Non perturbative physics from NSPT:
renormalons, the gluon condensate and all that

F. D1 Renzo
University of Parma and INFN

)

[ INFN
UNIVERSITA (L monemene
DI PARMA

1n collaboration with L. Del Debbio e G. Filaci (Edinburgh)

arXiv:1807.09518

LATTICE 2018
MSU, 26-07-2018



historical sinossi

Snapshots of Hadrons

or the Story of How the Vacuum Medium Determines the
Properties of the Classical Mesons Which Are Produced, Live
and Die in the QCD Vacuum
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t would be more accurate to say “the method of expansion of the correlation
unctions in the vacuum condensates with the subsequent matching via the d1s-

persio ”._This is evidently far too long a string to put_int 1.
Therefore, for clarity I will refer to the Shifman-Vainshtein-Zakharov (SVZ) sum H,
13 7 N U C L E A R
rules. So - resort to abbreviations such as “the comnde ansion”. PHYSICS B
wenty years ago, next to nothing was known about nonperturbative aspec ) )
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QCD. The condensate expansion was the first quantitative approach which proved
e successful in dozens of problems. Since then, many things changed Varj
els were suggested concerning the peculia
in Quantum Chromodynamics. Lattice QCD grew into a powerful computational
scheme which promises, with time, to produce the most accurate results, if not for Renormalons from Cigh[-lOOp expansion of the

the whole set of the hadronic parameters, at least, for a significant part. gluon condensate in lattice gauge thCOI'y *
F. Di Renzo?, E. Onofri®, G. Marchesini ®

* Dipartimento di Fisica, Universita di Parma and INFN, Gruppo Collegato di Parma, ltaly
® Dipartimento di Fisica, Universit di Milano and INFN, Sezione di Milano, ltaly

Received 3 April 1995; revised 31 July 1995; accepted 5 October 1995

week ending

PRL 108, 242002 (2012) PHYSICAL REVIEW LETTERS 15 JUNE 2012

Compelling Evidence of Renormalons in QCD from High Order Perturbative Expansions

Clemens Bauer,' Gunnar S. Bali,' and Antonio Pineda’

R 'Institut fiir Theoretische Physik, Universitiit Regensburg, D-93040 Regensburg, Germany
“Grup de Fisica Teorica, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
(Received 16 November 2011; published 12 June 2012)
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the framework of stochastic perturbation theory. We find perfect agreement with the factorial growth of
high order coefficients predicted by the conjectured renormalon picture based on the operator product
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DOI: 10.1103/PhysRevLet.108.242002 PACS numbers: 1238.Cy, 11.10.Jj, 11.15.Bt, 12.38.Bx



Agenda

Getting the GLUON CONDENSATE from the OPE for the PLAQUETTE

IR RENORMALONS
Numerical Stochastic Perturbation Theory

Numerical results

Conclusions and prospects



The GLUON CONDENSATE and the OPE for the PLAQUETTE

2 B(a)
One would like to compute the GLUON CONDENSATE Og=———> E G¢ G¢
G 0 puv = pv

B

CL,,LL,I/



The GLUON CONDENSATE and the OPE for the PLAQUETTE

. 2 B(o)
One would like to compute the GLUON CONDENSATE Og=———> Z GZVGZV
Bo « a
7/’1’71/
. . .. 4 a—0 7T 7T2
In the naive continuum 1limit, the PLAQUETTE a P N Oqg =

does the job for you .. 12N, 12N,
Oc=2G*[1+40()] .

T



The GLUON CONDENSATE and the OPE for the PLAQUETTE

. 2 B()
One would like to compute the GLUON CONDENSATE ()G’::'______BT_ j{: GG
0 a,l,v
In the naive continuum limit, the PLAQUETTE a P 5 Oqg = <__(;2)
12N, 12N, \ 7

does the job for you ..
Og = e 1+ O(a)] .
T

. but then you have MIXING with LOWER DIMENSIONAL OPERATORS, int the case at hand the IDENTITY,
which results in POWER DIVERGENCE!

2

T
a*P=a"Z(pB)L+ T]\QCG(B)OG + O(a2A%CD)



The GLUON CONDENSATE and the OPE for the PLAQUETTE

. 2 B(a)
One would like to compute the GLUON CONDENSATE Og=——5—"-" 2{: GG
Bo « a
7/‘1’71/
In the naive continuum limit, the PLAQUETTE a P 5 Oc ::_____.<__(}2)
does the job for you .. 12N, 12N, \ 7

(87
Oc==G*[140(a)] .

T
. but then you have MIXING with LOWER DIMENSIONAL OPERATORS, int the case at hand the IDENTITY,
which results in POWER DIVERGENCE!

7.‘.2

—4 —4 2
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This also means that if take Monte Carlo MEASUREMENTS you can read

7.‘.2

(Pve = Z(B) + TNCCGW)C# (Oq) + O(a6A%CD

. 1n which you recognise an OPE: in a given regime you separate scales and you know that Wilson
coefficients are computable in Perturbation Theory

a™' > Agep

ZB) = puf "V, Ca(B) =1+ "
n=0 n=0
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This goes back to work by the PISA GROUP
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This goes back to work by the PISA GROUP in the (late) eighties and nineties.

But there is a problem:
the OPE separates the scales, but not PERTURBATIVE AND NON-PERTURBATIVE PHYSICS

There is a contribution in the perturbative tail attached to the identity which scales exactly
as the gluon condensate. This has to do with the fact that PERTURBATIVE SERIES IN FIEILD
THEORIES ARE ASYMPTOTIC, which in turns gives rise to ambiguities which in asymptotically free

field theories are known to have to do with the beta function: this is famous/infamous story
of the IR RENORMALON.



The IR RENORMALON enters the stage..
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Expected form for a condensate of dim 4
Change variable 7= 29 (1 — as(Q%)/as(k?))

You end up with a new integral representation
(BOREL INTEGRAL)

This directly encodes the perturbative behaviour

Q" k2 k2
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All in all

T/ren — Z B—E {Czen 4+ 0(6—20,3)} Cgen — N’ P(E + '7) Z0—€
{=1

® The coefficients grow factorially

® In order to compute the integral you pick up
an imaginary part proportional to e /%0

® In order to sum the series you need a
prescription, with an ambiguity which turns
out to be just of the same order

® The ambiguity at hand scales just as the GC!
A4

o—B70

Q4

b
Instanton-anti-instanton
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Figure 3: Singularities in the Borel plane of II(Q?), the current-current correlation function
in QCD. Shown are the singular points, but not the cuts attached to each of them. Recall that
Bo < 0 according to (2.18).



NSPT (directly in the LGT case) Di Renzo, Marchesini, Onofri 94

YM theory: start with the Wilson action Sa = __2§; j{: 11'(l[p-+-lﬂg>
¢ P
0 . :
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Asymptotically in stochastic time
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YM theory: start with the Wilson action Sa = ——253 j{: 11'(l[p-+-lﬂg)
¢ P
0 . .
Langevin equation: aUmu(tE n) = (=iVeuSclU] — ineu(t)) Upu(t; n)
; = 040 L 0ik Oim | O
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Asymptotically in stochastic time

t—o0

lim (O[U (t; n)]), = % / DU e~5clUI O[U]

Now we look for a solution in the form of a perturbative expansion

k=1

. Which you can plug e.g. in an Euler scheme

Up(n +1;m) = e~ =000, () FoulU,n] = eVauSc[U] + Ve

Batrouni et al (Cornell group) PRD 32 (1985)



not the end of the story: STOCHASTIC GAUGE FIXING

To have gauge degrees of freedom under control interleave a gauge fixing step to the Langevin evolution
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which has by the way an obvious interpretation -200
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Figure 1. The effect of stochastic gauge fixing.
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not the end of the story: FERMIONS, i.e. QCD Di Renzo, Scorzato 2001

From the point of view of the functional integral measure e ¢ det M = e %eif = ¢~ (Sa—TrinM)

and in turns VZMSG —> V;‘;MSeff = VZMSG — VguTr In M = VZMSG — Tr ((VZMM)M_I)

Batrouni et al (Cornell group) PRD 32 (1985)
In Ugu(n+1;n) = e~ FenlUn] Uzp(n;n) we now write

F =T%(e®® + /en®) &% = {ngSG — Re (fkT(vg;uM)kl(M_l)lnfn)}

where (&&j)¢ = di; or (this is what we always do)

P = {V;MSG — Re (&T(ViuM)lnwn)] Mipy = &k



A first high order computation in LQCD

We use twisted BC (no zero modes!)
U,(x+ Lo) =QU, (), Q,9Q,=2,2.0,, 2w € 7N,

and consistently give fermions (fundamental representation) smell degrees of freedom

(copies which transform into each other according to the anti fundamental representation of the gauge
group; physical observables are singlets!)

Y+ L) =Y (), 0@)(A),, A, € SUN,)

J>8
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We tried both Wilson fermions n -—7n8” on 164 —vngﬂ in infinite volume
(exploratory study of critical mass) 1| 261083 ... 2.60571 . ..

2 4.32(3) 4.293(1) [34, 35]

3| 1.21(1)- 10 1.178(5) - 10 [36, 37

41 3.9(2)-10 3.96(4) - 101 [37]

51 1.7(2) - 102 -

6 5(1) - 102 -

71 2(1)-103 -

.. and staggered fermions (for the first time in NSPT);
these are ultimately to prefer to go the really high order computations..
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There 1s now a GRID version of NSPT! (thanks to P. Boyle and G. Cossu for cooperation)



We experienced some NUMERICAL INSTABILITIES

Very high orders for toy models are indeed known to have numerical instabilities.
Not yet found in (quenched) high orders NSOT simulations

Now we found them with fermions in..
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Beware: VARIANCES in NSPT are not connected to physical observables.. do not now a priori what to
expect, despite the fact that physical observables indeed admit asymptotic limit.
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Can you directly INSPECT the IR RENORMALON?
YES!

Expect Pn 300 [1 2—51l + O ( L )]

NPp_1 ~ 1672 B2 n n2

.. an interesting exercise with COVARIANCE MATRIX..
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Can you eventually SUM the SERIES?
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You can now sum the series in a given prescription.
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You can now sum the series in a given prescription.

Notice that this implies that the ambiguity is absorbed in the definition of the GC in the OPE!

A natural prescription is summing UP TO THE MINIMAL TERM (inversion point)
(remember: finite volume still a systematic error at this stage)
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CONCLUSIONS (and PROSPECTS!)

- NSPT can do a good job looking into renormalons, even including fermions

- Now new prospects in from of us (in progress):
* try different fermionic representations
* and different color/flavor content

* with the idea that (possible quasi) conformal window should
CHANGE THE PICTURE! (an alternative perspective on BSM candidates?)



