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historical sinossi

1 QCD Sum Rules: Twenty Years After

I will discuss a method of treating the nonperturbative dynamics of QCD which
was created almost twenty years ago [1] in an attempt to understand a variety of
properties and behavior patterns in the hadronic family in terms of several basic
parameters of the vacuum state. The method goes under the name QCD sum rules
– rather awkward, for many reasons. First and foremost, it does not emphasize
the essence of the method. Second, in Quantum Chromodynamics there exist many
other sum rules, having nothing to do with those suggested in Ref. [1]. Finally,
some authors add further confusion by using ad hoc names, e.g. the Laplace sum
rules, spectral sum rules, and so on, which are even foggier and are not generally
accepted.

It would be more accurate to say “the method of expansion of the correlation
functions in the vacuum condensates with the subsequent matching via the dis-
persion relations”. This is evidently far too long a string to put into circulation.
Therefore, for clarity I will refer to the Shifman-Vainshtein-Zakharov (SVZ) sum
rules. Sometimes, I will resort to abbreviations such as “the condensate expansion”.

Twenty years ago, next to nothing was known about nonperturbative aspects of
QCD. The condensate expansion was the first quantitative approach which proved
to be successful in dozens of problems. Since then, many things changed. Various
new ideas and models were suggested concerning the peculiar infrared behavior
in Quantum Chromodynamics. Lattice QCD grew into a powerful computational
scheme which promises, with time, to produce the most accurate results, if not for
the whole set of the hadronic parameters, at least, for a significant part.

It seems timely to survey the ideas and technology constituting the core of the
SVZ sum rules from the modern perspective, when the method became just one
among several theoretical components in a modern highly competitive environment.
An exhaustive review of a wealth of “classical”, old elements of the method and
applications was given in Ref. [2]. There is hardly any need in an abbreviated
version of such a report. New applications which were worked out in the last decade
or so definitely do deserve a detailed discussion. As far as I know, no comprehensive
coverage of the topic exists in the literature. Unfortunately, in these lectures I will
not be able to provide such a coverage, which thus remains a task for the future
1. Instead, I will focus on those qualitative aspects where understanding became
deeper. This is the first goal. Secondly, selected new applications will be considered
to the extent that they illustrate the theoretical ideas of the last decade. And last
but not least, I will try to outline an ecological niche which belongs to the SVZ
method today. As a matter of fact, over the years, slow but steady advances were
taking place in our knowledge of the hadronic world. Some old and largely forgotten

1Work on systematically reviewing a variety of developments that took place since the mid-
1980’s and numerous new applications is under way (a private communication from B.L. Ioffe).
A survey devoted to the relation between the sum rule and lattice results is being written by A.
Khodjamirian.
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The GLUON CONDENSATE and the OPE for the PLAQUETTE 

One would like to compute the GLUON CONDENSATE

and rescale the entries of the covariance matrix so that there is a common normalisation
(N = Nmin in Eq. (82)) for all the matrix elements. In this way, all the data are exploited
for the determination of the covariance of the process, and the non-positive definiteness
of the covariance of the averages arises only from the presence of autocorrelations and
cross-correlations. Higham’s algorithm is then applied to Cov(n,m)⌧ restricted to nmax

orders. At this stage, minimising the �
2 allows us to extract pnmax with Cov(nmax,m) for

m  nmax. The tolerance of Higham’s algorithm is tuned so that the covariance matrix
is able to represent our data, i.e. so that the reduced chi-squared is close to 1. The
combined fit determines also the plaquettes at orders lower than nmax, which are always
checked and found to be in agreement, within errors, with their previous determination
at smaller nmax. An example of a correlation matrix extracted with this procedure is in
Figure 8, where clear structures of correlated and anticorrelated coefficients are visible.
The results of the combined extrapolations are summarised in Table 3.

7 Gluon condensate

In this section we restore the lattice spacing a and follow the notation of Refs. [13, 14]:
the gluon condensate is defined as the vacuum expectation value of the operator OG =
�
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It is useful to remember that, in the massless limit, OG is renormalisation group invariant
and depends on the scheme only through the renormalisation condition used to define the
composite operator.

It is easy to relate the gluon condensate and the plaquette in the naive continuum limit:
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In the interacting theory mixing with operators of lower or equal dimension occurs. For
the case of the plaquette, the mixing with the identity needs to be considered, yielding

a
�4
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�4
Z(�)1 +

⇡
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CG(�)OG +O(a2⇤6
QCD) , (55)
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which shows explicitly the subtraction of the quartic power divergence 8.

As a consequence

hP iMC = Z(�) +
⇡
2

12Nc

CG(�)a
4
hOGi+O(a6⇤6

QCD) , (56)

where hP iMC is the plaquette expectation value obtained from a nonperturbative Monte
Carlo simulation. As such, hP iMC is expected to depend on the cut-off scale a, and
⇤QCD. In the limit a�1

� ⇤QCD, Eq. (56) can be seen as an Operator Product Expansion
(OPE) [50, 1, 2], which factorises the dependence on the small scale a. In this framework,
condensates like hOGi are process-independent parameters that encode the nonperturba-
tive dynamics, while the Wilson coefficients are defined in perturbation theory,

Z(�) =
X

n=0

pn�
�(n+1)

, CG(�) = 1 +
X

n=0

cn�
�(n+1)

, (57)

Note that both Z and CG depend only on the bare coupling �
�1, and do not depend on

the renormalisation scale µ, as expected for both coefficients [51, 52]. Nonperturbative
contributions to Z, or CG, originating for example from instantons, would correspond to
subleading terms in ⇤QCD. This procedure defines a renormalisation scheme to subtract
power divergences: condensates are chosen to vanish in pertubation theory or, in other
words, they are normal ordered in the perturbative vacuum. This definition matches the
one that is natural in dimensional regularisation, where power divergences do not arise.
Nevertheless, it is well known that such a definition of the condensates might lead to
ambiguities, since the separation of scales in the OPE does not necessarily correspond
to a separation between perturbative and nonperturbative physics (see the interesting
discussions in Refs. [53, 3]). For example, the fermion condensate in a massless theory is
well-defined since, being the order parameter of chiral symmetry breaking, it must vanish
in perturbation theory. The same cannot be said for the gluon condensate [54] and indeed
the ambiguity in its definition is reflected in the divergence of the perturbative expansion
of the plaquette. For this picture to be consistent, it must be possible to absorb in the
definition of the condensate the ambiguity in resumming the perturbative series.

In the following, we are going to study the asymptotic behaviour of the coefficients pn

determined in the previous section and discuss the implications for the definition of the
gluon condensate in massless QCD.

8
We mention that, in a theory with fermions, the operator OG must be combined with m ̄ to give

a renormalisation group invariant quantity; moreover mixing with the operators m ̄ and  ̄(i /D �m) 
should also be considered [48, 49]. Clearly such complications are not present in the massless case and

the operator i ̄ /D can be neglected in the following discussions since it vanishes when the equation of

motion are used.
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has been the starting point for LATTICE
DETERMINATIONS of the GLUON CONDENSATE

� L SP (�) n̄ minimal term

5.3

24 0.47515(9) 25 3.70 · 10�4

28 0.4767(1) 30 2.52 · 10�4

32 0.4775(4) 35 5.23 · 10�5

48 0.47665(7) 33 1.97 · 10�4

5.35

24 0.46718(8) 25 2.90 · 10�4

28 0.46843(9) 30 1.88 · 10�4

32 0.4690(3) 35 3.73 · 10�5

48 0.46826(5) 33 1.43 · 10�4

5.415

24 0.4587(1) 33 1.06 · 10�4

28 0.45844(7) 30 1.29 · 10�4

32 0.4588(2) 35 2.42 · 10�5

48 0.45822(4) 33 9.51 · 10�5

5.5

24 0.44663(9) 33 6.22 · 10�5

28 0.44651(6) 30 7.98 · 10�5

32 0.4466(1) 35 1.38 · 10�5

48 0.44627(4) 33 5.60 · 10�5

5.6

24 0.43384(6) 34 3.32 · 10�5

28 0.43380(5) 30 4.57 · 10�5

32 0.43383(6) 35 7.21 · 10�6

48 0.43357(3) 33 3.03 · 10�5

Table 5: Summation up to the minimal term of the perturbative series of the plaquette.
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Figure 14: In the left panel, determination of the gluon condensate from Eq. (61). The
line corresponds to the weighed average of the three largest values of �. In the right panel,
scaling of the condensate with a

4 (solid red line, grey points are excluded), with possibly
a a

6 correction (dashed blue line, grey points are included). Both panels refer to L = 48.
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This goes back to work by the PISA GROUP in the (late) eighties and nineties. 
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But there is a problem: 
the OPE separates the scales, but not PERTURBATIVE AND NON-PERTURBATIVE PHYSICS 

There is a contribution in the perturbative tail attached to the identity which scales exactly 
as the gluon condensate. This has to do with the fact that PERTURBATIVE SERIES IN FIElD 
THEORIES ARE ASYMPTOTIC, which in turns gives rise to ambiguities which in asymptotically free 
field theories are known to have to do with the beta function: this is famous/infamous story 
of the IR RENORMALON.



The IR RENORMALON enters the stage… 

W ren = N
Z 1

0
dz e��z (z0 � z)�1��

JHEP10(2001)038

Next we recall the main points of Renormalon analysis. Notations are slightly dif-

ferent from those of [1, 5] and closer to those of [3]. The aim of this section is in any
case to be self-contained.

2.1 Basics on the factorial growth of perturbative coe�cients

The expected form for a dimension 4, Renormalisation Group invariant condensate
is written as

W =

Z Q2

0

k
2
dk
2

Q4
f(k2/⇤2) . (2.3)

Q is in our case the UV cuto↵ fixed by the lattice spacing: Q = ⇡/a. Given the above
dimensional and R.G. arguments, f(k2/⇤2) is a dimensionless function independent
of the scale Q, for large Q, and can thus be expressed in terms of a running coupling

at the scale k2. One obtains the Renormalon contribution by considering the high
frequency contribution to eq. (2.3), that is

W
ren = C

Z Q2

r⇤2

k
2
dk
2

Q4
↵s(k

2) , (2.4)

in which f(k2/⇤2) has been taken proportional to the perturbative running coupling
(higher powers of the coupling simply result in subleading corrections to the formulas
we will get this way). We now introduce the variable

z ⌘ z0

�

1� ↵s(Q
2)/↵s(k

2)
�

, z0 ⌘
1

3b0
, (2.5)

using which together with the two loop form for ↵s(k2) results in

W
ren = N

Z z0�

0

dz e
��z (z0 � z)

�1��
. (2.6)

In the last equation we have traded ↵s(k2) for the � coupling one is more familiar

with on the lattice and introduced a couple of new symbols according to

4⇡↵s(Q
2) ⌘ 6/� , � ⌘ 2

b1

b20

, 0 < z < z0� ⌘ z0(1� ↵s(Q
2)/↵s(r⇤

2)) . (2.7)

In the above equations b0 and b1 are the first and second coe�cients of the pertur-

bative �-function (to fix normalisation: b0 = 11/(4⇡)4). z0� is clearly reminiscent of
the IR cuto↵ r⇤2 imposed in eq. (2.4) to avoid the Landau pole once the perturba-
tive coupling is plugged in. From eq. (2.6) it is now easy to obtain a perturbative

expansion

W
ren =

X

`=1

�
�`
{c
ren
` +O(e

�z0�)} , c
ren
` = N

0 �(`+ �) z�`0 . (2.8)
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Figure 3: Singularities in the Borel plane of Π(Q2), the current-current correlation function

in QCD. Shown are the singular points, but not the cuts attached to each of them. Recall that

β0 < 0 according to (2.18).

plane and hence governs the large-order behaviour of the series expansion of the Adler
function. According to (2.4) the minimal term is of order Λ2/Q2, using (2.27). A more

precise analysis (Beneke & Zakharov 1992) shows that it is of order

δDUV ∼
Q2Λ2

µ4
× logarithms. (2.31)

However, since UV renormalons produce sign-alternating factorial divergence in QCD, we

do not take them as an indication that extra terms should be added to the perturbative

expansion. Eq. (2.31) supports this interpretation: since the coupling renormalization

scale µ is arbitrary, one can make the minimal term small by increasing µ. In this way,

one systematically cancels (approximately) factorially large constants against powers of
ln(Q2/µ2). Note that δDUV is polynomial in Q (up to logarithms) and therefore cannot

be confused with an infrared 1/Q2 power correction.

For the current-current correlation function all UV renormalons are double poles, if

one restricts oneself to the set of bubble graphs in Fig. 1. Beyond this approximation,

only the first singularity at u = −1 has been analysed in detail (Beneke et al. 1997a).

This analysis uses renormalization group methods suggested by (Parisi 1978) and devel-

oped further in (Vainshtein & Zakharov 1994; Di Cecio & Paffuti 1995; Beneke 1995;

Beneke & Smirnov 1996). These will be the subject of Section 3.2. The result is a

complicated branch point structure attached to the point u = −1.

UV renormalons are theory-specific, but process-independent.14 In theories with
14Read: The process dependence factorizes and is calculable, see Section 3.2.
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This directly encodes the perturbative behaviour

All in all

• The coefficients grow factorially

• In order to compute the integral you pick up  
an imaginary part proportional to

• In  order  to  sum  the  series  you  need  a 
prescription, with an ambiguity which turns 
out to be just of the same order

• The ambiguity at hand scales just as the GC!  

e��z0

e��z0 ⇠ ⇤4

Q4



YM theory: start with the Wilson action SG = � �
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Langevin equation:

h⌘i,k(z) ⌘l,m(w)i⌘ =


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Nc
�ik �lm

�
�zw

Now we look for a solution in the form of a perturbative expansion

Uxµ(t; ⌘) ! 1 +
X

k=1

��k/2U (k)
xµ (t; ⌘)

… which you can plug e.g. in an Euler scheme



To have gauge degrees of freedom under control interleave a gauge fixing step to the Langevin evolution

U 0
xµ = e�Fxµ[U,⌘] Uxµ(n)

Uxµ(n+ 1) = ewx[U
0] U 0

xµ e�wx+µ̂[U
0]

which has by the way an obvious interpretation

Uxµ(n+ 1) = e�Fxµ[U
G, G⌘G†] UG

xµ(n)

Figure 1. The effect of stochastic gauge fixing.

One then defines a renormalized coupling g
2 through [2]

k

g
2 =

@�

@⌘

����
⌘=⌫=0

, (4.2)

where k is a normalization factor ensuring that we end up with an expansion

g
2 = g

2
0 (1 +m1 g

2
0 +m2 g

4
0 + . . . ). (4.3)

For a general choice of the parameter ⌫, we obtain

@�

@⌘

����
⌘=0

= k

✓
1

g
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◆
. (4.4)

The reader is referred to [2] for the precise definitions involved, but a couple of comments are in
order here. First of all, v is indipendent of ⌫ and thus the definition of a new coupling (of a whole
family of couplings, actually) simply amounts to the measurement of yet another quantity, in any
background (typically in the one defined by ⌫ = 0). The original motivation of [2] was that of
trading little extra work with a further test of universality of the Schrödinger functional. On the
other side, this freedom in choosing a value for ⌫ in a 1-parameter family can be viewed as a handle
to minimize cutoff effects (this is the spirit of e.g. [14]). In the following we will report results for
the standard definition of the SF coupling (⌫ = 0). Since one can indeed be interested in playing
around with different definitions of the coupling resulting from different value of ⌫, it is important
to discuss what statistics we have to aim at for a NSPT computation of the relevant v obervable.
Since the latter is known to be small (results for different lattice sizes were computed to two loop
in [15]) and quite noisy in non-perturbative measurements, this is expected to be a non-trivial task.
We devote appendix B to briefly discuss our results on this subject.
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not the end of the story: FERMIONS, i.e. QCD Di Renzo, Scorzato 2001

From the point of view of the functional integral measure  

and in turns

In                                    we now write
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A first high order computation in LQCD 

We use twisted BC (no zero modes!)

Runge-Kutta integrator Higher order integrators, in particular Runge-Kutta schemes,
have been used for the lattice version of the Langevin equation since the early days [17].
A new, very effective second-order integration scheme for NSPT in lattice gauge theories
has been introduced in Ref. [12]. While we have tested Runge-Kutta schemes ourselves
for pure gauge NSPT simulations, in this work we adhere to the simpler Euler scheme:
when making use of the (standard) stochastic evaluation of the fermionic equations of
motion (see later), Runge-Kutta schemes are actually more demanding (extra terms are
needed [23, 24]).

3 Twisted boundary conditions and smell

When a theory is defined in finite volume, the fields can be required to satisfy any bound-
ary conditions that are compatible with the symmetries of the action. We adopt twisted
boundary conditions (TBC) [25] in order to remove the zero-mode of the gauge field, and
have an unambiguous perturbative expansion, which is not plagued by toron vacua [26].
The gauge fields undergo a constant gauge transformation when translated by a multiple
of the lattice size; therefore twisted boundary conditions in direction ⌫̂ are

Uµ(x+ L⌫̂) = ⌦⌫Uµ(x)⌦
†
⌫
, (16)

where ⌦µ 2 SU(Nc) are a set of constant matrices satisfying

⌦⌫⌦µ = zµ⌫⌦µ⌦⌫ , zµ⌫ 2 ZNc . (17)

Fermions in the adjoint representation can be introduced in a straightforward manner;
the boundary conditions with the fermionic field in the matrix representation read

 (x+ L⌫̂) = ⌦⌫ (x)⌦
†
⌫
. (18)

The inclusion of fermions in the fundamental representation is not straightforward; indeed
the gauge transformation for the fermions when translated by a multiple of the lattice
size reads

 (x+ L⌫̂) = ⌦⌫ (x) , (19)

leading to an ambiguous definition of  (x+Lµ̂+L⌫̂). An idea to overcome this problem,
proposed in Ref. [27] and implemented e.g. in Ref. [28], is to introduce a new quantum
number so that fermions exist in different copies, or smells, which transform into each
other according to the antifundamental representation of SU(Nc). The theory has a new
global symmetry, but physical observables are singlets under the smell group. Thus,
configurations related by a smell transformations are equivalent and in finite volume we
are free to substitute Eq. (19) with

 (x+ L⌫̂)ir =
X

j,s

�
⌦⌫

�
ij
 (x)js

�
⇤†

⌫

�
sr
, (20)
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and consistently give fermions (fundamental representation) smell degrees of freedom
(copies which transform into each other according to the anti fundamental representation of the gauge 
group; physical observables are singlets!)
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for pure gauge NSPT simulations, in this work we adhere to the simpler Euler scheme:
when making use of the (standard) stochastic evaluation of the fermionic equations of
motion (see later), Runge-Kutta schemes are actually more demanding (extra terms are
needed [23, 24]).

3 Twisted boundary conditions and smell

When a theory is defined in finite volume, the fields can be required to satisfy any bound-
ary conditions that are compatible with the symmetries of the action. We adopt twisted
boundary conditions (TBC) [25] in order to remove the zero-mode of the gauge field, and
have an unambiguous perturbative expansion, which is not plagued by toron vacua [26].
The gauge fields undergo a constant gauge transformation when translated by a multiple
of the lattice size; therefore twisted boundary conditions in direction ⌫̂ are

Uµ(x+ L⌫̂) = ⌦⌫Uµ(x)⌦
†
⌫
, (16)

where ⌦µ 2 SU(Nc) are a set of constant matrices satisfying

⌦⌫⌦µ = zµ⌫⌦µ⌦⌫ , zµ⌫ 2 ZNc . (17)

Fermions in the adjoint representation can be introduced in a straightforward manner;
the boundary conditions with the fermionic field in the matrix representation read

 (x+ L⌫̂) = ⌦⌫ (x)⌦
†
⌫
. (18)

The inclusion of fermions in the fundamental representation is not straightforward; indeed
the gauge transformation for the fermions when translated by a multiple of the lattice
size reads

 (x+ L⌫̂) = ⌦⌫ (x) , (19)

leading to an ambiguous definition of  (x+Lµ̂+L⌫̂). An idea to overcome this problem,
proposed in Ref. [27] and implemented e.g. in Ref. [28], is to introduce a new quantum
number so that fermions exist in different copies, or smells, which transform into each
other according to the antifundamental representation of SU(Nc). The theory has a new
global symmetry, but physical observables are singlets under the smell group. Thus,
configurations related by a smell transformations are equivalent and in finite volume we
are free to substitute Eq. (19) with

 (x+ L⌫̂)ir =
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where ⇤⌫ 2 SU(Nc). It is useful to think of the fermion field as a matrix in colour-
smell space. If the transformation matrices in smell space satisfy the same relations as
in Eq. (17) (in particular we choose them to be equal to the ⌦s), then twisted boundary
conditions are well-defined.

It is worth pointing out that, through a change of variable in the path integral [29, 30],
twisted boundary conditions could be equivalently implemented by multiplying particular
sets of plaquettes in the action by suitable elements of ZNc and considering the fields to
be periodic. This change of variable works only in the pure gauge or fermions in the
adjoint representation cases. Thus, the explicit transformation of Eq. (20) is required
when fermions in the fundamental representation with smell are considered.

4 Fermions in NSPT

If SF =
P

x,y
 ̄(x)M [U ] (y) is the action of a single fermion, then dynamical fermions in

NSPT can be included thanks to a new term in the drift, as shown in Refs. [17, 31]: the
determinant arising from Nf degenerate fermions can be rewritten as

det(M)Nf = exp (Nf Tr lnM) (21)

and can be taken into account by adding �Nf Tr lnM to the gauge action. From the Lie
derivative of the additional term and recalling that a rescaled time step ⌧ = ✏/� is used
in the Euler update, we obtain the new contribution

F
f

µ
(x) = �i

Nf

�

X

a

T
a Tr(ra

xµ
M)M�1 (22)

to be added to the pure gauge drift. It is important to note that the coefficient of iT a

is purely real because the Wilson operator is �5-Hermitian and the staggered operator is
antihermitian: this is consistent with the drift being an element of the algebra. The trace
can be evaluated stochastically: Eq. (22) is replaced by

F
f

µ
(x) = �i

Nf

�

X

a

T
a Re ⇠⇤(ra

xµ
M)M�1

⇠ (23)

thanks to the introduction of a new complex Gaussian noise ⇠ satisfying

h⇠
⇤(y)�ir⇠(z)�jsi = �yz����ij�rs

3
. (24)

The real part must be enforced, otherwise the dynamics would lead the links out of
the group since the drift would be guaranteed to be in the algebra only on average.
In NSPT, the Dirac operator inherits a formal perturbative expansion from the links,

3
Obviously ⇠ does not have any Dirac structure in the staggered case. The noise can be built from

the independent generation of real and imaginary part with zero mean and variance 1/2.
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where ⇤⌫ 2 SU(Nc). It is useful to think of the fermion field as a matrix in colour-
smell space. If the transformation matrices in smell space satisfy the same relations as
in Eq. (17) (in particular we choose them to be equal to the ⌦s), then twisted boundary
conditions are well-defined.

It is worth pointing out that, through a change of variable in the path integral [29, 30],
twisted boundary conditions could be equivalently implemented by multiplying particular
sets of plaquettes in the action by suitable elements of ZNc and considering the fields to
be periodic. This change of variable works only in the pure gauge or fermions in the
adjoint representation cases. Thus, the explicit transformation of Eq. (20) is required
when fermions in the fundamental representation with smell are considered.

4 Fermions in NSPT

If SF =
P

x,y
 ̄(x)M [U ] (y) is the action of a single fermion, then dynamical fermions in

NSPT can be included thanks to a new term in the drift, as shown in Refs. [17, 31]: the
determinant arising from Nf degenerate fermions can be rewritten as

det(M)Nf = exp (Nf Tr lnM) (21)

and can be taken into account by adding �Nf Tr lnM to the gauge action. From the Lie
derivative of the additional term and recalling that a rescaled time step ⌧ = ✏/� is used
in the Euler update, we obtain the new contribution
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to be added to the pure gauge drift. It is important to note that the coefficient of iT a

is purely real because the Wilson operator is �5-Hermitian and the staggered operator is
antihermitian: this is consistent with the drift being an element of the algebra. The trace
can be evaluated stochastically: Eq. (22) is replaced by
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thanks to the introduction of a new complex Gaussian noise ⇠ satisfying
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The real part must be enforced, otherwise the dynamics would lead the links out of
the group since the drift would be guaranteed to be in the algebra only on average.
In NSPT, the Dirac operator inherits a formal perturbative expansion from the links,
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Obviously ⇠ does not have any Dirac structure in the staggered case. The noise can be built from

the independent generation of real and imaginary part with zero mean and variance 1/2.
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We tried both Wilson fermions 
(exploratory study of critical mass)
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Figure 4: Determination of the coefficient m(8)
c . The errors overshadow the value of the

critical mass, which is compatible with zero. Notation as in Figure 1.

n �m
(n)
c on 164 �m

(n)
c in infinite volume

1 2.61083 . . . 2.60571 . . .
2 4.32(3) 4.293(1) [34, 35]
3 1.21(1) · 101 1.178(5) · 101 [36, 37]
4 3.9(2) · 101 3.96(4) · 101 [37]
5 1.7(2) · 102 -
6 5(1) · 102 -
7 2(1) · 103 -

Table 1: Critical masses for Nc = 3, Nf = 2 Wilson fermions determined with NSPT
on a 164 lattice with twisted boundary condition on a plane, compared with the known
values in infinite volume. The n = 1 coefficient has been determined analytically in
twisted lattice perturbation theory; many digits have been used in the actual simulation.
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… and staggered fermions (for the first time in NSPT);
these are ultimately to prefer to go the really high order computations…



A first high order computation in LQCD 

We use twisted BC (no zero modes!)

Runge-Kutta integrator Higher order integrators, in particular Runge-Kutta schemes,
have been used for the lattice version of the Langevin equation since the early days [17].
A new, very effective second-order integration scheme for NSPT in lattice gauge theories
has been introduced in Ref. [12]. While we have tested Runge-Kutta schemes ourselves
for pure gauge NSPT simulations, in this work we adhere to the simpler Euler scheme:
when making use of the (standard) stochastic evaluation of the fermionic equations of
motion (see later), Runge-Kutta schemes are actually more demanding (extra terms are
needed [23, 24]).

3 Twisted boundary conditions and smell

When a theory is defined in finite volume, the fields can be required to satisfy any bound-
ary conditions that are compatible with the symmetries of the action. We adopt twisted
boundary conditions (TBC) [25] in order to remove the zero-mode of the gauge field, and
have an unambiguous perturbative expansion, which is not plagued by toron vacua [26].
The gauge fields undergo a constant gauge transformation when translated by a multiple
of the lattice size; therefore twisted boundary conditions in direction ⌫̂ are

Uµ(x+ L⌫̂) = ⌦⌫Uµ(x)⌦
†
⌫
, (16)

where ⌦µ 2 SU(Nc) are a set of constant matrices satisfying

⌦⌫⌦µ = zµ⌫⌦µ⌦⌫ , zµ⌫ 2 ZNc . (17)

Fermions in the adjoint representation can be introduced in a straightforward manner;
the boundary conditions with the fermionic field in the matrix representation read

 (x+ L⌫̂) = ⌦⌫ (x)⌦
†
⌫
. (18)

The inclusion of fermions in the fundamental representation is not straightforward; indeed
the gauge transformation for the fermions when translated by a multiple of the lattice
size reads

 (x+ L⌫̂) = ⌦⌫ (x) , (19)

leading to an ambiguous definition of  (x+Lµ̂+L⌫̂). An idea to overcome this problem,
proposed in Ref. [27] and implemented e.g. in Ref. [28], is to introduce a new quantum
number so that fermions exist in different copies, or smells, which transform into each
other according to the antifundamental representation of SU(Nc). The theory has a new
global symmetry, but physical observables are singlets under the smell group. Thus,
configurations related by a smell transformations are equivalent and in finite volume we
are free to substitute Eq. (19) with

 (x+ L⌫̂)ir =
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where ⇤⌫ 2 SU(Nc). It is useful to think of the fermion field as a matrix in colour-
smell space. If the transformation matrices in smell space satisfy the same relations as
in Eq. (17) (in particular we choose them to be equal to the ⌦s), then twisted boundary
conditions are well-defined.

It is worth pointing out that, through a change of variable in the path integral [29, 30],
twisted boundary conditions could be equivalently implemented by multiplying particular
sets of plaquettes in the action by suitable elements of ZNc and considering the fields to
be periodic. This change of variable works only in the pure gauge or fermions in the
adjoint representation cases. Thus, the explicit transformation of Eq. (20) is required
when fermions in the fundamental representation with smell are considered.

4 Fermions in NSPT

If SF =
P

x,y
 ̄(x)M [U ] (y) is the action of a single fermion, then dynamical fermions in

NSPT can be included thanks to a new term in the drift, as shown in Refs. [17, 31]: the
determinant arising from Nf degenerate fermions can be rewritten as

det(M)Nf = exp (Nf Tr lnM) (21)

and can be taken into account by adding �Nf Tr lnM to the gauge action. From the Lie
derivative of the additional term and recalling that a rescaled time step ⌧ = ✏/� is used
in the Euler update, we obtain the new contribution
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to be added to the pure gauge drift. It is important to note that the coefficient of iT a

is purely real because the Wilson operator is �5-Hermitian and the staggered operator is
antihermitian: this is consistent with the drift being an element of the algebra. The trace
can be evaluated stochastically: Eq. (22) is replaced by
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thanks to the introduction of a new complex Gaussian noise ⇠ satisfying
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3
. (24)

The real part must be enforced, otherwise the dynamics would lead the links out of
the group since the drift would be guaranteed to be in the algebra only on average.
In NSPT, the Dirac operator inherits a formal perturbative expansion from the links,

3
Obviously ⇠ does not have any Dirac structure in the staggered case. The noise can be built from

the independent generation of real and imaginary part with zero mean and variance 1/2.
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critical mass, which is compatible with zero. Notation as in Figure 1.
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2 4.32(3) 4.293(1) [34, 35]
3 1.21(1) · 101 1.178(5) · 101 [36, 37]
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5 1.7(2) · 102 -
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7 2(1) · 103 -

Table 1: Critical masses for Nc = 3, Nf = 2 Wilson fermions determined with NSPT
on a 164 lattice with twisted boundary condition on a plane, compared with the known
values in infinite volume. The n = 1 coefficient has been determined analytically in
twisted lattice perturbation theory; many digits have been used in the actual simulation.
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We experienced some NUMERICAL INSTABILITIES

Very high orders for toy models are indeed known to have numerical instabilities.

Not yet found in (quenched) high orders NSOT simulations

Now we found them with fermions in…
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Figure 5: In the left panel, signal samples of the coefficient p39 taken from a 84 lattice
with TBC in three directions. The simulation with Wilson fermions has been performed
for illustrative reasons and the bare mass has been set to zero. In the right panel, signal
samples of the coefficient p36 with TBC on a plane and staggered fermions. In both
panels ⌧ = 0.005 and the origin of t is set arbitrarily. It is evident that in the quenched
case we could extract the plaquette coefficient even from a small volume, while fermions
introduce instabilities that can be mitigated by considering bigger lattices. While we have
chosen these two particular examples for illustration purposes, the appearance of spikes
is a general phenomenon that we observe for orders approximately � 30 on the volumes
under study.

is volume independent [45]. The infinite-volume value of p1 can be obtained adding to
the pure gauge contribution [46],

p1,g = 4N2
c
(N2

c
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◆
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the contribution due to staggered fermions [47],

p1,f = �1.2258(7) · 10�3 (N2
c
� 1)2NcNf . (50)

For the specific case Nc = 3, Nf = 2, we find p1 = 1.10312(7). We also computed the
fermion contribution to p1 in twisted lattice perturbation theory. 7 The finite-volume
result is p1 = 1.10317022 . . . at L = 8, therefore we expect finite volume effects to be
negligible in the lattices we are employing. In particular, we improved the determination
of p1,f in Eq. (50) using the finite volume calculations at L = 16 as the central value, and
the variation between L = 16 and L = 14 as an estimate of its uncertainty, leading to
p1,f = �0.0587909(3)Nf for Nc = 3, and hence p1 = 1.1032139(6) for Nf = 2. Trying
to extract p0 and p1 from our data at L = 48, we realise that even ⌧

2 effects in the
extrapolation must be considered because of the very high precision of the measurements.
For these two coefficients, a dedicated study at has been performed, which required new
simulations at time steps ⌧ = 0.004 and ⌧ = 0.0065; the agreement with the analytic
calculations is found to be excellent, see Figure 6.

7
We are grateful to M. García Pérez and A. González-Arroyo for providing us the gluon contribution

in finite volume.
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7.1 Growth of the coefficients

From the analysis in Refs. [9, 13], it is possible to predict the asymptotic behaviour of the
ratio
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where the use of the Wilson action with Nc = 3 is assumed. This relation can be derived
under the hypothesis that the plaquette series has a fixed-sign factorial divergence and
the corresponding singularity in the Borel plane is the source of an ambiguity that can
be absorbed by redefining the condensate. It is not possible to go further in the 1/n
expansion since the �2 coefficient is scheme-dependent and it is not known for staggered
fermions. In Figure 9 and Figure 10, the comparison between Eq. (58) and our data at
different volumes is shown.

How finite-volume effects influence the values of the coefficients pn has already been
studied in the literature [55, 13]. From a standard renormalon-based analysis, the value
of the loop momenta that contribute the most to pn decreases exponentially with n. Since
the finite size of the lattice provides a natural infrared cutoff, we expect finite-volume
effects to be larger at larger perturbative orders. The dependence of pn on the lattice
size N can be modelled with a finite-volume OPE, exploiting the separation of scales
a
�1

� (Na)�1: the leading correction is
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where ↵((Na)�1) must be expressed in terms of the coupling � at the scale a
�1 using

Eq. (52), and CG(�) = 1 +
P

n=1 cn�
�(n+1) is the Wilson coefficient. We do not attempt

to take into account 1/N4 effects, as our data do not allow to perform a reliable combined
fit. In particular, the presence of the numerical instabilities we discussed in Sect. 6.2
prevents us from collecting data at smaller volumes, that would be needed to stabilise
such extrapolation. In fact, no significant finite-volume effects are visible where they
would be expected the most, i.e. at larger n. This is shown in the two examples of
Figure 11. We can only observe that the asymptotic behaviour of Eq. (58) is compatible
with our measurements, and ascertain the existence of an inversion point when resumming
the perturbative series, as explained in Sect. 7.3. We emphasise that the discrepancies
in the determination of the pn from different volumes must be interpreted as part of
our systematic uncertainty, being this an exploratory study. A precise assessment of the
finite-volume effects must be sought for a precise determination of the gluon condensate,
when dedicated nonperturbative Monte Carlo simulation will be available in the future.

7.2 Monte Carlo plaquette

Nonperturbative values for the SU(3) plaquette with Nf = 2 (rooted) staggered fermions
can be found in Ref. [47], where data are collected from Refs. [56, 57]. For each value of
the bare coupling, the physical scale is provided via the Sommer parameter r0 [58]. The
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Figure 9: Ratio pn/(npn�1) extracted from our data at L = 24, 28, 32, 48. In order to
be visible, points referring to different volumes are placed side by side. The leading order
(LO) prediction refers to the n ! 1 limit, while the next-to-leading order (NLO) one
includes the first 1/n correction.
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Figure 10: Same as Figure 9, but the region at large n is enlarged.

data are given for several values of the fermion bare mass, and need to be extrapolated
to the chiral limit for our purposes. A reasonable assumption (for example adopted and
verified also in Ref. [59] for the ratio r0/a) is that the plaquette and the ratio r0/a have a
polynomial behaviour at small masses. We performed fits with linear to cubic polynomials
and varied the fit ranges to exclude points at larger values of the masses, but in many cases
the fits did not return a satisfactory description of the data with sensible values of �2

/dof.
Because we are using results from past simulations, it is difficult to track accurately the
systematic errors in the data. For this reason, we decided to choose the fit with smaller
�
2
/dof among those we tried and if �2

/dof > 1 the errors in the data were rescaled by a
common factor in order to have a reduced chi-squared equal to 1. The fits resulting from
this approach are shown in Figure 12; the extrapolated values for plaquettes and r0/a are
in Table 4. Another approach consists in considering the average between the largest and

29

Not (YET) ready to full control FINITE SIZE EFFECTS, but …

0 5 10 15 20 25 30 35
n

0.2−

0

0.2

0.4

0.6

0.8

1

1.2

 )
n-

1
/(n

p
np

L=24
L=28
L=32
L=48
LO
NLO

Figure 9: Ratio pn/(npn�1) extracted from our data at L = 24, 28, 32, 48. In order to
be visible, points referring to different volumes are placed side by side. The leading order
(LO) prediction refers to the n ! 1 limit, while the next-to-leading order (NLO) one
includes the first 1/n correction.

26 27 28 29 30 31 32 33 34 35
n

0.10−

0.05−

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 )
n-

1
/(n

p
np

L=24
L=28
L=32
L=48
LO
NLO

Figure 10: Same as Figure 9, but the region at large n is enlarged.

data are given for several values of the fermion bare mass, and need to be extrapolated
to the chiral limit for our purposes. A reasonable assumption (for example adopted and
verified also in Ref. [59] for the ratio r0/a) is that the plaquette and the ratio r0/a have a
polynomial behaviour at small masses. We performed fits with linear to cubic polynomials
and varied the fit ranges to exclude points at larger values of the masses, but in many cases
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fit. In particular, the presence of the numerical instabilities we discussed in Sect. 6.2
prevents us from collecting data at smaller volumes, that would be needed to stabilise
such extrapolation. In fact, no significant finite-volume effects are visible where they
would be expected the most, i.e. at larger n. This is shown in the two examples of
Figure 11. We can only observe that the asymptotic behaviour of Eq. (58) is compatible
with our measurements, and ascertain the existence of an inversion point when resumming
the perturbative series, as explained in Sect. 7.3. We emphasise that the discrepancies
in the determination of the pn from different volumes must be interpreted as part of
our systematic uncertainty, being this an exploratory study. A precise assessment of the
finite-volume effects must be sought for a precise determination of the gluon condensate,
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You can now sum the series in a given prescription.

Notice that this implies that the ambiguity is absorbed in the definition of the GC in the OPE!

A natural prescription is summing UP TO THE MINIMAL TERM (inversion point) 
(remember: finite volume still a systematic error at this stage)
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Figure 11: Coefficients p31 and p35 drawn as a function of the volume. No significant
finite-volume effects are observed at our level of precision.

� h1� P iMC pol. ord. r0/a pol. ord.
5.3 0.4951(4) 2 2.11(7) 3
5.35 0.5152(9) 3 2.47(3) 1
5.415 0.5350(3) 3 3.30(3) 3
5.5 0.55128(3) 1 4.17(2) 1
5.6 0.56526(5) 1 5.14(1) 1

Table 4: Results of the chiral extrapolation for the plaquette and the scale. The order
of the polynomials used in the fits is indicated.

smallest extrapolated values among all the different fits we tried (without rescaled errors
and with reduced chi-squared smaller than some reasonable threshold) and assigning an
error equal to the sum in quadrature between the largest error from the fits and half the
difference between the largest and smallest extrapolated values. In this way we obtain
results compatible (both for central values and errors) with those in Table 4, confirming
that the chiral extrapolation is sound and the error bars conservative enough. Note that
in this paper we do not aim at a precise determination of the condensate, and therefore
we can be satisfied with an inflated error on the Monte Carlo data points.

7.3 Determination of the minimal term

The perturbative contribution to the plaquette can be defined by the sum of the series
up to the minimal term. The determination of the minimal term, and the summation of
the series are performed separately for each volume. We choose the prescription adopted
in Ref. [14], i.e. we define the minimal term to be the value n̄ that minimises the product
pn�

�(n+1) and resum the series,

S(�)P =
n̄X

n=0

pn�
�(n+1)

. (60)
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Figure 12: Chiral extrapolation of the nonperturbative plaquette (left panel) and the
ratio r0/a (right panel) at five different values of �. The grey points are available from [47]
but are excluded because of our fit procedure. In most cases the error bar is smaller than
the symbol. The orders of the polynomials used in the fits are in Table 4.

Our results for all combinations of L and � are summarised in Table 5. The order n̄ at
which the series starts to diverge depends only on the central value of the coefficients pn

and not on their errors: in order to check that the inversion point determined by our
procedure is stable, we bootstrapped the procedure by generating an ensemble of sets of
coefficients {pn}. For each set, the coefficients pn are drawn from a Gaussian probability,
whose mean and covariance are taken from the fit procedure described in Sect. 6. We
then determine n̄ for each of these sets. The inversion point turns out to be stable, as
shown in Figure 13 for a the case L = 48, and � = 5.3. This particular case is shown for
illustration purposes, and the same features are seen in all other combinations of L and
�.

The gluon condensate is then determined from
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The coefficient �2 is not universal, and is actually unknown for the discretisation used in
this work. Not knowing �2 prevents us from going further in the expansion of CG; since
the correction due to the Wilson coefficient falls between 5% and 6% for the values of �
considered, a 6% systematic uncertainty is added in quadrature after the subtraction.

The result of the subtraction is shown in the left panel of Figure 14, for the largest volume.
Since only a few values of � is available, it is hard to assess unambiguously the presence
of a plateau. We decided to discard from the analysis the two values of the coupling
corresponding to the coarser lattices, and define our best estimate of the condensate as
the weighted average of the values obtained at the remaining �s. Our final results are
summarised in the first column of Table 6.
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Figure 13: Normalised distributions, over 105 bootstrap samples, of n̄ (left panel) and
SP (�) (right panel) for L = 48, � = 5.3.

In order to put the choice of fit range on more solid ground, we studied the scaling of
a
4
hOGi as a function of a

4, as shown in Figure 14. The slope of a linear fit of the
three finest lattice spacings should give a determination of the condensate compatible
with the value extracted from the weighted average. The spread between these two
determinations and among the different volumes gives an idea of the magnitude of the
systematic uncertainties involved. We also tried to include in the analysis all the available
values of � and add a a

6 correction, in the attempt to model the deviations at large values
of the coupling; this procedure gives again consistent results (despite a larger �

2).

Truncating the sum up to the minimal term is one of the possible prescriptions to define the
sum of a divergent series. The intrinsic ambiguity associated to SP (�) can be defined as the
imaginary part of the Borel integral, which at leading order in 1/n is

p
⇡n̄/2 pn̄ ��n̄�1 [4].

In Table 7, the ambiguity associated to the gluon condensate
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is summarised 9.

8 Conclusions

We used NSPT to perform for the first time large-order computations in lattice gauge
theories coupled to massless fermions. We adopted twisted boundary conditions for the
gauge fields to remove the zero-momentum mode. Since our fermions are in the fun-
damental representation, we consistently provided them with a smell degree of freedom.
Both Wilson and (for the first time in NSPT) staggered fermions have been implemented.
While for the former we performed an exploratory study of the critical mass up to order

9
Our definition of the ambiguity differs from the one in Ref. [13] by a factor

p
⇡/2.

32

� L SP (�) n̄ minimal term

5.3

24 0.47515(9) 25 3.70 · 10�4

28 0.4767(1) 30 2.52 · 10�4

32 0.4775(4) 35 5.23 · 10�5

48 0.47665(7) 33 1.97 · 10�4

5.35

24 0.46718(8) 25 2.90 · 10�4

28 0.46843(9) 30 1.88 · 10�4

32 0.4690(3) 35 3.73 · 10�5

48 0.46826(5) 33 1.43 · 10�4

5.415

24 0.4587(1) 33 1.06 · 10�4

28 0.45844(7) 30 1.29 · 10�4

32 0.4588(2) 35 2.42 · 10�5

48 0.45822(4) 33 9.51 · 10�5

5.5

24 0.44663(9) 33 6.22 · 10�5

28 0.44651(6) 30 7.98 · 10�5

32 0.4466(1) 35 1.38 · 10�5

48 0.44627(4) 33 5.60 · 10�5

5.6

24 0.43384(6) 34 3.32 · 10�5

28 0.43380(5) 30 4.57 · 10�5

32 0.43383(6) 35 7.21 · 10�6

48 0.43357(3) 33 3.03 · 10�5

Table 5: Summation up to the minimal term of the perturbative series of the plaquette.
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Figure 14: In the left panel, determination of the gluon condensate from Eq. (61). The
line corresponds to the weighed average of the three largest values of �. In the right panel,
scaling of the condensate with a

4 (solid red line, grey points are excluded), with possibly
a a

6 correction (dashed blue line, grey points are included). Both panels refer to L = 48.
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CONCLUSIONS (and PROSPECTS!) 

- NSPT can do a good job looking into renormalons, even including fermions 

- Now new prospects in from of us (in progress):

       * try different fermionic representations

       * and different color/flavor content

       * with the idea that (possible quasi) conformal window should 
         CHANGE THE PICTURE! (an alternative perspective on BSM candidates?) 


