Quasi-PDFs from twisted mass fermions at the physical point

University of Cyprus - University of Wuppertal based on: arXiv: 1803.02685, arXiv: 1807.00232

In collaboration with:

Constantia Alexandrou, Krzysztof Cichy, Martha Constantinou, Kyriakos Hadjyiannakou, Karl Jansen, Fernanda Steffens

The 36th Symposium on Lattice Field Theory July 22-28, East Lansing, MI, USA

Overview of the talk

- Remarks on the theoretical and numerical setup
- Results for parton distributions (PDFs)
 - Unpolarized PDF
 - ▶ Helicity PDF
 - ► Transversity PDF
- Summary and Outlook

• The procedure goes through three main stages:

• The procedure goes through three main stages:

Computation of matrix elements between two proton states at finite momentum

(covered in the previous talk!)

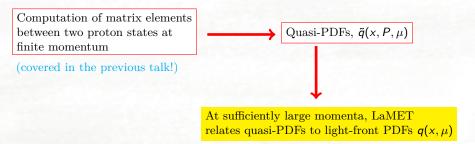
Quasi-PDFs, $\tilde{q}(x, P, \mu)$

• The procedure goes through three main stages:

Computation of matrix elements between two proton states at finite momentum

(covered in the previous talk!)

• The procedure goes through three main stages:



- The contact with physical PDFs is made in three crucial steps:
 - 1. Non-perturbative renormalization of the matrix elements
 - 2. Matching procedure
 - 3. Target Mass Corrections (TMCs) to eliminate residual m_N/P effects.

Numerical setup

Lattice setup

▶ Gauge ensemble produced by using $N_f = 2$ light quarks

ETM Collaboration, Phys. Rev. D 95 (2017), no. 9 094515

β =2.10,	$c_{\rm SW} = 1.57751,$	$a\simeq 0.093 fm$		
$48^3 \times 96$	$a\mu=0.0009$	$m_N\simeq 0.932~GeV$		
L = 4.5 fm	$m_\pi\simeq 0.130 GeV$	$m_{\pi}L\simeq 2.98$		

Statistics

$P = \frac{6\pi}{L}$			$P = \frac{8\pi}{L}$			$P = \frac{10\pi}{L}$		
Ins.	$N_{ m conf}$	$N_{ m meas}$	Ins.	$N_{ m conf}$	$N_{ m meas}$	Ins.	$N_{ m conf}$	$N_{ m meas}$
γ_0	50	4800	γ_0	425	38250	γ_0	811	72990
$\gamma_5\gamma_3$	65	6240	$\gamma_5\gamma_3$	425	38250	$\gamma_5\gamma_3$	811	72990
σ_{3i}	100	9600	σ_{3i}	425	38250	σ_{3i}	811	72990

For a detailed discussion about the setup see previous talk by K. Cichy!

Remarks on the numerical setup

We extract 3 kinds of PDFs:

 $\begin{array}{c} & \underset{\text{matrix element}}{\text{matrix element}} \\ & \underset{\text{matrix e$

 \star For our choices of Dirac matrix no mixing with other operators occurs

▶ The renormalization is only multiplicative

 \bigstar The renormalization functions, Z-factors, have the same power-like divergence of the matrix elements

▶ Z-factors assume large values increasing the length of the Wilson line

Remarks on the numerical setup

We extract 3 kinds of PDFs:

 $\begin{array}{c} & \underset{\text{matrix element}}{\text{matrix element}} \\ & \underbrace{\text{Unpolarized PDF}}_{\text{Helicity PDF}} & \underbrace{\langle N(\vec{P}) | \overline{\psi}(0) \gamma_0 W(0, z) \psi(z) | N(\vec{P}) \rangle}_{\text{Helicity PDF}} \\ & \underbrace{\langle N(\vec{P}) | \overline{\psi}(0) \gamma_5 \gamma_3 W(0, z) \psi(z) | N(\vec{P}) \rangle}_{\text{Transversity PDF}} & \underbrace{\langle N(\vec{P}) | \overline{\psi}(0) \sigma_{3i} W(0, z) \psi(z) | N(\vec{P}) \rangle}_{\text{Helicity PDF}} \\ \end{array}$

★ For our choices of Dirac matrix no mixing with other operators occurs

▶ The renormalization is only multiplicative

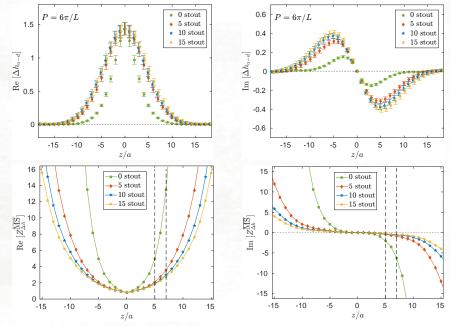
 \bigstar The renormalization functions, Z-factors, have the same power-like divergence of the matrix elements

 \blacktriangleright Z-factors assume large values increasing the length of the Wilson line

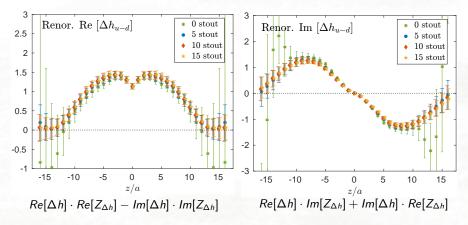
► To smooth the divergence we apply 3-D stout smearing only to the Wilson line entering the matrix elements and vertex functions

 \bullet We test $\{0,5,10,15\}$ levels of smearing

Effect of the stout smearing



Renormalized matrix elements for helicity PDFs



\star Renormalized ME with and without smearing are compatible

 \star Absence of stout smearing leads to increased noise NOTES:

- 1. The renormalized ME are not yet physical observables
- 2. The renormalized ME go to zero slower than the bare ME \rightarrow unphysical oscillations in the quasi and physical PDFs

Towards the physical PDFs

After having renormalized the matrix elements, we proceed with:

1. computing quasi-PDFs

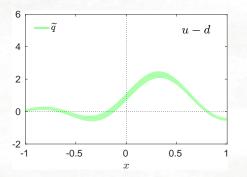
$$\widetilde{q}(x, P, \mu) = 2P \int_{-z_{\max}}^{z_{\max}} \frac{dz}{4\pi} e^{ixzP} h(z, \mu)$$

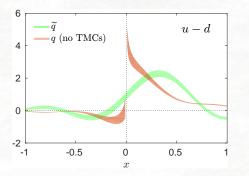
2. applying a matching procedure

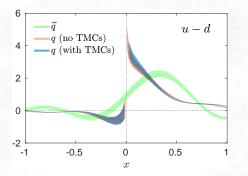
$$q(x,\mu) = \int \frac{d\xi}{|\xi|} \mathcal{K}\left(\frac{\mu}{xP},\xi\right) \underbrace{\tilde{q}(x,P,\mu)}_{\text{quasi-PDFs}}$$

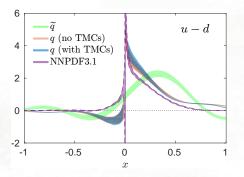
where for the *matching kernel* \mathcal{K} we use the expression of Refs.[C. Alexandrou et al., arXiv:1803.02685[hep-lat]] and [C. Alexandrou et al., arXiv:1807.00232[hep-lat]].

3. applying Target Mass Corrections (TMCs) to correct for $m_N/P \neq 0$ in a finite momentum frame [J.W. Chen et al., Nucl.Phys. B911 (2016) 246-273, arXiv:1603.06664 [hep-ph]].



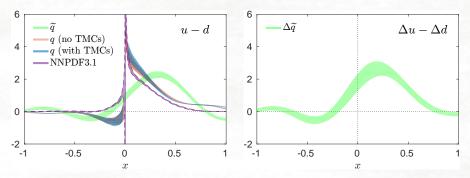






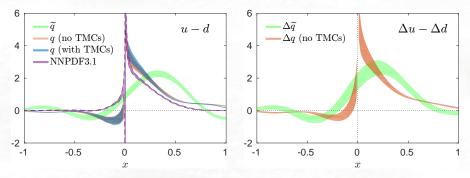
[NNPDF3.1: Eur.Phys.J. C77, 663 (2017), 1706.00428]

P = 1.38 GeV



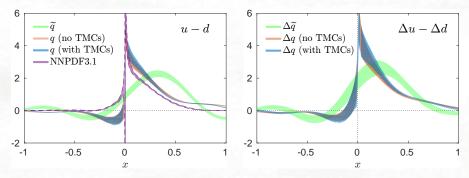
[NNPDF3.1: Eur.Phys.J. C77, 663 (2017), 1706.00428]

P = 1.38 GeV



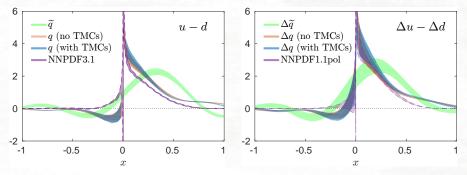
[NNPDF3.1: Eur.Phys.J. C77, 663 (2017), 1706.00428]

P = 1.38 GeV



[NNPDF3.1: Eur.Phys.J. C77, 663 (2017), 1706.00428]

P = 1.38 GeV



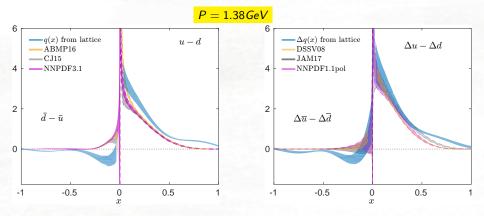
[NNPDF3.1: Eur.Phys.J. C77, 663 (2017), 1706.00428]

[NNPDF1.1pol: Nucl.Phys.B887, 276 (2014), 1406.5539]

Phenomenological PDFs: determined from a global fit to DIS and SIDIS data.

Comparison of lattice with phenomenological PDFs

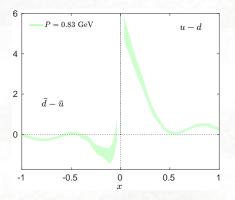
 \star Results presented at 2 GeV in $\overline{\text{MS}}$ -scheme

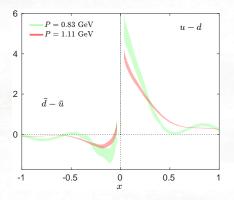


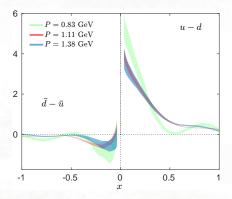
[[]ABMP16: Phys.Rev.D96, 014011 (2017)][CJ15: Phys.Rev.D93, 114017 (2016)]

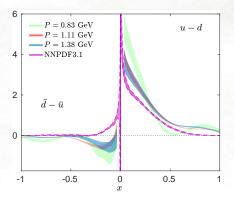
[DDSV08: Phys.Rev.D80, 034030 (2009)]
[JAM17: Phys.Rev. Lett. 119, 132001 (2017)]

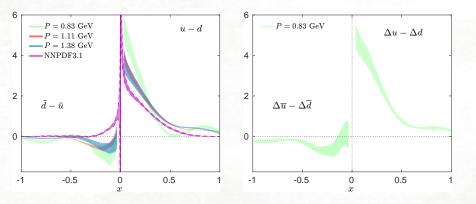
★ Similar behavior of lattice data as compared to phenomenological PDFs ★ Significant overlap for the polarized PDF with phenomenology for 0 < x < 0.5.

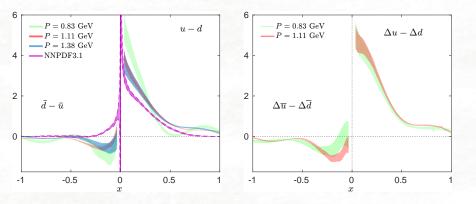


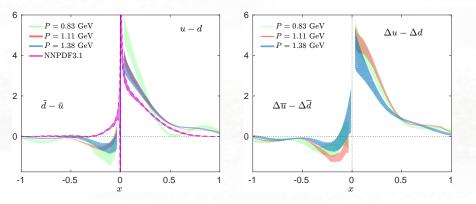


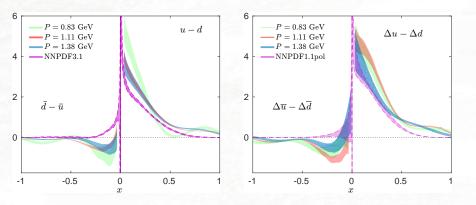




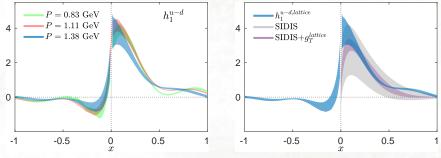








Results for transversity PDF



[[]C. Alexandrou et al., arXiv: 1807.00232]

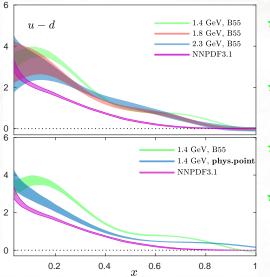
 \star Small dependence of distributions on the nucleon momentum

 \star Milder oscillatory behavior for the large momentum

 \bigstar The statistical uncertainties of the lattice PDFs are strikingly smaller than the phenomenological fits of the SIDIS data

★ At P = 1.38 GeV, $g_T = 1.10(34)$ by integrating over $x \in [-1, 1]$ and agreement with Mellin moments calculation [C. Alexandrou et al., Phys. Rev. D95, 114514 (2017)].

Dependence of the unpolarized PDF on the quark masses



★ Results from B55 ensemble $(M_{\pi} \simeq 375 \text{ MeV}, a \simeq 0.082 \text{ fm})$ with setup of Ref.[C. Alexandrou et al., Phys.Rev.D96, 014513 (2017)]

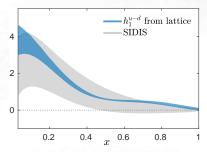
 \bigstar As P increases, the results reach a universal curve

★ Comparison of unpolarized PDF at momentum $\simeq 1.4$ GeV between B55 and physical point ensemble

★ The shift to the right of the PDF for B55 is compatible with a larger value $\langle x \rangle_{u-d}$ observed for the same ensemble [A. Abdel-Rehim et al., Phys.Rev.D92, 114513 (2015)]

Conclusions

- We have presented a reconstruction of parton distribution functions at a physical pion mass ensemble, within the twisted-mass formulation, from first principles of QCD
- We have shown that lattice PDFs approach the phenomenological curves as the momentum increases
- Enormous progress in this field has allowed for the first time a *qualitative* comparison with PDFs extracted from scattering data
- Lattice QCD can be a powerful tool to determine PDFs very poorly constrained from phenomenology
 Example: transversity PDF → smaller statistical errors from lattice than from SIDIS experiments



Outlook

We are still at the beginning of a long way, with many systematics to control!

★ take the continuum limit $a \rightarrow 0$. The extrapolation requires at least 3 values of the lattice spacing

 \bigstar go to higher momenta with controlled excited states contamination

 \bigstar truncation effects in the matching and conversion from RI \prime to $\overline{\rm MS}$

 \star discretization effects in the renormalization functions

★ simulate $N_f = 2 + 1 + 1$ QCD at a physical pion mass ensemble

Outlook

We are still at the beginning of a long way, with many systematics to control!

★ take the continuum limit $a \rightarrow 0$. The extrapolation requires at least 3 values of the lattice spacing

 \bigstar go to higher momenta with controlled excited states contamination

 \bigstar truncation effects in the matching and conversion from RI to $\overline{\rm MS}$

- \star discretization effects in the renormalization functions
- ★ simulate $N_f = 2 + 1 + 1$ QCD at a physical pion mass ensemble (work in progress)

and many more ...

Outlook

We are still at the beginning of a long way, with many systematics to control!

★ take the continuum limit $a \rightarrow 0$. The extrapolation requires at least 3 values of the lattice spacing

 \star go to higher momenta with controlled excited states contamination

 \bigstar truncation effects in the matching and conversion from RI \prime to $\overline{\rm MS}$

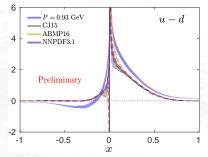
- \star discretization effects in the renormalization functions
- ★ simulate $N_f = 2 + 1 + 1$ QCD at a physical pion mass ensemble (work in progress)

and many more ...

Preliminary result at one momentum for an ETMC ensemble:

[C. Alexandrou et al., arXiv: 1807.00495]

- $N_f = 2 + 1 + 1$ QCD
- $M_{\pi} \simeq 135 \text{ MeV}$
- $a \simeq 0.081 \text{ fm}$
- $V = 64^3 \times 128, \ M_{\pi}L \simeq 3.55$



Thank you for your attention

Standard vs. derivative Fourier transform

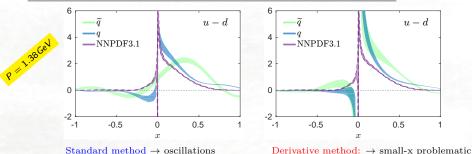
★ Standard Fourier transform defining qPDFs: $\tilde{q}(x) = 2P \int_{-z_{\text{max}}}^{z_{\text{max}}} \frac{dz}{4\pi} e^{ixz^P} h(z)$ can be rewritten using integration by parts as:

$$ilde{q}(x) = h(z) rac{e^{ixzP}}{2\pi i x} \Big|_{-z_{\max}}^{z_{\max}} - \int_{-z_{\max}}^{z_{\max}} rac{dz}{2\pi} rac{e^{ixzP}}{i x} h'(z) \,, \quad ext{where e.g. } h'(z) = rac{h(z+1) - h(z-1)}{2}$$

★ Derivative Fourier transform defining qPDFs: [H.W. Lin et al., arXiv:1708.05301]

$$\tilde{q}(x) = -\int_{-z_{\max}}^{z_{\max}} \frac{dz}{2\pi} \frac{e^{ixz^{P}}}{ix} h'(z), \quad \text{exact if} \quad h(z) \frac{e^{ixz^{P}}}{2\pi ix} \Big|_{-z_{\max}}^{z_{\max}} = 0$$

 \star Both standard and derivative method have systematic uncertainties



1/1