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NUMERICAL SET-UP

Simulation details

• Symanzik gauge action

• 3 × stout smeared Möbius DW fermions

• L4 volumes with L = 8, 10, 12, 14, 16, 20, 24, 28, and 32

•Antiperiodic BC in all four directions

•mf = 0, Ls grows from 12 to 24 keeping mres < 10−5

• Grid[9] code fully optimized for KNL

Advantages of Domain Wall Fermions

• Preserves full SU(N)×SU(N) flavor symmetry;
even at finite gauge coupling

• Effective gauge term generated by fermions and smearing
is very small, hence

– reduced cut-off effects

– increased region of perturbative improvement

Gradient flow coupling

• Fully O(a2) Symanzik improved setup

– Symanzik (S) gauge action

– Zeuthen (Z) flow [5]

– Symanzik (S) operator

• Consistency checked by comparing different gradient flows
Wilson (W), Symanzik (S), Zeuthen (Z) [5]
and/or operators
Wilson-plaquette (W), Symanzik (S) and clover (C)

• Include tree-level normalization (tln) [4]

Notation

nZS refers to data obtained with tree-level normalization using
Zeuthen flow (Z) and the Symanzik operator (S)

Perturbative improvement

Reduce finite volume cut-off corrections by applying tree-level
normalization [4]
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•Red band: 1/L2→ 0 continuum limit of ZS without tln

•Gray band: 1/L2 → 0 continuum limit of nZS with tln
(Fig. 1)

• Both continuum limits are consistent

• nZS has smaller cut-off effects
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• Effect of tnl is even larger - compare to Fig. 5

•Red band: 1/L2→ 0 continuum limit of nSC with tln

•Gray band: 1/L2→ 0 continuum limit of nZS (Fig. 1)

• 1/L2→ 0 continuum limit of SC is blue band in Fig. 7

•Again all continuum limits are consistent

GRADIENT FLOW STEP SCALING

Universality

• The Gradient Flow (GF) renormalized step scaling function in the L→∞
continuum limit is independent of the lattice discretization

•Disagreement between results using the same renormalization scheme (fixed c) may

– indicate different renormalized trajectories/fixed points or

– be due to incorrect extrapolations to the continuum limit

•Agreement is necessary for the entire function, not only at the fixed point [1]

Gradient Flow step scaling function

We investigate the finite volume step scaling function [2,3]

βcs(g
2
c ;L) =

g2
c(sL)− g2(L)

log(s2)
,

with s = 2, using tree-level normalized GF coupling

g2
c(L) =

128π2

3(N2
c − 1)

1

C(c, L)
t2〈E(t)〉

• The flow time is set by the volume,
√

8t = cL

•C(c, L) is the tree-level normalization (tln) factor introduced in [4]

Nonperturbative results
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Summary

• Full O(a2) improved setup [5] has small volume dependence

• Linear (gray) and quadratic (blue) 1/L2 extrapolations are consistent for nZS

•Other discretizations are consistent, unless their cut-off effects are very large (SC)

•DW simulations are very different from staggered where the strong bare gauge
coupling leads to coarse gauge fields, destroying perturbative improvements

• Staggered result [6,7] are inconsistent with DW over a wide g2
c range

Comments and Outlook

• Step scaling functions for both c = 0.25 and 0.3 are at or below 4-loop PT

• Such a behavior is familiar from 2+1 flavors [8]

• Both c = 0.3 and 0.25 suggest an IRFP for Nf = 12 around g2
c ∼ 6; additional

simulations at stronger bare coupling are needed for verification

•Our findings for the Nf = 10 step-scaling function [1] show a similar robustness

•We do not address here the controversy between Refs. [6] and [7]. Our DW simula-
tions are at weaker coupling where different staggered simulations appear consistent.
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ANALYSIS

Use alternative flow, operator

• nZS data show very small volume dependence (Fig. 1)

• SC data even with tln have larger cut-off effects (Fig. 4)

• SC data without tln are much worse (Fig. 5)

•WW data improve significantly with tln (Fig. 6)

•We do not observe the breakdown of tln found in [10]
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Nevertheless continuum limits do agree
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L→∞ extrapolations

• Interpolate β2(L) vs g2 with a low(3rd) order polynomial

•Alternatively, interpolate g2(L) vs β to predict β2(L);
both approaches are consistent

• Extrapolate in 1/L2 using the three largest volume pairs

•Alternatively, include 1/L4 and use all 5 volume pairs;
both approaches are consistent

•Different discretization agree, too
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• L→∞ extrapolations of data at c = 0.3

• Blue: quadratic extrapolations, all 5 volume pairs, nZS

•Red: linear extrapolations, 3 largest volume pairs, nZS

•Green: linear extrapolations, 3 largest volume pairs, SC
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