

Non-perturbative renormalization of operators in near-conformal systems using gradient flow

Anna Hasenfratz University of Colorado Boulder

with Andrea Carosso and Ethan Neil

- 1) Is gradient flow a renormalization group transformation?
- 2) Can we use GF to calculate anomalous dimensions?

- 1) Is gradient flow a renormalization group transformation?
- 2) Can we use GF to calculate anomalous dimensions?

- 1) It is not, but it can be tricked:
 - normalize correctly
 - calculate appropriate quantities
- → GF acts like RG blocking with continuous scale change

2) Pilot study: N_f=12 flavor SU(3), determine anomalous dimension of mass and baryon operators

next talk: Andrea Carosso, Φ⁴ model

Wilson RG in a nutshell:

Step 1: Introduce "blocked" fields and integrate out the original ones

Step 2: rescale $\Lambda_{\text{cutoff}} \rightarrow \Lambda_{\text{cutoff}}/\text{b}$ (or a \rightarrow b a)

not terribly almost integrated completely integrated

Credit: Wilson-Kogut 1973, Ch.11

- The partition function is unchanged,
- The action changes $S(\phi, g_0) \rightarrow S(\phi, g')$
- The RG flow runs along the renormalized trajectory either to the ξ=0 trivial or ξ=∞ UVFP

Correlation function of $\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m}$

An RG transformation of scale change b:

$$S(\phi,g) \rightarrow S(\phi,g')$$

$$\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m} = b^{-2\Delta_0} \langle \mathcal{O}(0)\mathcal{O}(x_b = x_0/b)\rangle_{g',m'}$$

$$\Delta_o = d_o + \gamma_o$$
 scaling dimension and $x_0 >> b$

We do not need to simulate with $S(\phi, g')$

— just use the principle of MCRG

Monte Carlo Renormalization Group

Swendsen PhysRevLett.42.859,1979

RG transformed expectation values can be calculated without explicit knowledge of the blocked action

$$\langle \mathcal{O}(0)\mathcal{O}(x_b)\rangle_{g',m'} = \langle \mathcal{O}_b(0)\mathcal{O}_b(x_b)\rangle_{g,m}$$

 $\mathcal{O}_b = \mathcal{O}(\Phi_b)$ is the operator of the blocked fields

Gradient flow could be "blocking"

Luscher Comm.Math Phys 293, 899 (2010)

GF is a continuous smoothing that removes short distance fluctuations

Gauge flow:
$$\partial_t V_t = -(\partial S_w[V_t])V_t$$
, $V_0 = U$

Fermions evolve on the gauge background:

$$\partial_t \chi_t = \Delta[V_t] \chi_t, \quad \chi_0 = \psi$$

Luscher JHEP 04 123 (2013)

(The flow action does not have to match the model)

GF misses two important attributes of an RG transformation:

- there is no rescaling $\Lambda_{cut} \to \Lambda_{cut}$ /b or coarse graining
- linear transformation does not have the correct normalization (wave function renormalization or $Z_{_{o}} = b^{-\eta/2}$)

Both issues can be solved

Gradient flow could be "blocking"

Luscher Comm.Math Phys 293, 899 (2010)

GF is a continuous smoothing that removes short distance fluctuations

Gauge flow:
$$\partial_t V_t = -(\partial S_w[V_t])V_t$$
, $V_0 = U$

Fermions evolve on the gauge background:

$$\partial_t \chi_t = \Delta[V_t] \chi_t, \quad \chi_0 = \psi$$

Luscher JHEP 04 123 (2013)

(The flow action does not have to match the model)

GF misses two important attributes of an RG transformation:

- there is no rescaling $\Lambda_{cut} \to \Lambda_{cut}$ /b or coarse graining
- linear transformation does not have the correct normalization (wave function renormalization or $Z_{_\phi} = b^{-\eta/2}$)

Both issues can be solved

GF does not flow to FP

GF vs RG

Original Φ fields

Flowed Φ_t fields

RG transformation (b=2)

- gradient flow : $\phi_t(\phi)$
- blocked fields: $\Phi_b = Z_b \phi_t = b^{-\eta/2} \phi_t$
- Coarse grain and rescale with $b: x \rightarrow x/b$

GF

GF vs RG

Original Φ fields

Flowed Φ_t fields

RG transformation (b=2)

– gradient flow : $\phi_t(\phi)$

- blocked fields: $\Phi_b = Z_b \phi_t = b^{-\eta/2} \phi_t$

- Coarse grain and rescale with $b: x \rightarrow x/b$

GF

GF vs RG

2-point functions do not care about decimation:

$$\langle O_b(\Phi_b(0))O_b(\Phi_b(x_b))\rangle_{g,m} = b^{-\eta}\langle O(\phi_t(0))O(\phi_t(x_b))\rangle_{g,m}$$

At the level of expectation values GF is a proper RG transformation

GF as RG

Put it together

$$\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m} = b^{-2\Delta_0} \langle \mathcal{O}(0)\mathcal{O}(x_b = x_0/b)\rangle_{g',m'}$$

RG

$$\langle \mathcal{O}(0)\mathcal{O}(x_b)\rangle_{g',m'} = \langle \mathcal{O}_b(0)\mathcal{O}_b(x_b)\rangle_{g,m}$$

MCRG

$$\langle O_b(\Phi_b(0))O_b(\Phi_b(x_b))\rangle_{g,m} = b^{-\eta}\langle O(\phi_t(0))O(\phi_t(x_b))\rangle_{g,m}$$

GF

GF as RG

Put it together

$$\langle \mathcal{O}(0)\mathcal{O}(x_0)\rangle_{g,m} = b^{-2\Delta_0} \langle \mathcal{O}(0)\mathcal{O}(x_b = x_0/b)\rangle_{g',m'}$$

RG

$$\langle \mathcal{O}(0)\mathcal{O}(x_b)\rangle_{g',m'} = \langle \mathcal{O}_b(0)\mathcal{O}_b(x_b)\rangle_{g,m}$$

MCRG

$$\langle O_b(\Phi_b(0))O_b(\Phi_b(x_b))\rangle_{g,m} = b^{-\eta}\langle O(\phi_t(0))O(\phi_t(x_b))\rangle_{g,m}$$

GF

Ratio of flowed & unplowed correlators predict the anomalous dimension

$$\frac{\langle O_t(0)O_t(x_0)\rangle}{\langle O(0)O(x_0)\rangle} = b^{2\Delta_0 - 2n_0\Delta_\phi}$$

$$X_{0} \gg b$$

$$\Delta_{o} = d_{o} + \gamma_{o}$$

$$\Delta_{\phi} = d_{\phi} + \eta / 2$$

Anomalous dimensions

Calculate η by an operator that does not have an anomalous dimension:

— vector or axial charge (A(x))

The super-ratio

$$R(t,x_0) = \frac{\langle O_t(0)O_t(x_0)\rangle}{\langle O(0)O(x_0)\rangle} \left(\frac{\langle A(0)A(x_0)\rangle}{\langle A_t(0)A_t(x_0)\rangle}\right)^{n_0/n_A} = b^{\gamma_0}$$

independent of $x_0 >> b$ and predicts γ

Anomalous dimensions

Calculate η by an operator that does not have an anomalous dimension:

— vector or axial charge (A(x))

The super-ratio

$$R(t,x_0) = \frac{\langle O_t(0)O_t(x_0)\rangle}{\langle O(0)O(x_0)\rangle} \left(\frac{\langle A(0)A(x_0)\rangle}{\langle A_t(0)A_t(x_0)\rangle}\right)^{n_0/n_A} = b^{\gamma_0}$$

independent of $x_0 >> b$ and predicts γ

- t and b are still independent!
 - Natural choice: b² ~ t
- it is advantageous to flow only the source, not the sink
- γ is universal at the FP only : set fermion mass to zero
- t has to be large enough, and

Anomalous dimensions

Calculate η by an operator that does not have an anomalous dimension:

— vector or axial charge (A(x))

The super-ratio

$$R(t,x_0) = \frac{\langle O_t(0)O_t(x_0)\rangle}{\langle O(0)O(x_0)\rangle} \left(\frac{\langle A(0)A(x_0)\rangle}{\langle A_t(0)A_t(x_0)\rangle}\right)^{n_0/n_A} = b^{\gamma_0/2} \propto t^{\gamma_0}$$

independent of $x_0 \gg$ b and predicts γ

- t and b are still independent!
 - Natural choice: b² ~ t
- it is advantageous to flow only the source, not the sink
- γ is universal at the FP only : set fermion mass to zero
- t has to be large enough, and $x_0 \gg \sqrt{8t}$

Pilot study: N_f=12

Low statistics study with staggered fermions

- 24³x48, 32³x64 volumes, m=0.0025
- mass anomalous dimension γ_m =0.23-0.25 from perturbation theory, FSS numerical studies, Dirac eigenmodes
- the gauge coupling walks very slow substantial scaling violation effects are expected
- baryon and tensor anomalous dimensions would be interesting where no non-perturbative prediction exists

Ratio of ratios - pseudo scalar

$$\mathcal{R}_{t}^{O}(x_{0}) = \frac{\langle O(0)O_{t}(x_{0})\rangle}{\langle O(0)O(x_{0})\rangle} \left(\frac{\langle A(0)A(x_{0})\rangle}{\langle A(0)A_{t}(x_{0})\rangle}\right)^{n_{0}/n_{A}} = t^{\gamma_{0}}$$

has no x_0 dependence if $x_0 >> b$

pseudoscalar

Oscillation is due to operator overlap $\propto 2\sqrt{8t}$ —> limits max t

flow time dependence of the plateau gives anomalous dimension

Pseudo scalar

Flow time dependence indicates slowly running gauge coupling

Finite volume corrections

$$R(g',t,L) = s^{-\gamma_0} R(g,s^2t,sL)$$

$$R(g,s^2t,s^2L) = R(g,s^2t,sL) + s^{-\gamma_0}(R(g,t,sL) - R(g,t,L)) + \text{h.o.}$$

Pseudo scalar:

$$\gamma_m = 0.24(3), \quad t \rightarrow \infty$$

extrapolate to $t \rightarrow \infty$:

$$\gamma_m(\beta,t) = \gamma_0 + c_\beta t^{\alpha_1} + d_\beta t^{\alpha_2}$$

error: systematic + statistical result consistent with other methods

Nucleon channel

nucloon I ambda

Minimal flow time dependence, but limited x₀ range

Anomalous dimension is small $\gamma_N = 0.05(5)$ (perturbative: $\gamma_N = 0.09$)

Vector channel

vector - tensor

Oscillation pronounced but little flow time dependence

Fit as

$$\frac{A_t e^{-m1x_0} + B_t e - m2x_0}{A e^{-m1x_0} + B e - m2x_0} = \frac{A_t}{A} \frac{1 + B_t / A_t e^{-\Delta mx_0}}{1 + B / A e^{-\Delta mx_0}}$$

2 anomalous dimensions, from A_t/A and B_t/B both vanish within errors

Summary & outlook

- GF can describe an RG transformation
 - can aid our understanding of GF away from perturbation theory
 - determine anomalous dimension in conformal system (probably most promising method to get nucleon anomalous dim.)
 - determine renormalization factors in QCD (needs work)
- Finite volume effects deserve more attention
- Staggered fermions are a poor choice here (oscillations):
 DW is more promising
- Anyone with existing conformal configurations can try the method (but need massless or nearly massless configs)
- Beyond BSM:
 - Z factors in QCD need perturbative matching
 - 3D O(n) model: might not compete with FSS but can predict anomalous dimension of irrelevant operators

(A. Carosso, next talk)

