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LatHC studies of many SU(3) gauge theories 
shows trend of continuing decrease in beta 
function with increasing Nf and a steadily lighter 
scalar 

Context

Extensive simulations with a range of lattice 
spacings, especially for Nf = 12

Consistent picture that Nf = 12 is close to 
being conformal, paradigm of walking model

Recent critiques:  
1. “staggered fermions are in the wrong universality class” - Hasenfratz, Rebbi, Witzel 
2. “Nf = 10 with domain wall fermions has an infrared fixed point” - TW Chiu

Our response: 
1. you can’t add relevant operators to staggered fermions: spin models with extra fixed points not applicable 
2. holding the renormalized gauge coupling fixed in some physical volume controls taste symmetry recovery 
3. the Dirac operator eigenvalue spectrum from MC simulations shows the correct structure 
4. we have simulated Nf = 10 with staggered fermions with a range of lattice spacings and find no IRFP 

One role of an Nf = 13 study: can staggered fermions find an IRFP and a conformal theory?
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prediction of the MS scheme within the simulation error of
the IRFP. The 4-loop MS result only slightly shifts the
prediction and is closer to [6]. Although in two different
schemes, tantalizing agreement of the simulations and the
loop expansion lead to the widely held view that twelve
massless fermion flavors in QCD bring the theory inside
the CW.
In a significant new development, the first MS calcu-

lation of the 5-loop β-function was completed for arbitrary
flavor number in QCD [39]. Based on the new 5-loop
results, it was immediately recognized that the zero in the
β-function turns complex and the IRFP disappears for
twelve flavors [40], consistent with the plot in Fig. 4. It was
also shown that two fixed points appear in the β-function

for thirteen flavors like in the intriguing scenario of [41],
with shifting estimates for the lower edge of the CWand for
the flavor dependence of the mass anomalous dimension
[40]. Five loop MS predicts two real zeros at g2 ¼ 5.11 and
g2 ¼ 6.52 for thirteen flavors, as shown in Fig. 4. It did not
escape our attention that new lattice studies of the running
coupling with thirteen flavors would be within easy reach
of the 5-loop MS predictions.
Credible proof of conformal behavior based on the

β-function requires two necessary steps in strongly coupled
gauge theories. First, the critical gauge coupling g2" has to
be determined where the scheme-dependent β-function
vanishes and signals the location of the conformal IRFP.
The slope of the β-function at the fixed point is a scheme-
independent scaling exponent ω which controls the leading
conformal scaling corrections to fermion mass deforma-
tions close to the IRFP [1,42–44]. The choice in scheme
dependence can move the position of the conformal IRFP
but cannot destroy its existence, or change the universal
scaling exponent ω. These are very demanding criteria,
unmatched in lattice simulations while reporting zeros in
the β-function.
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FIG. 4. The conformal fixed point of [6] and the three data
points of our step β-function are shown (red color). The IRFP
from [8] (cyan color) and the new 5-loop MS step β-function of
thirteen flavors (dashed green) are discussed in the text.

FATE OF THE CONFORMAL FIXED POINT WITH TWELVE … PHYSICAL REVIEW D 94, 091501(R) (2016)

091501-5

RAPID COMMUNICATIONS

Why Nf =13?

5-loop MS-bar calculation (20 year project) 
of gauge coupling beta function

SU(3) Nf = 12 has an infrared fixed point 
(IRFP) at 2, 3, and 4-loop in MS-bar, which 
disappears at 5-loop

SU(3) Nf = 13 has an intriguing structure at 5-loop 
of an IRFP and a non-trivial UV fixed point

suggestive of merger of IRFP and UVFP at lower edge 
of conformal window (Kaplan-Son-Stephanov, Vecchi)

Lattice 2017: Daniel Nogradi presented results for SU(3) Nf = 14 fund rep and Nf = 3 sextet rep 
perturbative beta function much smaller: < 0.014 (Nf = 14), < 0.001 (Nf = 3 sextet) 
continuum extrapolation difficult                                            EPJ Web Conf. 175 (2018) 08028

Can we test with staggered fermions if Nf = 13 is conformal? 
Interesting setting to test new predictions for conformal behavior (5-loop MS-bar, Ryttov-Shrock delta)

Nf = 13 IRFP also present at 2, 3 and 4-loop

Nf = 13 might be less difficult for continuum extrapolation

5 loop

Nf = 12
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stout-smeared staggered fermions, Symanzik gauge action, RHMC algorithm: standard technology

for beta function with gradient flow and step-scaling, need a range of volumes and couplings: 
L = 12, 16, 18, 20, 24, 30, 32, 36, 48 (with some 54) 
bare coupling beta from 1.7 to 4.4 in steps of 0.3 (gives renormalized coupling in range 2 — 9) 
large set of ensembles (9 volumes x 10 couplings) which allows various tests e.g.  

step-scaling s = 3/2: 

5 lattice spacings for continuum extrapolation — crucial

several thousand trajectories — goal few per mille accuracy in renormalized couplings  

monitor RHMC algorithm throughout: lowest Dirac eigenvalue well above Remez bounds

12 ! 18, 16 ! 24, 20 ! 30, 24 ! 36, 32 ! 48



Lattice 2018  K Holland

k
1 2 3 4 5 6 7 8

 6
k 

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06
Nf = 13    364   lowest eigenvalues

- = 1.70

k
1 2 3 4 5 6 7 8

 6
k 

0.162

0.164

0.166

0.168

0.17

0.172

0.174

0.176
Nf = 13    364   lowest eigenvalues

- = 4.40

is taste symmetry of staggered fermions recovered?

stronger coupling

weaker coupling

evident in Dirac operator eigenvalues

from strong to weak coupling: split eigenvalues first gather  
in pairs, then in quartets
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eigenvalue splitting vanishes in the continuum limit, 
reaching the correct continuum theory: 1 of 3 arguments 
in response to claim staggered fermions are in wrong 
universality class

per mille splitting
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Nf = 13   SSC   c = 0.2  

first look: step function at fixed bare coupling 

polynomial interpolation of step in g^2 

data in groups of 5 for the possible steps  
L -> sL with s = 3/2

gradient flow: many possible discretizations e.g SSC    

Symanzik gauge action for Monte Carlo generation  
and gradient flow 

Clover operator for E = 1/2 tr G2
µ⌫

� = 1.7

� = 4.4

interesting structure:  

for each L -> sL pair, step function crosses zero at some 
renormalized coupling 

cutoff effects appear to change sign as renormalized 
coupling increases i.e. approach continuum step 
function from above at weak coupling and from below at 
strong coupling

indication that continuum step function has a zero at an IRFP

gradient flow finite-volume scheme: c =
p
8t/L = 0.20

balance between good statistical accuracy (smaller c) and small cutoff effects (larger c)
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further analysis: polynomial interpolation of g2(L) �in

zero in step-function where curves cross 

use interpolation to tune to chosen g2(L)
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12 ! 18

16 ! 24

20 ! 30

24 ! 36

32 ! 48

g2(L) = 4.5continuum extrapolation at tuned coupling:

few per mille accuracy for individual data points 
and continuum result

leading cutoff effects expected to be O(a2)

O(a4)with next order terms

blue curve: quadratic fit in a2

based on fit, coarser lattice spacing
would be significantly removed from continuum value

discrete step function g2(sL)� g2(L)

log(s2)
, s = 3/2

step function at this coupling is zero within error

linear fit in using 3 finest lattice spacings onlya2

8 ! 12

gives consistent result (green curve)
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repeat procedure for range of tuned renormalized 
couplings from ~ 3 to 4.5

shown here: result of quadratic continuum extrapolation

small but non-zero discrete step function 
with an IRFP at

for comparison: 5-loop MS-bar beta function  
has local max ~ 0.05 and IRFP at g2 ⇠ 5

non-perturbative results have similar qualitative and  
even quantitative behavior

at lower end of coupling expect beta function is too small to distinguish from zero at this level of accuracy

if we think beta function has an IRFP, can we demonstrate if it has conformal behavior?

additional properties: anomalous mass dimension

derivative of beta function at IRFP

�⇤

�0 = d�/dg2|g2
⇤

g2 ⇠ 4.5

g2 
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

 β
(g

2 ) 

-0.1

-0.05

0

0.05

0.1

Nf = 13

5 loop MS-bar
lattice



Lattice 2018  K Holland

λ
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 e
ig

en
va

lu
e 

sp
ec

tru
m

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Nf = 13    484   g2 = 4.5   

λ
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 m
od

e 
nu

m
be

r 

×106

-1

0

1

2

3

4

5

6
Nf = 13    484   g2 = 4.5   

new technique presented by LatHC group at Lattice 2015: 
Fodor et al PoS Lattice 2015 (2016) 310

full reconstruction of Dirac operator eigenvalue spectrum 
using Chebyshev polynomials to high order

uses recursive properties of Chebyshev polynomials and 
stochastic measurement of traces to extract 

example:  
20 stochastic noises 
maximum polynomial order 8000  
(bonus: all lower orders automatically generated) 

statistical error is small, not visible on this scale

⇢(t) =
1p

1� t2

1X

k=0

ckTk(t)

ck

can reconstruct not only eigenvalue density but also e.g. 
mode number 

⌫(�) =

Z �

0
⇢(�0)d�0

i.e. number of eigenvalues below some cut
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new method presented by J Kuti for LatHC group at Simons 
Center Conformal Gauge Theories Workshop January 2018

anomalous dimension �⇤ via step-scaling of mode number
continuum limit similar to step-function

measure mode number for eigenvalue cut set via 
finite volume

mode number is renormalized:

⌫R(�R) = ⌫(�), �R = Z�1
p · �

example upper figure: L = 32, c = 6.5

�L =
c

L

match mode number with eigenvalue cut 
for larger volume 

�sL

sL

renormalization factors via eigenvalue ratio

�L

�sL
=

sZp(g0, L/a)

Zp(g0, sL/a)

324

484

e.g. s = 3/2, sL = 48
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anomalous dimension

� =
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log(s)

at renormalized coupling ~ 4.5, anomalous dimension 0.1966(14)

comparison with perturbation theory MS-bar loop order Ryttov-Shrock order

2 0.404 1 0.174

3 0.220 2 0.221

4 0.210 3 0.231

5 0.239 4 0.237

�⇤ �⇤

blue curve: linear fit in a2

MS-bar: Baikov, Chetyrkin, Kühn  
JHEP 1410 (2014) 076 

delta scheme: Ryttov, Shrock  
PRD95 (2017) 105004
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rather stable with increasing order
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non-perturbative lattice result quite close to high loop 
order prediction 
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what happens at stronger coupling?
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continuum step-function appears to change sign 
with increasing renormalized coupling

to check extrapolation: additional ensemble
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one more step 36 ! 54

black data point lies on curve predicted by fit of 
other lattice spacing data
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physical property: slope of beta function at IRFP

MS-bar loop 
order

Ryttov-Shrock 
delta order
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perturbative results quite close to lattice data

5-loop MS-bar beta function less steep than lower 
orders

�0 = d�/dg2|g2
⇤



Lattice 2018  K Holland

comparison of discretization 
at one renormalized coupling
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compare discretization choice 

SSC: Symanzik for MC and Flow, Clover for E 

SSS: Symanzik for all 3 

WSC: Wilson for Flow, Symanzik for MC, Clover for E 

larger cutoff effects for WSC and SSS — similar to 
our experience in other Nf beta function studies

consistent results in the continuum limit from 
independent fits — a very useful crosscheck 
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Nf = 13 does appear conformal: not just a zero 
in the beta function, but also conformal like in 
physical properties, can test new pert thy results

to date, looks like Nf = 12 walking, but 
not inside the conformal window

where does Nf = 10 appear in this picture?

wait for more: Daniel Nogradi on Nf = 10 (next talk)
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