	$\times 4$ rows	72
		$H_{U}[4]$		18	$\times 4$ rows	72
$C_{4 v}^{D}$	$(0,0,1)[3]$	$G_{1}[2]$	$\stackrel{\Delta}{N \pi}$	$\begin{aligned} & 4 \times 2 \\ & 20 \times 2 \end{aligned}$		
				48	$\times 2$ rows \times 3dir	288
		$\mathrm{G}_{2}[2]$	$\begin{gathered} \Delta \\ N \pi \end{gathered}$	$\begin{aligned} & 2 \times 2 \\ & 16 \times 2 \end{aligned}$		
				36	$\times 2$ rows $\times 3$ dir	216
$C_{2 v}^{D}$	$(0,1,1)[6]$	G[2]	$\stackrel{\Delta}{N \pi}$	$\begin{aligned} & 6 \times 2 \\ & 24 \times 2 \end{aligned}$		
				60	$\times 2$ rows $\times 6$ dir	720
$C_{3 v}^{D}$	$(1,1,1)[4]$	$G[2]$	$\stackrel{\Delta}{N \pi}$	$\begin{aligned} & 4 \times 2 \\ & 12 \times 2 \end{aligned}$		
				32	$\times 2$ rows $\times 4$ dir	256
		$F_{1}[1]$	$\begin{gathered} \Delta \\ N \pi \end{gathered}$	$\begin{aligned} & 2 \times 2 \\ & 4 \times 2 \end{aligned}$		
				12	$\times 4$ dir	48
		$F_{2}[1]$		12	$\times 4$ dir	48
Total						1720

PLANNING

Ensemble from BMW collaboration

N_{s}	N_{t}	β	$a m_{u, d}$	$a m_{s}$	$c_{s w}$	$a(f m)$	$L(f m)$	$m_{\pi}(\mathrm{MeV})$	$m_{\pi} L$
24	48	3.31	-0.0953	-0.040	1.0	0.116	2.8	254	3.6

[ensemble description in S. Durr et al.(2011)

- Lattice action: Wilson-Clover with $N_{f}=2+1$ dynamical fermions
- Two-point correlators built from a combination of smeared forward, sequential and stochastic propagators
- This talk: 192 configurations, 16 source location per conf.

Beginning

- Project the operators on all relevant irreps (Wolfram Mathematica)
- Compute contraction for all diagrams and momentum direction
- Apply the projected operators on correlators

East Lansing, MI, USA

CORRELATION MATRICES

After projectioning the correlators...
source

(H,G1,G2,G,F1,F2,G)

- Use GEVP to determine the spectra
- Search the best basis of operators

East Lansing, MI, USA

HEATMAP

Rest frame / Moving frame

O_{h}^{D} - irrepHg

vegative values

SPECTRA - REST FRAME

$O_{h}^{D}-\operatorname{irrepHg}(+H u)$
$\mathrm{Hg}+\mathrm{Hu} \mathbf{- 1}^{123 _t 1}$

----. Nпп threshold
non-inter. $N \pi[1][-1]$
I GEVP IvII
I GEVP IvI2

East Lansing, MI, USA

ANALYSIS OF THE FITS - REST FRAME

$O_{h}^{D}-i r r e p H g(+H u)$

non-inter. $N \pi[1][-1]$
I Fit lvil
Fit Ivl 2

SPECTRA - REST FRAME

$O_{h}^{D}-$ irrep : $\mathrm{Hg}(+\mathrm{Hu})$
$\mathrm{Hg}+\mathrm{Hu}$ _123_t1

East Lansing, MI, USA

SPECTRA - MOVING FRAME

$C_{4 v}^{D}-$ irrep : $G 1$

----. $N \pi$ threshold
----- Nпn threshold
non-inter. $\mathrm{N} \pi$
I GEVP Ivlı
I GEVP IvI2
I GEVP Ivi3

ANALYSIS OF THE FITS - MOVING FRAME

 $C_{4 v}^{D}$ - irrepG1Analysys of the fits. t_max/a=12 (chi2 listed at points)

non-inter. N π
Fit lvil
Fit lvi 2
Fit Ivl 3

SPECTRA - MOVING FRAME

$C_{4 v}^{D}$ - irrep $G 1$

CONCLUSION

- Complete projection of operators for N, Δ and $N \pi$ in relevant irreps
- Room for improvement of spectra with a thorough search for best basis
- Additional configurations coming $(3 \times)$
- In the future aim to add a bigger box, more m_{π} and smaller lattice spacing

CONCLUSION

- Complete projection of operators for N, Δ and $N \pi$ in relevant irreps
- Room for improvement of spectra with a thorough search for best basis
- Additional configurations coming $(3 \times)$
- In the future aim to add a bigger box, more m_{π} and smaller lattice spacing

Thank you for the attention! (second part in the next talk by Srijit)

BACK-UP SLIDE

BACK-UP SLIDE

$C_{4 v}^{D}-i r r e p G 2$

BACK-UP SLIDE

$C_{2 v}^{D}-i r r e p G$

BACK-UP SLIDE

$C_{3 v}^{D}$ - irrep G preliminary

BACK-UP SLIDE

$C_{3 v}^{D}$ - irrepF1 preliminary

Fla_1256_t1

BACK-UP SLIDE

$C_{3 v}^{D}$ - irrepF2 preliminary

F2a_1256_t1

