Progress in the lattice simulations of $\operatorname{Sp}(2 N)$ gauge theories

Jong-Wan Lee
(Pusan Natl. Univ.)

In collaboration with E. Bennett, D. K. Hong, C.-J. D Lin, B. Lucini, M. Piai \& D. Vadacchino

Lattice 2018

July 24, 2018 @ Michigan, USA

\& Motivation: BSM phenomenology

Novel strong dynamics has been receiving quite large attention in the context of BSM phenomenology.

- (Walking) Technicolor
- Composite Higgs
- Top partner via partial compositeness
- Composite Dark Matter

\& Motivation: BSM phenomenology

Novel strong dynamics has been receiving quite large attention in the context of BSM phenomenology.

- (Walking) Technicolor
- Composite Higgs
- Top partner via partial compositeness

Sp(2N) gauge theory

Outline

1) Model
2) Mesons in $\mathrm{Sp}(4)$ with $\mathrm{Nf}=2$ fund. reps. (dynamical)
3) Mesons in Sp (4) Anti-sym. reps (quenched)
4) Glueballs in $\mathrm{Sp}(6)$
5) Conclusions \& Outlook

Outline

1) Model
2) Mesons in $\mathrm{Sp}(4)$ with $\mathrm{Nf}=2$ fund. reps. (dynamical)
3) Mesons in Sp(4) Anti-sym. reps (quenched)
4) Glueballs in $\mathrm{Sp}(6)$
5) Conclusions \& Outlook

\& $\mathrm{Sp}(2 \mathrm{~N})$ composite Higgs

$\mathrm{Sp}(2 \mathrm{~N})$ group is pseudoreal: $\quad U \Omega U^{T}=\Omega, \quad \Omega=\left[\begin{array}{cc}0 & 0_{N} \\ -0_{N} & 0\end{array}\right]$

Most relevant model: $\mathrm{N}_{\mathrm{f}}=2$ fund. \& $\mathrm{Nf}_{\mathrm{f}}=3$ anti-sym., $\mathrm{Sp}_{\mathrm{p}}(4)$

Barnard, Gherghetta \& Ray (2014)

SM Strong

$$
S U(2)_{L} \times U(1)_{Y} \subset \mathrm{Sp}(4)
$$

Higgs $=$ pseudo NG boson
(Extra) pseudo NG bosons could be used for Dark Matter pheno.
$\mathrm{SU}(3)_{\mathrm{c}} \mathrm{xU}(1) \mathrm{r} \subset \mathrm{SO}(6)$
Top partner $=$ Chimera baryon

$$
\hat{\Psi}^{a b \alpha} \equiv\left(q^{a} \chi^{\alpha} q^{b}\right) \quad \text { carry color charge }
$$

\& Simulation details

- Standard Wilson gauge and fermion actions
- Gauge configurations: pure $\operatorname{Sp}(4)$ using HB \& dyn. $\operatorname{Sp}(4)$ using HMC ~200 configurations for each ensemble
- Modified HiRep code Del Debbio, Patella, Pica (2010)
- Resymplecitization: Gram-Schmidt procedure
- Reduced size of configurations by half
- Implemented anti-symmetric reps.
- Thermalization and autocorrelations are monitored by measuring average plaquette values.
- Scale setting: Luscher's gradient flow scales

$$
\mathcal{W}(t) \equiv t \frac{\mathrm{~d} \mathcal{E}(t)}{\mathrm{d} t}
$$

$$
\left.\mathcal{W}(t)\right|_{t=w_{0}^{2}}=\mathcal{W}_{0}
$$

\& Mass \& Decay constant of mesons

Operators for mesons
Two-point correlation function

Label	Operator	Meson	J^{P}
$P S$	$\bar{u} \gamma_{5} d$	π	0^{-}
V	$\bar{u} \gamma_{\mu} d$	ρ	1^{-}
$A V$	$\bar{u} \gamma_{5} \gamma_{\mu} d$	a_{1}	1^{+}

$$
C_{\mathcal{O}_{M}}(t) \xrightarrow{t \rightarrow \infty}\langle 0| \mathcal{O}_{M}|M\rangle\langle 0| \mathcal{O}_{M}|M\rangle^{*} \frac{1}{m_{M} L^{3}}\left[e^{-m_{M} t}+e^{-m_{M}(T-t)}\right]
$$

Parametrization of the mesonic matrix element

$$
\begin{aligned}
\langle 0| \overline{Q_{1}} \gamma_{5} \gamma_{\mu} Q_{2}|P S\rangle & =i f_{\pi} p_{\mu}, & & C_{\mathcal{O}_{V}}(t) \xrightarrow{t \rightarrow \infty} \frac{m_{\rho} f_{\rho}^{2}}{L^{3}}\left[e^{-m_{\rho} t}+e^{-m_{\rho}(T-t)}\right], \\
\langle 0| \overline{Q_{1}} \gamma_{\mu} Q_{2}|V\rangle & =i f_{\rho} m_{\rho} \epsilon_{\mu}, & & C_{\mathcal{O}_{A V}}(t) \xrightarrow{t \rightarrow \infty} \frac{m_{a_{1}} f_{a_{1}}^{2}}{L^{3}}\left[e^{-m_{a_{1}} t}+e^{-m_{a_{1}}(T-t)}\right] \\
\langle 0| \overline{Q_{1}} \gamma_{5} \gamma_{\mu} Q_{2}|A V\rangle & =i f_{a_{1}} m_{a_{1}} \epsilon_{\mu}, & &
\end{aligned}
$$

For the pseudoscalar decay constants

$$
\begin{aligned}
C_{\Pi}(\vec{p}, t) & =\sum_{\vec{x}} e^{-i \vec{p} \cdot \vec{x}}\langle 0|\left[\overline{Q_{1}} \gamma_{5} \gamma_{\mu} Q_{2}(\vec{x}, t)\right]\left[\overline{Q_{1}} \gamma_{5} Q_{2}(\overrightarrow{0}, 0)\right]|0\rangle \\
& \xrightarrow{t \rightarrow \infty} \frac{i f_{\pi}\langle 0| \mathcal{O}_{P S}|P S\rangle^{*}}{L^{3}}\left[e^{-m_{\pi} t}-e^{-m_{\pi}(T-t)}\right] .
\end{aligned}
$$

Decay constants are converted to the continuum ones by perturbative one-loop matching.

Outline

1) Model
2) Mesons in $\mathrm{Sp}(4)$ with $\mathrm{Nf}=2$ fund. reps. (dynamical)
3) Mesons in Sp(4) Anti-sym. reps (quenched)
4) Glueballs in $\mathrm{Sp}(6)$
5) Conclusions \& Outlook

\% Lattice systematics: Finite volume

- Finite volume effects are under control for $m_{P S} L \gtrsim 8$.

$$
\beta=7.2
$$

c.f. Lattice QCD $m_{\pi} L \gtrsim 4$

$\%$ Lattice systematics: Finite lattice spacing

- rapid change of w_{0} / a
$\mathrm{Nf}=2 \mathrm{SU}(2) \quad$ R. Arthur et al (2016)
mixed SU(4) V. Ayyar et al (TACo) (2017)
- Special care is required to take continuum extrapolation. i.e. mass-dependent scale setting
c.f.) mild quark-mass dependence in QCD

\& Numerical results: mass

- Quenching effects are small: still far from chiral limit?
- Lattice spacing artifact is sizable for vector meson masses.

* Numerical results: decay constant

- Quenching effects are small: still far from chiral limit?
- Lattice spacing artifacts are also small for decay constants.

\because Numerical results: $f_{0}{ }^{2}$

- Sum of squared decay constants: $f_{\pi}^{2}(0)=\lim _{q^{2} \rightarrow 0} \Sigma\left(q^{2}\right)=f_{0}^{2}-f_{\rho}^{2}-f_{a_{1}}^{2}$ Bennett et. al. (2017)

- Dynamical results also show that $f_{o}{ }^{2}$ has small mass dependence.
- Consistent with NLO EFT results. $f_{0}^{2}=F^{2}+(b+2 c) f^{2}$

Outline

1) Model
2) Mesons in Sp (4) with $\mathrm{Nf}=2$ fund. reps. (dynamical)
3) Mesons in Sp (4) Anti-sym. reps (quenched)
4) Glueballs in $\mathrm{Sp}(6)$
5) Conclusions \& Outlook

$\%$ Anti-symmetric reps in Sp(2N)

- The anti-symmetric reps of $\operatorname{Sp}(2 \mathrm{~N})$ group requires to subtract the omega-trace term which is a singlet.
$T^{i j}=u^{i} v^{j}-u^{j} v^{i}-\frac{1}{N} \Omega^{i j} u^{k} \Omega_{k \ell} v^{\ell}$, which is traceless satisfying $\Omega_{i j} T^{i j}=0$.

$$
\Omega=\left[\begin{array}{cc}
0 & \mathbb{a}_{N} \\
-\mathbb{a}_{N} & 0
\end{array}\right]
$$

- Implementation to Hirep code

$$
\left(R^{A} U\right)_{(i j)(l k)}=U_{(i j)(l k)}^{A}=\operatorname{tr}\left[\left(e_{A}^{(i j)}\right)^{\dagger} U e_{A}^{(l k)} U^{T}\right] \quad i<j, l<k
$$

Del Debbio, Patella, Pica (2010)
for $j=N+i, i \neq 1$ and $i \leq N$,
$\left(e_{A S}^{i j}\right)_{k N+k}=-\left(e_{A S}^{i j}\right)_{N+k k} \equiv\left\{\begin{array}{l}\frac{1}{\sqrt{2 i(i-1)}}, \text { for } k<i \\ \frac{-(i-1)}{\sqrt{2 i(i-1)}}, \text { for } k=i\end{array} \quad\left(e_{A S}^{i j}\right)_{k \ell} \equiv \frac{1}{\sqrt{2}}\left(\delta_{i k} \delta_{j \ell}-\delta_{j k} \delta_{i \ell}\right)\right.$

\& Phase space of bare parameters

- Strong hysteresis in the plaquette values (cold and hot) indicates the existence of a first order bulk phase transition for $\beta \lesssim 6.5$.

\& Quenched results: Mass

- Anti-symmetric - Fundamental

- Vector and axial-vector: The mass of anti-sym. reps. is larger than that of fund. reps. for a given pseudoscalar mass.

\& Quenched results: Decay constant

- Anti-symmetric - Fundamental

- The decay constant of anti-sym. reps. is larger than that of fund. reps. for a given pseudoscalar mass in each case.

* Vector meson mass in units of $f_{p s}$

- Vector meson masses are relatively larger than those of $\operatorname{SU}(4)$ theories.
- Most simulation points seem to be far from chiral regime.
- With some caveats, KSRF relation indicates that the value of $g_{V P P}$ is big.

$\%$ Numerical results: $\mathrm{f}_{0}{ }^{2}$

- Quench results $f_{o^{2}}$ for anti-sym. reps show strong quark mass dependence.
- NLO EFT for anti-sym. reps is under development.
- Not like the case of fund. reps, quenching effect could be substantial.

Outline

1) Model
2) Mesons in Sp (4) with $\mathrm{Nf}=2$ fund. reps. (dynamical)
3) Mesons in Sp(4) Anti-sym. reps (quenched)
4) Glueballs in $\mathrm{Sp}(6)$
5) Conclusions \& Outlook

\& Glueball spectrum in $\mathrm{Sp}(6)$

- Finite volume effects are under control for $\sqrt{\sigma} L \gtrsim 3$

\& Glueball spectrum in $\mathrm{Sp}(6)$

- Glueball spectrum for $\operatorname{Sp}(6)$ at a single finite lattice spacing compared to that for $\operatorname{Sp}(4)$.
- Continuum extrapolation is required to make proper comparison and discuss the large N behavior.

Casimir scaling and Sp(2N)

- The preliminary result at finite lattice spacing show that $m_{0^{++}} / \sqrt{\sigma}$ of $\mathrm{Sp}(6)$ is smaller than that of $\operatorname{Sp}(4)$.

\rightarrow
Qualitatively agree with the universal Casimir scaling. Hong et. al. (2017)

Outline

1) Model
2) Mesons in Sp (4) with $\mathrm{Nf}=2$ fund. reps. (dynamical)
3) Mesons in Sp(4) Anti-sym. reps (quenched)
4) Glueballs in $\mathrm{Sp}(6)$
5) Conclusions \& Outlook

\& Conclusion \& Outlook

- Mesons in Sp (4) with two-flavor fund. fermions
- Dynamical results share the features of quenched ones.
- Lattice artifacts: Finite volume effects are under control for $m_{P S} L \gtrsim 8$. Lattice spacing effects are sizable for vector mesons.
- Premature to discuss dark matter phenomenology.
- Mesons in $\operatorname{Sp}(4)$ with anti-symmetric. fermions
- Numerical code is ready: modified Hirep code
- Very preliminary quenched results show qualitatively different features compared to the case of fund. reps.
- Calculation of glueball spectrum in $\operatorname{Sp}(6)$ is ongoing.
- Future directions
- Develop the code and EFT for mixed reps.
- Measure baryon spectrum.

Backup Slides

$\%$ Phase space of bare parameters

- Strong hysteresis in the plaquette values (cold and hot) indicates the existence of a first order bulk phase transition for $\beta \lesssim 6.7$.

\& GMOR relation

- Not reached to the linear regime, yet. $\quad m_{\pi}^{2} f_{\pi}^{2}=m v^{3}+m^{2} v_{5}^{2}$
- Start to see finite lattice spacing artifact as we approach the massless limit.

$\%$ Vector meson mass in units of $f_{p s}$

- Caution!: Lightest four data points in Quenched results suffer from finite volume artifacts.

