
Phase structure of multiflavor gauge theories: Critical
exponents of Fisher zeros near the endpoint

Diego Floor

The University of Iowa

diego-deflooresilva@uiowa.edu
Work done in collaboration with Yannick Meurice and Erik Gustafson

This research was supported in part by the Dept. of Energy under Award Number
DE-SC0010113

July 26, 2018

Diego Floor (UIOWA) Multiflavor gauge theories July 26, 2018 1 / 23



Motivations and objectives

Location of conformal window on multiflavor SU(3) theories. Is 12
flavors conformal?

How to study the IFRP? If the underlying continuum theory has a
IRFP what to expect the lattice counterpart?

For finite volume and non zero mass, 12 flavors has first order bulk
transitions in m × β plane and second order phase transition at the
end-point (Xiao-Yong Jin, Robert D. Mawhinney DOI 9789814566254
0011)

Expectation: m 6= 0 destroys conformality

Needs to be studied indirectly

RG: Fixed points can be studied from critical exponents around
critical points nearby, such as the mentioned endpoint
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Previous work on complex RG flows

Given a RG transformation a→ ba,

L→ L/b,

fsing → b4fsing

f = −ln(Z )/V ⇒ Zsing → Zsing

The zeros of the partition function stay the same after RT

Finite volume. f contains no singularities so we look at zeros in the
complex β = 6/g2 plane (Fisher zeros)

Fisher zeros acts as separatrices of RG flows on complex plane

(e.g. Denbleyker, A Et al Physical review letters. 104. 251601)
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Previous work on complex RG flows

Fisher zeros acts as separatrices of RG flows on complex plane
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(figure from same paper mentioned earlier)
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Methodology

Using Rational Hybrid Monte Carlo (code by Donald Sinclair) with
unimproved staggered fermion action. Running on NERSC computing
systems.

Average plaquette 〈U〉 and chiral condensate
〈
ψ̄ψ
〉

are measured

Each simulation (5000 trajectories) gives information at vicinity of
simulated β0 can be used to obtain Z (β0 + ∆β)

To connect the simulations we use the Ferrenberg-Swendsen algorithm

Z (β) =

∫ 2Np

0
dSn (S) e−βS

n (S) =

∑
αHα (S) /gα∑

α (eFα−βαS) /gα
, e−Fα =

∑
S

n (S) ∆Se−βαS
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Convergence of Ferrenberg-Swendsen algorithm

Measured (points) versus calculated (curve) with resulting n(s) V = 44

,m = 0.02
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Chiral condensate

V = 64 ,m = 0.1
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Binning of average plaquette

Histogram for V = 44 ,m = 0.5
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Binning of average plaquette

V = 44 ,m = 0.02
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Fisher zeros

Intersection of Re[Z ] = 0 and Im[Z ] = 0
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Fisher zeros

Wider view of zeros for L = 4, m = 0.02
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Fisher zeros

Wider view of zeros for L = 8, m = 0.02 (same mass, higher volume)
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Pinching of Fisher zeros

Zeros pinch the real axis as volume increases

Lowest zero scales as L−4 for low mass indicating first order phase
transition in infinite volume limit

Near the endpoint in the m × β plane, scaling of lowest Fisher zero
should reveal properties about relevant fixed point and its universality
class

(Denbleyker, A Et al Physical review letters. 104. 251601)
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Critical exponents

m = 0.1 , ν−1 = 3.05
Imβf ∝ L−3.05

(with preliminary error analysis)
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Critical exponents

(with preliminary error analysis)

Is nu approaching 2?Diego Floor (UIOWA) Multiflavor gauge theories July 26, 2018 15 / 23



Currently - Error analysis and more gathering of more data

Zeros of L=12 require more
time and are changing as we run
more simulations

Error analysis by bootstrap -
resampling method of picking
from the same data set
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Linear sigma model with mass splitting

Previously (Y. Meurice PhysRevD.96.114507) a multiflavor sigma model
was constructed with an anomaly term, reproducing a light sigma particle
that behaves according to current lattice results for high Nf (remains
lighter than pions) The model:
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Lagrangian

We define effective fields φij which are Nf ×Nf matrices transforming
as ψ̄RjψLi under U(Nf )L ⊗ U(Nf )R . We use the parametrization,

φ = (Sα + iPα)Γα, where the sum over α = 0, 1, ...,N2
f − 1 is for a

basis of Nf × Nf Hermitian matrices Γα such that:

Tr(ΓαΓβ) = (1/2)δαβ , and define Γ0 = INf ×Nf
/
√

2Nf

L = Tr(∂µφ∂
µφ†) + V0 + Va + Vm

V0 = −µ2Tr(φφ†) + λσ−λa0
2 (Tr(φφ†))2 + λa0Nf

2 Tr((φφ†)2)

Va = −2(2Nf )Nf /2−2X (det(φ) + det(φ†))

Vm = −Tr(M(φ+ φ†))
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Mass spectrum

Non-singlet pseudoscalar pectrum
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Linear
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Non linear comparison - full spsctrum
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Non linear comparison - pseudoscalars
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Non linear comparison - scalars
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