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• This report focuses on T≃220 MeV


• two lattice spacings  (last year)


• finer lattice:  one volume (last year) → three volumes



Method

• DWF ensemble → reweighted to overlap


• Möbius DWF: almost exact chiral symmetry: mres = 0.05(3) MeV  (β=4.3, Ls=16)
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χt(m)   T=~220 MeV   discretization effect
comparing 1/a=1.7 GeV and 1/a=2.6 GeV;    ( (3.6fm)3 and (2.4fm)3 )

• OV-OV:  better scaling

• GL-DW: large scaling violation   for smaller m

• OV-OV:  χt = 0    (within error)  for 0 ≤ m ≲ 10 MeV
• GL-DW: χt > 0,    but, may well decrease as a

➡ (consistent with OV-OV with large error of OV-OV)
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χt(m)   T=220 MeV   a2 scaling: m=6.6 MeV

continuum scaling in 1st region

• m=6.6 MeV

• vanishing towards continuum limit

• caveat: physical volume is different → needs further invest.
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χt(m)   T=~220 MeV, 323x12
1/a=2.6 GeV

suggesting 2 regions

1: χt  is very small (may vanish in a→0): 0 ≤ m ≲ 10 MeV

     (→ consistent w/ Aoki-Fukaya-Tanigchi for U(1)A symm.)

2: sudden growth of χt                       : 10 MeV ≲ m


• physical ud mass point:  m≃4 MeV
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323 m=2.6 MeV history and histogram
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resolution of susceptibility (ex: m=2.6 MeV)

null measurement of topological excitation after reweighting

• does not readily mean χt=0:   


(this case <Q2>=4(4) x10-6 ↔ 6(3) x10-3 @m=13MeV)

• there must be a resolution of χt under given statistics


• [resolution of <Q2>] = 1/Neff

• shall take the “statistical error” of <Q2> = max(Δ<Q2>, 1/Neff)

Effective number of statistics

• decreases with reweighting

• Neff=Nconf <R>/Rmax

• Nconf=1326 → Neff = 32
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Results of χt(m)  at T=220 MeV; multiple volume
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Results of χt(m)  at T=220 MeV; multiple volume

• Statistics in trajectory 
         ~30k, 30k, 10k
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• Let’s look at the histogram of Q



summary of histogram: T=220 MeV,
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summary of histogram: T=220 MeV,
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Results of χt(m)  at T=220 MeV; multiple volume
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• V dependence at m=10 MeV is strange 
• Low statistics for 483               → not really conclusive
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• decrease as V  at m=13 MeV 
• but,   also low statistics for 483 → not really conclusive



competing scenarios for 
χt  and  Δπ-δ (UA(1) oder parameter) @ T=220 MeV

• KY scenario [Kanazawa, Yamamoto 2016]

• Δπ-δ: including zero mode cont. is proper

• Δπ-δ = const >0

• Δπ-δ ≃ 8 V fA2 m2     for Q=0 sector  (for  2V fAm2 < 1)


• Δπ-δ @ lightest point only from Q=0 

• χt = 2 fA m2

• tension at m≥10 MeV   χt  sudden growth
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χt  and  Δπ-δ (UA(1) oder parameter) @ T=220 MeV
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competing scenarios with multiple volumes for 
χt  given  Δπ-δ (UA(1) oder parameter) @ T=220 MeV

• AFK scenario: χt= 0   for 0<m<mc

• KY scenario:   χt= 2 fA m2

• There are no strong tensions

• Neither scenario is excluded
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Summary and Outlook



Summary and Outlook

• χt investigated w/ unitary overlap fermion through reweighting from JLQCD DWF
• focus on T=220 MeV and Nt=12  (1/a = 2.64 GeV): ** still preliminary **
• 323 lattice: phase transition like behavior at m≃10 MeV (last year)

• 243 & 483 are newly studied
• in m≃10 MeV region, volume dependence is not conclusive

• likely due to poor statistics of 483 lattices
• in  V→∞ limit one cannot  eliminate either

χtop= 0   for 0<m<mc    ||    χtop= 2 fA m2

• significant improvement of the statistics is required
• determinant breakup of reweighting factor tested (sometimes works)

• lower temperature may be easier  (χtop increases → easier topology sampling) 



Thank you very much for your attention !



summary of histogram: T=220 MeV,
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summary of histogram: T=220 MeV,
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summary of histogram: T=220 MeV,
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Implication of χt(mf)=0 for 0 < mf < mc

• axion cosmology scenario may fail for U(1)A restoration 
due to vanishing / suppressed topological susceptibility 

• χt |m=0 = 0  & dnχt / dmn|m=0 = 0       Aoki-Fukaya-Tanigchi 
➡ χt = 0   for  small non-zero m      OR
➡ exponential decay for T>Tc

• axion mass and decay constant:   
➡ axion window can possibly be closed  


Kitano-Yamada JHEP [1506.00370] 
• see also for θ=π  QCD non-standard case  with rich implications 

 Di Vecchia et al. JHEP [1709.00731]  
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χt above T = 2 Tc or even 1.5 Tc depending on the lattice volume, which immediately

indicates the difficulty in dynamical simulations. Even if much faster computers were used,

this upper bound will not change significantly. Thus, to estimate the T dependence of χt

at O(10Tc), we have to make a long extrapolation using those obtained in such a rather

limited range of T . To push the limit upward as high as possible, it is crucial to explore

the HMC parameters or improve the algorithm.

Inspired by refs. [36, 37], we tried, as an attempt, to enhance the number of configu-

rations with nonzero Q by inserting

X = det

(

H2
W + µ2

H2
W + ϵ2

)Nφ

, (3.1)

to the path integral, where Nφ is a positive integer. Then, χt is calculated through

χt =
⟨(Q2/V )XX−1⟩

⟨XX−1⟩
=

⟨(Q2/V )X−1⟩X
⟨X−1⟩X

, (3.2)

where ⟨· · · ⟩X denotes the average over the configurations generated with the extra reweight-

ing factor X. For µ > ϵ, the insertion of X enhances the eigenvalue density in the small

eigenvalue region, whereas eigenmodes with eigenvalues λ ≫ µ are left untouched. Since,

when the topology changes, the smallest eigenvalue of HW passes through zero, the above

factor is expected to increase such opportunities. However, after we performed some trial

calculations, we realized that this method does not always work and the fine tuning of µ,

ϵ and Nφ are required. Further investigations to improve the situation is in progress.

4 Effects of dynamical quarks

Let us discuss what would happen when we include the dynamical quarks. The naive guess

would be that χt in the Yang-Milles theory is multiplied by a factor of m
Nf
q /Λ

Nf

QCD since

χt should vanish when one of the quark masses goes to zero.

There can be more drastic possibilities. If we accept the claims of the axial U(1)

restoration in two-flavor QCD [16, 17], the O(m2
q) contributions to χt is forbidden in two-

flavor QCD. Therefore, the possibility of just multiplying by m
Nf
q /Λ

Nf

QCD is not consistent.

The results of ref. [17] even forbid contributions with any power of mq for a small mq. An

extreme possibility one can consider is

χt(T ) ∼

{

mqΛ3
QCD, T < Tc,

m2
qΛ

2
QCDe

−2c(mq)T 2/T 2
c , T > Tc,

(4.1)

with c(mq) → ∞ as mq → 0, so that χt cannot be expanded around mq = 0. Note that the

results of ref. [17] is contained as a special case of eq. (4.1). Since no unquenched result

of χt is available at high temperatures, we take c(mq) as a free parameter in the following

discussion.
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1 Introduction

It is widely believed that the instanton calculus in QCD [1] makes sense at high temper-

atures. The asymptotic freedom ensures the perturbative expansion sensible and, most

importantly, the infrared divergences from the large instanton contributions are cut-off by

the Debye length, providing finite results after the integration over the instanton size [2].

In the semi-classical instanton picture, physics becomes θ-parameter dependent by

the instanton contributions to the path integral [3]. The instanton calculus indicates that

such a dependence is proportional to the product of the quark masses, m
Nf
q and Λb

QCD,

where b is the beta-function coefficient, b = 11Nc/3 − 2Nf/3. For example, the topo-

logical susceptibility, χt = (∂2/∂θ2)Veff(θ), is proportional to m
Nf
q Λb

QCDT
4−Nf−b by the

dimensional analysis.

In the QCD axion model to solve the strong CP problem, the θ angle is promoted

to the axion field a(x)/fa, where fa is the axion decay constant [4–11]. The topological

susceptibility is directly related to the mass of the axion as χt = m2
af

2
a . Therefore, the

temperature dependence of χt discussed above represents that of the axion mass, which is

important for the calculation of the axion abundance in the Universe. In the misalignment

mechanism for the axion generation in the early Universe, the axion number density is

proportional to the axion mass at the temperature at which the axion field starts coherent

oscillations [12–14]. The instanton based estimation of the temperature dependence is

commonly used in the literature, and predicts that the axion can naturally be dark matter

of the Universe when ma ∼ 10−5 eV, whereas the astrophysical bound on ma is ma !

10−2 eV. (See, e.g., [15].) The allowed region, 10−5 eV ! ma ! 10−2 eV, is called the

“axion window.”
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a U(1)A order parameter

• symmetry in switching flavor non-singlet  pseudoscalar and 
scalar  

• order parameter: 

➡   0    for U(1)A restoration 

• as a result, screening masses for these channel will degenerate 
• not a sufficient condition for U(1)A restoration 
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We study the axial Uð1Þ symmetry at a finite temperature in two-flavor lattice QCD. Employing the
Möbius domain-wall fermions, we generate gauge configurations slightly above the critical temperature Tc

with different lattice sizes L ¼ 2–4 fm. Our action allows frequent topology tunneling while keeping good
chiral symmetry close enough to that of overlap fermions. This allows us to recover full chiral symmetry by
an overlap/domain-wall reweighting. Above the phase transition, a strong suppression of the low-lying
modes is observed in both overlap and domain-wall Dirac spectra. We, however, find a sizable violation of
the Ginsparg-Wilson relation in the Möbius domain-wall Dirac eigenmodes, which dominates the signals of
the axialUð1Þ symmetry breaking near the chiral limit. We also find that the use of the overlap fermion only
in the valence sector is dangerous since it suffers from the artifacts due to partial quenching. Reweighting the
Möbius domain-wall fermion determinant to that of the overlap fermion, we observe the axial U(1) breaking
to vanish in the chiral limit, which is stable against the changes of the lattice volume and lattice spacing.

DOI: 10.1103/PhysRevD.96.034509

I. INTRODUCTION

The action of quantum chromodynamics (QCD) with
two massless quark flavors has a global SUð2ÞL ×
SUð2ÞR ×Uð1ÞV ×Uð1ÞA symmetry. The flavor (or iso-
spin) nonsinglet part SUð2ÞL × SUð2ÞR is spontaneously
broken to the vectorlike subgroup SUð2ÞV below the
critical temperature Tc by the presence of the chiral
condensate hψ̄ψi ≠ 0. The axial Uð1ÞA symmetry is, on
the other hand, violated by anomaly. Namely, the flavor-
singlet axial current is not conserved due to the topological
charge density operator appearing in the axial Ward-
Takahashi identity. Since this anomalous Ward-Takahashi
identity is valid in any environment, theUð1ÞA symmetry is
supposed to be violated at any temperature. Taking account
of the gluonic dynamics, on the other hand, how much the
topological charge density contributes to the low-energy
physics may depend on the amount of topological activity
in the background gauge field. In fact, at a high temperature
T ≫ Tc [1], the instanton density is exponentially sup-
pressed, and the Uð1ÞA symmetry, as probed by physical
observables, would be restored.
Just above the transition temperature Tc, topological

fluctuations are not well understood theoretically, due to

nonperturbative nature of QCD dynamics, and the question
remains open about whether the Uð1ÞA symmetry is
effectively restored or not. It is related to the important
question on the order and the critical exponents of the two-
flavor QCD chiral phase transition, since the symmetry
determines the properties of the transition as discussed in
[2,3]. The fate of the Uð1ÞA symmetry is also of phenom-
enological interest, since the topological susceptibility in
the hot early Universe gives a strong constraint on the axion
dark matter scenario [18–22].
One of the possible observables for the Uð1ÞA symmetry

breaking is the difference of flavor nonsinglet meson
susceptibilities,

Δπ−δ ¼
Z

d4x½hπaðxÞπað0Þi − hδaðxÞδað0Þi%; ð1Þ

where πa ¼ ψ̄τaγ5ψ and δa ¼ ψ̄τaψ represent the isospin
triplet pseudoscalar and scalar operators, respectively.
Here, τa denotes one of the SUð2Þ generators. The
measurement of (1) is relatively easy as it does not involve
disconnected diagrams. Decomposing the quark propagator
into the eigenmodes of the Dirac operator, Δπ−δ may be

PHYSICAL REVIEW D 96, 034509 (2017)
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relation with Dirac eigenmode spectrum ρ(λ)

�hqqi = lim
m!0

Z 1

0
d�⇢(�)

2m

�2 +m2
= ⇡⇢(0)

�⇡�� =

Z 1

0
d�⇢(�)

2m2

(�2 +m2)2
!⇠ ⇢0(0)



relation with Dirac eigenmode spectrum ρ(λ)

• chiral condensate :  order parameter of  SU(2)A

• U(1)A:  

very roughly speaking
• very sensitive to the spectrum near λ=0
• overlap fermion, able to distinguish zero/nonzero modes, is ideal

�hqqi = lim
m!0

Z 1

0
d�⇢(�)

2m

�2 +m2
= ⇡⇢(0)
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Z 1

0
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2m2
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Analytic works

• Aoki-Fukaya-Taniguchi


• QCD with OV regulator


• assuming analyticity of ρ(0)


• fA → 0    : U(1)A br. parameter


• χtop= 0   for 0<m<mc

• Kanazawa-Yamamoto


• assuming fA≠ 0


• expansing free energy in m


• discussing


• contributions of topological 
sectors

• finite m and V effect

• χtop= 2 fA m2


• yields AFK results

← same assumption on ρ



Kanazawa - Yamamoto

• assuming fA≠ 0


• expansing free energy in m
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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Figure 1. Relative contributions of zero and nonzero Dirac eigenmodes to χπ − χδ as a function
of x ≡ 2V4fAm2.

where

Sz ≡
1

8fA

(
2

∞∑

Q=1

ZQ

Z

4

V4m2
Q

)
= e−2V4fAm2 [

I0(2V4fAm
2) + I1(2V4fAm

2)
]
, (3.27)

Snz = 1− Sz . (3.28)

In addition, the contribution of the Q = ±1 sectors to Sz is defined as

S±1 ≡
1

8fA

(
2
Z1

Z

4

V4m2

)
=

1

V4fAm2
e−2V4fAm2

I1(2V4fAm
2) . (3.29)

The quantities Sz, Snz and S±1 are plotted in figure 1 as functions of x ≡ 2V4fAm2.

We observe that, in a small volume or near the chiral limit (x ≪ 1), χπ − χδ is

dominated by the contribution of exact zero modes in the Q = ±1 sector, as argued

in [8, 9]. By contrast, if we take the thermodynamic limit (x ≫ 1), the contribution of

nonzero modes dominates, and the exact zero modes are completely irrelevant. This can

be understood from (3.8): since ⟨Q2⟩ ∼ V4fAm2, one naturally expects ⟨|Q|⟩ = O(
√
V4),

implying that the first term in (3.25) is suppressed in a large volume.8 On the other hand,

the second term in (3.25) tends to 8fA, which is the same value as in the full theory (3.19).

This means that the anomaly (fA ̸= 0) in the thermodynamic limit must be attributed

to nonzero Dirac eigenmodes. The Q = ±1 sector does not play a distinguished role.

Indeed, one can show for x ≫ 1 that ZQ/Z obeys a Gaussian distribution (see also [28]),

according to which ZQ/Z ∼ 1/
√
V4fAm2 for |Q| !

√
V4fAm2 and is suppressed otherwise.

Therefore, if the volume is sufficiently large with a fixed nonzero mass, all contributions to

χπ − χδ from the sectors with |Q| !
√
V4fAm2 are equally important, in contradistinction

to the finite-volume regime (x ! 1) where only the Q = ±1 sectors contribute to χπ − χδ.

To avoid confusion, we stress that the total amount of χπ − χδ is equal to 8fA irre-

spective of the value of x; the order-of-limit issue does not arise, of course, because there

8In this inspection, the positivity of the path-integral measure plays an essential role. We note that the

suppression of exact zero modes does not hold in general for negative or complex masses [28, 31, 32].
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Figure 2. The magnitude of (χπ − χδ)
∣∣
Q=0

normalized by (χπ − χδ)
∣∣
full

as a function of x =

2V4fAm2. At large volume (x ≫ 1), I1(x)/I0(x) ≃ 1− 1
2x .

is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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Figure 1. Relative contributions of zero and nonzero Dirac eigenmodes to χπ − χδ as a function
of x ≡ 2V4fAm2.

where

Sz ≡
1

8fA

(
2

∞∑

Q=1

ZQ

Z

4

V4m2
Q

)
= e−2V4fAm2 [

I0(2V4fAm
2) + I1(2V4fAm

2)
]
, (3.27)

Snz = 1− Sz . (3.28)

In addition, the contribution of the Q = ±1 sectors to Sz is defined as

S±1 ≡
1

8fA

(
2
Z1

Z

4

V4m2

)
=

1

V4fAm2
e−2V4fAm2

I1(2V4fAm
2) . (3.29)

The quantities Sz, Snz and S±1 are plotted in figure 1 as functions of x ≡ 2V4fAm2.

We observe that, in a small volume or near the chiral limit (x ≪ 1), χπ − χδ is

dominated by the contribution of exact zero modes in the Q = ±1 sector, as argued

in [8, 9]. By contrast, if we take the thermodynamic limit (x ≫ 1), the contribution of

nonzero modes dominates, and the exact zero modes are completely irrelevant. This can

be understood from (3.8): since ⟨Q2⟩ ∼ V4fAm2, one naturally expects ⟨|Q|⟩ = O(
√
V4),

implying that the first term in (3.25) is suppressed in a large volume.8 On the other hand,

the second term in (3.25) tends to 8fA, which is the same value as in the full theory (3.19).

This means that the anomaly (fA ̸= 0) in the thermodynamic limit must be attributed

to nonzero Dirac eigenmodes. The Q = ±1 sector does not play a distinguished role.

Indeed, one can show for x ≫ 1 that ZQ/Z obeys a Gaussian distribution (see also [28]),

according to which ZQ/Z ∼ 1/
√
V4fAm2 for |Q| !

√
V4fAm2 and is suppressed otherwise.

Therefore, if the volume is sufficiently large with a fixed nonzero mass, all contributions to

χπ − χδ from the sectors with |Q| !
√
V4fAm2 are equally important, in contradistinction

to the finite-volume regime (x ! 1) where only the Q = ±1 sectors contribute to χπ − χδ.

To avoid confusion, we stress that the total amount of χπ − χδ is equal to 8fA irre-

spective of the value of x; the order-of-limit issue does not arise, of course, because there

8In this inspection, the positivity of the path-integral measure plays an essential role. We note that the

suppression of exact zero modes does not hold in general for negative or complex masses [28, 31, 32].
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Figure 2. The magnitude of (χπ − χδ)
∣∣
Q=0

normalized by (χπ − χδ)
∣∣
full

as a function of x =

2V4fAm2. At large volume (x ≫ 1), I1(x)/I0(x) ≃ 1− 1
2x .

is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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Figure 1. Relative contributions of zero and nonzero Dirac eigenmodes to χπ − χδ as a function
of x ≡ 2V4fAm2.

where

Sz ≡
1

8fA

(
2

∞∑

Q=1

ZQ

Z

4

V4m2
Q

)
= e−2V4fAm2 [

I0(2V4fAm
2) + I1(2V4fAm

2)
]
, (3.27)

Snz = 1− Sz . (3.28)

In addition, the contribution of the Q = ±1 sectors to Sz is defined as

S±1 ≡
1

8fA

(
2
Z1

Z

4

V4m2

)
=

1

V4fAm2
e−2V4fAm2

I1(2V4fAm
2) . (3.29)

The quantities Sz, Snz and S±1 are plotted in figure 1 as functions of x ≡ 2V4fAm2.

We observe that, in a small volume or near the chiral limit (x ≪ 1), χπ − χδ is

dominated by the contribution of exact zero modes in the Q = ±1 sector, as argued

in [8, 9]. By contrast, if we take the thermodynamic limit (x ≫ 1), the contribution of

nonzero modes dominates, and the exact zero modes are completely irrelevant. This can

be understood from (3.8): since ⟨Q2⟩ ∼ V4fAm2, one naturally expects ⟨|Q|⟩ = O(
√
V4),

implying that the first term in (3.25) is suppressed in a large volume.8 On the other hand,

the second term in (3.25) tends to 8fA, which is the same value as in the full theory (3.19).

This means that the anomaly (fA ̸= 0) in the thermodynamic limit must be attributed

to nonzero Dirac eigenmodes. The Q = ±1 sector does not play a distinguished role.

Indeed, one can show for x ≫ 1 that ZQ/Z obeys a Gaussian distribution (see also [28]),

according to which ZQ/Z ∼ 1/
√
V4fAm2 for |Q| !

√
V4fAm2 and is suppressed otherwise.

Therefore, if the volume is sufficiently large with a fixed nonzero mass, all contributions to

χπ − χδ from the sectors with |Q| !
√
V4fAm2 are equally important, in contradistinction

to the finite-volume regime (x ! 1) where only the Q = ±1 sectors contribute to χπ − χδ.

To avoid confusion, we stress that the total amount of χπ − χδ is equal to 8fA irre-

spective of the value of x; the order-of-limit issue does not arise, of course, because there

8In this inspection, the positivity of the path-integral measure plays an essential role. We note that the

suppression of exact zero modes does not hold in general for negative or complex masses [28, 31, 32].
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Figure 2. The magnitude of (χπ − χδ)
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Q=0

normalized by (χπ − χδ)
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full

as a function of x =

2V4fAm2. At large volume (x ≫ 1), I1(x)/I0(x) ≃ 1− 1
2x .

is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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Lattice framework

• DWF ensemble → reweighted to overlap 
• Möbius DWF: almost exact chiral symmetry: 

mres = 0.05(3) MeV  (β=4.3, Ls=16) 

• Overlap:         exact chiral symmetry 
• DW→OV reweighting

hOiov ¼
hORiDW
hRiDW

; ð12Þ

where h$ $ $iDW and h$ $ $iov denotes the ensemble average
with the Möbius domain wall and overlap sea quarks, and R
is the reweighting factor

R≡ det½HovðmÞ&2

det½H4D
DWðmÞ&2

×
det½H4D

DWð1=4aÞ&2

det½Hovð1=4aÞ&2
: ð13Þ

The second factor det½H4D
DWð1=4aÞ&2= det½Hovð1=4aÞ&2 in

(13) is introduced to cancel the noise from high modes at
the cutoff scale [65]. It corresponds to adding fermions and
ghosts of a cutoff scale mass 1=4a, and therefore does not
affect the low-energy physics we are interested in. The
reweighting factor is stochastically estimated [66] with
Gaussian noise fields ξi and ξ0i,

R ¼ 1

N

XN

i¼1

exp½−ξ†i ½H4D
DWðmÞ&2½HovðmÞ&−2ξi

− ξ0†i ½H4D
DWð1=2aÞ&−2½Hovð1=2aÞ&2ξ0i&; ð14Þ

with a few noise samples for each configuration.
The reweighting is effective when the factor R does not

fluctuate too much. Since the factor scales exponentially as
a function of the volume of the lattice, the relevant matrix
½H4D

DWðmÞ&2½HovðmÞ&−2 needs to be close to an identity
operator. Our operator DovðmÞ is designed to satisfy this
condition, i.e., only the treatment of the near-zero eigenm-
odes of the kernel operator is different. It is however not
known how such difference affects R until we actually
compute it. Figure 5 shows examples of the Monte Carlo
history of R. It turns out that the maximum of R is at the
level ofOð10Þ on 163 × 8 and 323 × 12 lattices, which does
not destroy the ensemble average when we have Oð100Þ
samples. To assess the quality of the reweighting, we define
the effective number of configurations [67] by

Neff
conf ¼

hRi
Rmax

; ð15Þ

where Rmax is the maximum value of the reweighting factor
in the ensemble. However, as shown in the same plot in
Fig. 5, it turns out that Rmax does not necessarily coincide
with the peak of the observable OR, e.g., O ¼ Δ̄ov

π−δ as
defined later. Therefore, we also measure

Neffð2Þ
conf ¼ hRi

R0
max

; ð16Þ

with R0
max the reweighting factor which gives the maximum

value of Δ̄ov
π−δ × R in the ensemble. Both Neff

conf and Neffð2Þ
conf

are listed in Table I. Neffð2Þ
conf is larger than Neff

conf except for
the configurations at β ¼ 4.24 and m ¼ 0.0025.
In particular, on the 163 × 8 lattices, the reweighting

factors are stable enough that we can choose different quark
masses from that of the original ensemble: m ¼ 0.005 on
m ¼ 0.01 Möbius domain-wall ensembles.
There are some configurations for which the reweighting

factor is essentially zero, say R < 10−3. For these configu-
rations, we find chiral zero modes for the overlap-Dirac
operator. They are suppressed as the fermion determinant
contains a factor ðamÞ2 from the zero mode, and the next
lowest eigenvalues are also smaller compared to the
corresponding eigenvalues of the Möbius domain-wall
Dirac operator. We note that the pairing of the positive
and negative eigenvalues of Hov is precisely satisfied other
than the exact zero modes. WithH4D

DW, such correspondence
is hardly visible especially for the coarser lattices at Lt ¼ 8.
For the large-volume lattices of size 323 × 8, we found

that the reweighting as described above are not effective.

FIG. 4. History of the topological charge for
L3 × Lt ¼ 323 × 12, β ¼ 4.24, m ¼ 0.01.

FIG. 5. History of the reweighting factor R (solid) and that of
Δ̄ov

π−δ × R=hRi (dashed) for L3 × Lt ¼ 323 × 12 ensembles at
β ¼ 4.23 (top), 4.24 (bottom) with the same bare quark mass
m ¼ 0.0025. The definition of Δ̄ov

π−δ is given by Eq. (24).
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the rational approximation of the sign function is typically
adopted. As far as the chiral symmetry of the resulting
fermion is concerned, the difference of the kernels and
the details of the sign function approximation are not
important.
In the following, we take the lattice spacing a ¼ 1 unless

otherwise stated. It is shown that the fermion determinant
generated with the domain-wall fermion together with the
associated Pauli-Villars field is equivalent to a determinant
of the four-dimensional (4D) effective operator [37,38],

D4D
DWðmÞ ¼ 1þm

2
þ 1 −m

2
γ5sgnðHMÞ: ð3Þ

Here, m is the quark mass, and the matrix sign function
“sgn” is approximated by

sgnðHMÞ ¼
1 − ðTðHMÞÞLs

1þ ðTðHMÞÞLs
ð4Þ

with the transfer matrix TðHMÞ ¼ ð1 −HMÞ=ð1þHMÞ.
The kernel operator HM is written as

HM ¼ γ5
αDW

2þDW
; ð5Þ

where DW is the Wilson-Dirac operator with a large
negative mass −1=a. The scale parameter α is set to 2
in this work. This corresponds to the Möbius domain-wall
fermion [38], while α ¼ 1 gives the standard domain-wall
fermion. With this choice, the Ginsparg-Wilson relation
is realized with a better precision at a fixed Ls. The
sign function in (4) is equivalent to the form
tanhðLs tanh−1ðHMÞÞ, which converges to the exact sign
function in the limit Ls → ∞. This is called the polar
approximation. In this limit, the Ginsparg-Wilson relation
is exactly satisfied. The details of our choice of the
parameters are reported in [52].
The size of the violation of chiral symmetry for the

Möbius domain-wall fermion may be quantified by the
residual mass,

mres ¼
htrG†ΔGWGi
htrG†Gi

; ð6Þ

with

ΔGW≡ γ5
2
½D4D

DWð0Þγ5þ γ5D4D
DWð0Þ− 2aD4D

DWð0Þγ5D4D
DWð0Þ&;

ð7Þ

where G is the contact-term-subtracted quark propagator,

G ¼ 1

1 −m
ððD4D

DWðmÞÞ−1 − 1Þ: ð8Þ

We confirm that the residual mass of the Möbius domain-
wall fermion as defined in (6) is roughly 5–10 times smaller
than that of the standard domain-wall Dirac operator at the
same value of Ls [52].
Even when the residual mass calculated as (6) is small, at

a level of a few MeV or less, the low-lying mode of D4D
DW

may be significantly affected by such small violation of the
Ginsparg-Wilson relation [34]. In fact, it was shown that
the contribution to the chiral condensate is in some cases
dominated by the lattice artifact that violates the Ginsparg-
Wilson relation. Since we are interested in the details of the
low-mode spectrum, we need to carefully study such
effects. For that reason, we introduce the overlap fermion
(with the same kernel as the domain-wall fermion) and
perform the reweighting to eliminate the contamination
from the lattice artifact.
One may improve the sign function approximation in (3)

by exactly treating the low-lying eigenmodes of the kernel
operatorHM, since the polar approximation is worse for the
low modes. We compute Nth lowest eigenmodes of the
kernel operator HM and exactly calculate the sign function
for this part of the spectrum. Namely, we define

DovðmÞ ¼
X

jλMi j<λ
M
th

!
1þm
2

þ 1 −m
2

γ5sgnðλMi Þ
"
jλMi ihλMi j

þD4D
DWðmÞ

!
1 −

X

λMi <jλ
M
th j
jλMi ihλMi j

"
; ð9Þ

where λMi is the ith eigenvalue ofHM nearest to zero and λMth
is a certain threshold. We choose λMth ¼ 400 − 600 MeV
depending on the parameters. With these choices, the
violation of chiral symmetry is kept negligible, at the order
of ∼1 eV in our ensembles.
In this paper, we slightly misuse the terminology and call

thus defined Dov the overlap-Dirac operator, though the
kernel is that of domain-wall fermion, i.e., the Shamir
kernel.
Since the difference between D4D

DW and Dov appears only
in the treatment of the low modes of HM, we expect a good
overlap in their relevant configuration spaces and a mild
fluctuation of the reweighting factor between them. This is
indeed the case for the 163 × 8 and 323 × 12 lattices we
generated using D4D

DW, as we will see below.

B. Configuration generation

For the gauge part, we use the tree-level improved
Symanzik gauge action [53]. We apply the stout smearing
[54] 3 times on the gauge links with the ρ parameter
ρ ¼ 0.1 before computing the Dirac operators. All the
details on the choice of the parameters for these actions are
reported in our zero temperature studies [55,56].
Our simulation setup is summarized in Table I. The

lattice spacing a is estimated by the Wilson flow on a few
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λ for 



simply speaking,   in the m→0  limit

• U(1)A restores if • and not  if

ρ(λ)

with  ρ(0)→0  and ρ’(0)→0

ρ(λ)

with  ρ(0)→0  and  ρ’(0)≠ 0


non-analyticity at λ→0 required



