Topological Susceptibility in Nf=2 QCD at Finite Temperature -- Volume Study

JLQCD collaboration: Yasumichi Aoki Sinya Aoki Guido Cossu Hidenori Fukaya Shoji Hashimoto Takashi Kaneko Kei Suzuki

Lattice 2018 @ East Lansing July 24, 2018

- JLQCD finite temperature related talks
 - Kei Suzuki: U_A(1)
 - YA: this talk about the topological susceptibility
 - Christian Rohrhofer (Fri 17:50): meson correlation functions

- JLQCD finite temperature related talks
 - Kei Suzuki: U_A(1)
 - YA: this talk about the topological susceptibility
 - Christian Rohrhofer (Fri 17:50): meson correlation functions
- All results in this talk are still preliminary...

- JLQCD finite temperature related talks
 - Kei Suzuki: U_A(1)
 - YA: this talk about the topological susceptibility
 - Christian Rohrhofer (Fri 17:50): meson correlation functions
- All results in this talk are still preliminary...
- Computer use:
 - Blue Gene/Q at KEK under Large Scale Simulation Program
 - Oakforest-PACS through
 - Post-K priority issues #9
 - HPCI System Research project
 - Multidisciplinary Cooperative Research Program @ CCS, Tsukuba

topological susceptibility at high temperature for $N_{\rm f}{=}2$

topological susceptibility at high temperature for $N_f=2$

- relation with U(1)_A symmetry
 - relation with the order of PT ? ← Pisarski & Wilczek
 - especially under 1st order like behavior observed for $T>T_c$
 - adding a test for the fate of $U(1)_A$ through different handle

topological susceptibility at high temperature for $N_f=2$

- relation with U(1)_A symmetry
 - relation with the order of PT ? ← Pisarski & Wilczek
 - especially under 1st order like behavior observed for $T\!\!>\!\!T_c$
 - adding a test for the fate of $U(1)_A$ through different handle
- implication (yet to be extended to these direction so far)
 - axion : $\chi_t(T)$ @ phys.pt.
 - N_f=2+1 phase diagram

topological susceptibility at high temperature for $N_f=2$

- relation with U(1)_A symmetry
 - relation with the order of PT ? ← Pisarski & Wilczek
 - especially under 1st order like behavior observed for $T>T_c$
 - adding a test for the fate of $U(1)_A$ through different handle
- implication (yet to be extended to these direction so far)
 - axion : $\chi_t(T)$ @ phys.pt.
 - N_f=2+1 phase diagram
- This report focuses on T \simeq 220 MeV
 - two lattice spacings (last year)
 - finer lattice: one volume (last year) \rightarrow three volumes

Method

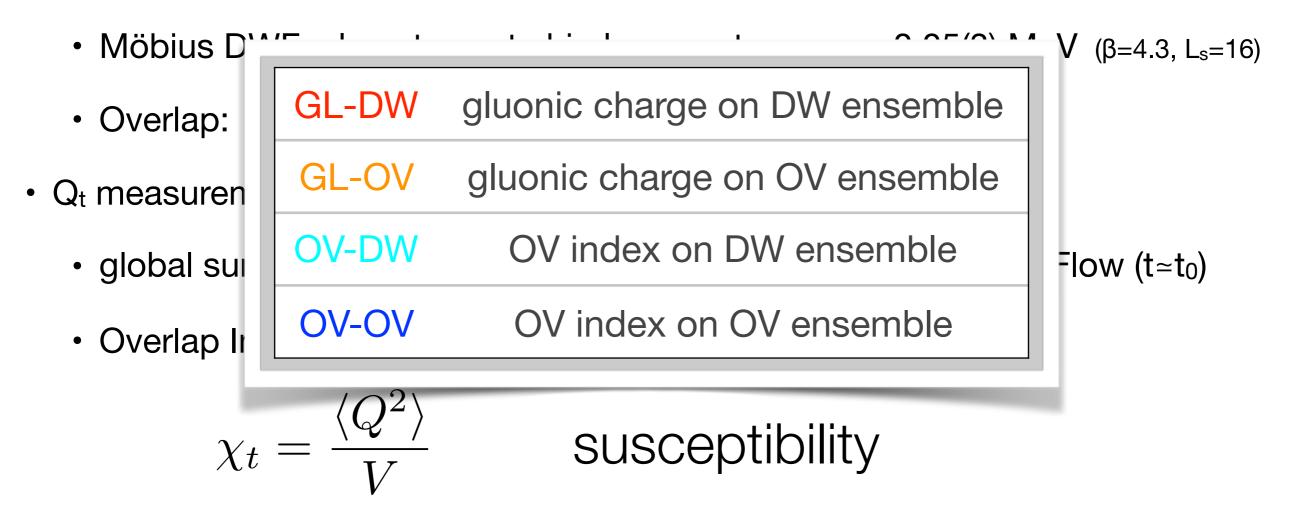
- DWF ensemble → reweighted to overlap
 - Möbius DWF: almost exact chiral symmetry: $m_{res} = 0.05(3)$ MeV (β =4.3, L_s=16)
 - Overlap: exact chiral symmetry
- Qt measurements
 - global sum of the gluonic charge density (clover) after Wilson Flow (t≃t₀)
 - Overlap Index

$$\chi_t = \frac{\langle Q^2 \rangle}{V} \qquad \text{susceptibility}$$

- reweighting: before / after and above 2 meas. yield 4 χ_t values
- current main focus: 1/a = 2.6 GeV *** **PRELIMINARY** ***

Method

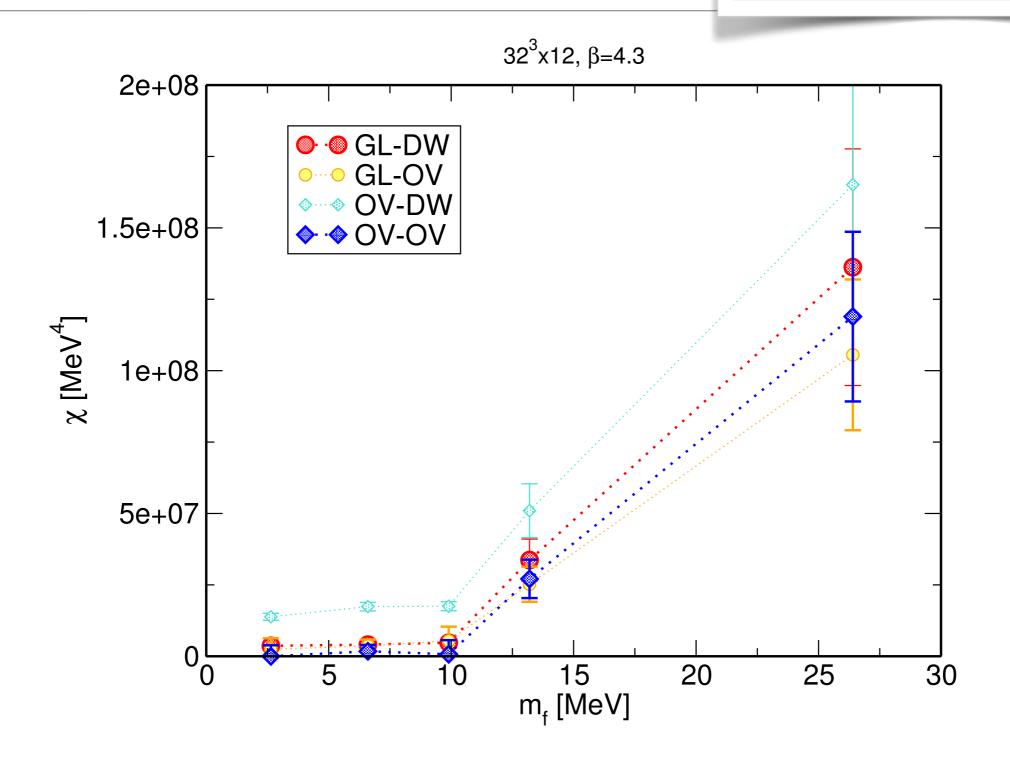
DWF ensemble → reweighted to overlap



- reweighting: before / after and above 2 meas. yield 4 χ_t values
- current main focus: 1/a = 2.6 GeV *** **PRELIMINARY** ***

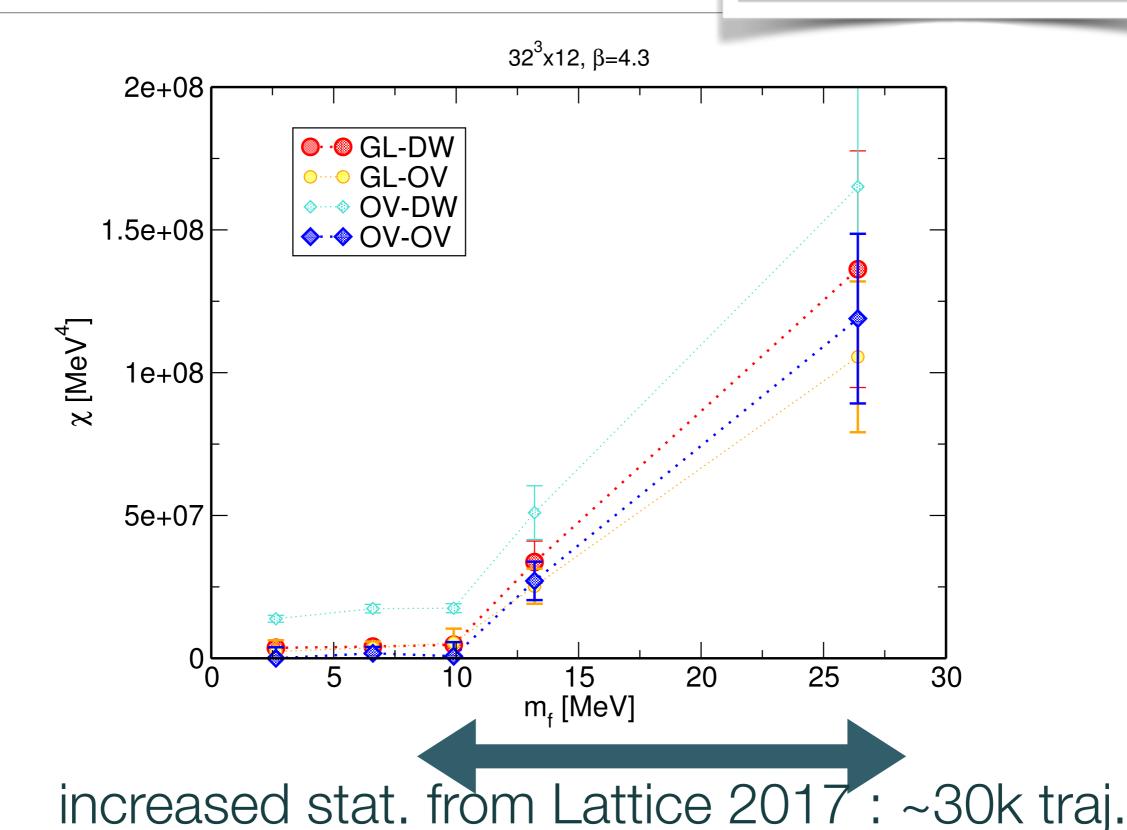
GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble

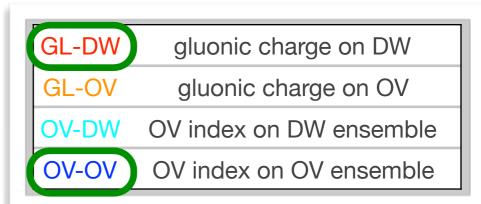
 $\chi_t(m_f)$ for N_f=2 T=220 MeV, 32³



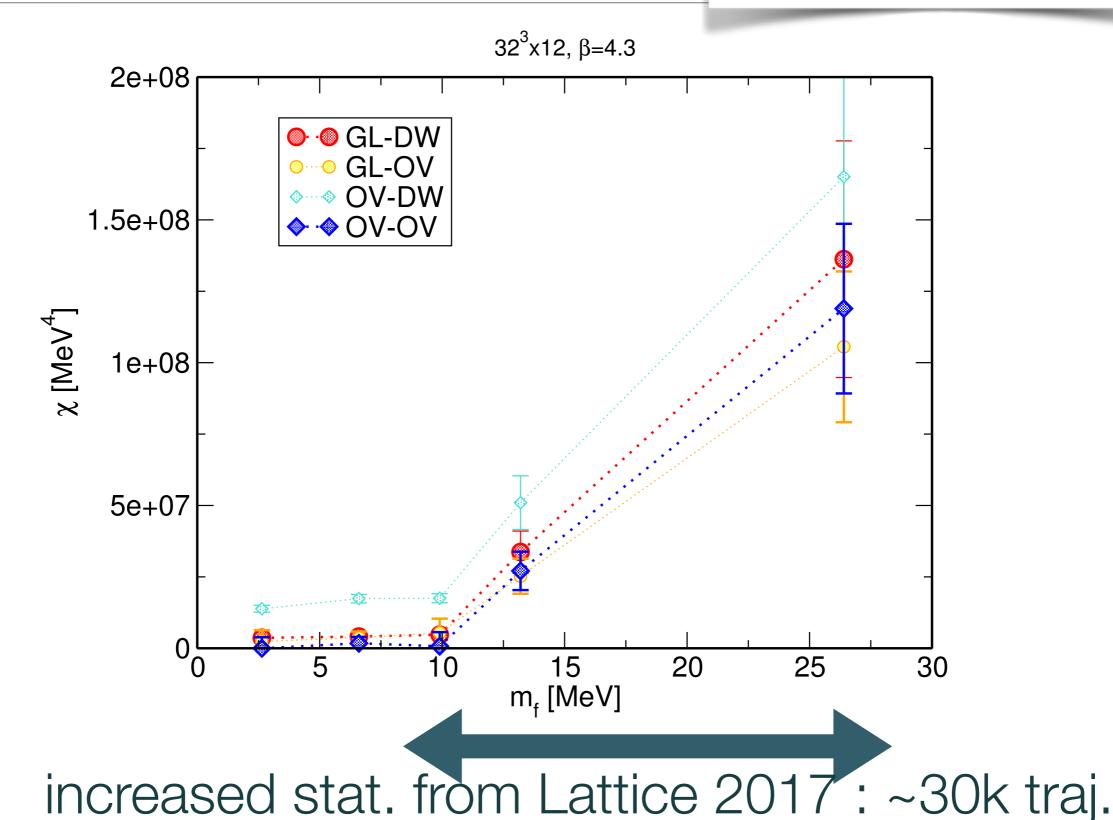
GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble

 $\chi_t(m_f)$ for N_f=2 T=220 MeV, 32³

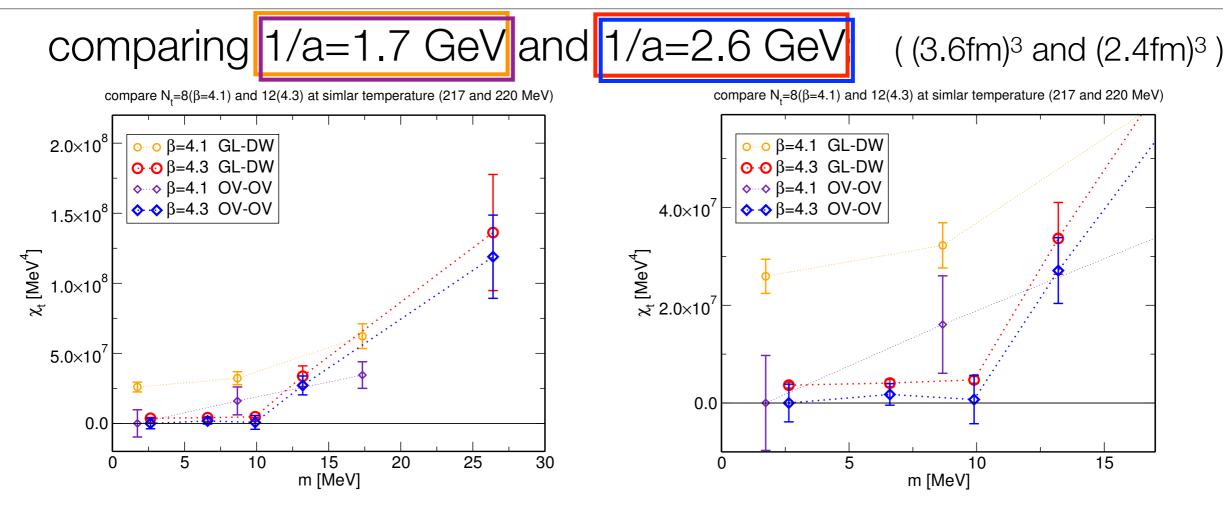




 $\chi_t(m_f)$ for N_f=2 $\,$ T=220 MeV, 32^3 $\,$



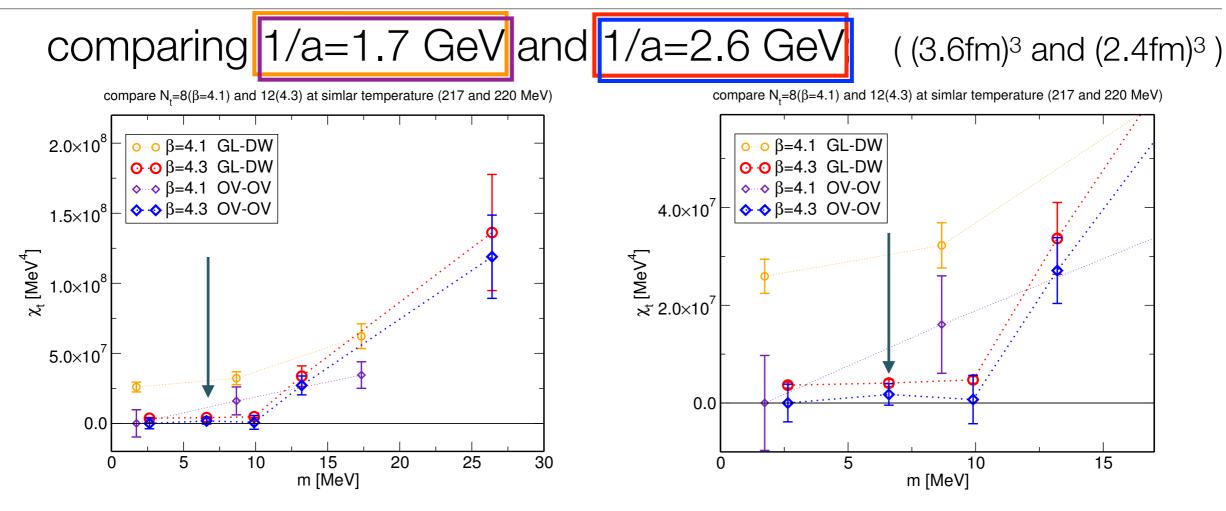
$\chi_t(m)$ T=~220 MeV discretization effect



- OV-OV: better scaling
- GL-DW: large scaling violation for smaller m
- OV-OV: $\chi_t = 0$ (within error) for $0 \le m \le 10$ MeV
- **GL-DW**: $\chi_t > 0$, but, may well decrease as *a*

→ (consistent with OV-OV with large error of OV-OV)

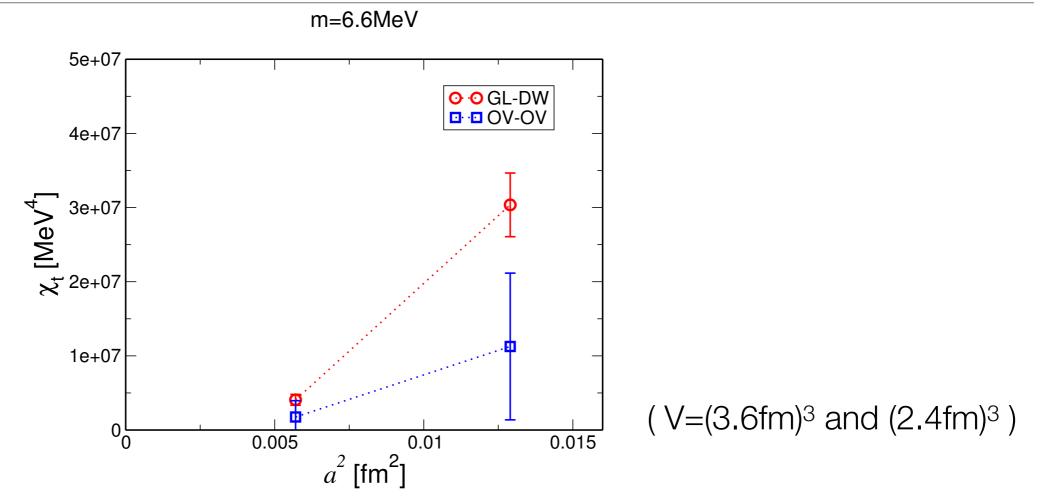
$\chi_t(m)$ T=~220 MeV discretization effect



- OV-OV: better scaling
- GL-DW: large scaling violation for smaller m
- OV-OV: $\chi_t = 0$ (within error) for $0 \le m \le 10$ MeV
- **GL-DW**: $\chi_t > 0$, but, may well decrease as *a*

→ (consistent with OV-OV with large error of OV-OV)

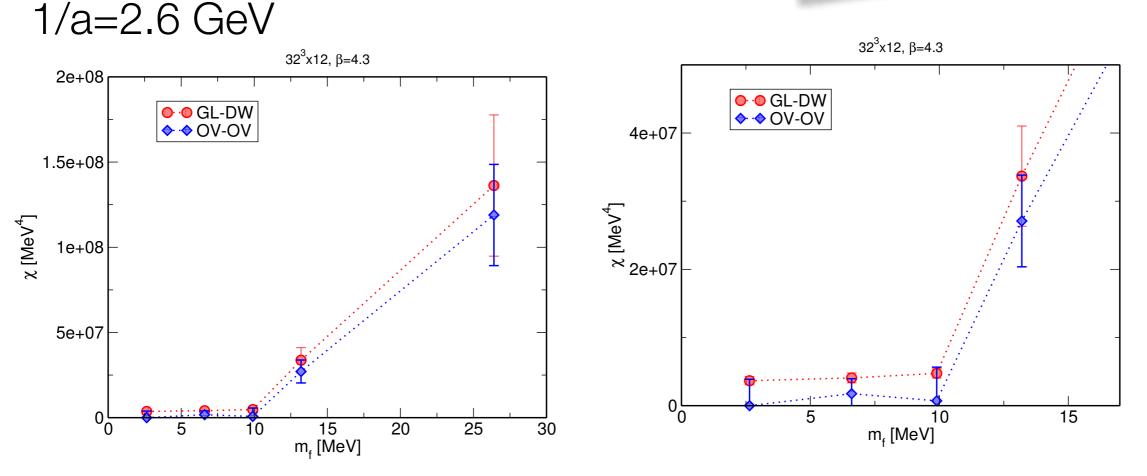
$\chi_t(m)$ T=220 MeV a^2 scaling: m=6.6 MeV



continuum scaling in 1st region

- m=6.6 MeV
- vanishing towards continuum limit
- caveat: physical volume is different \rightarrow needs further invest.

GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble



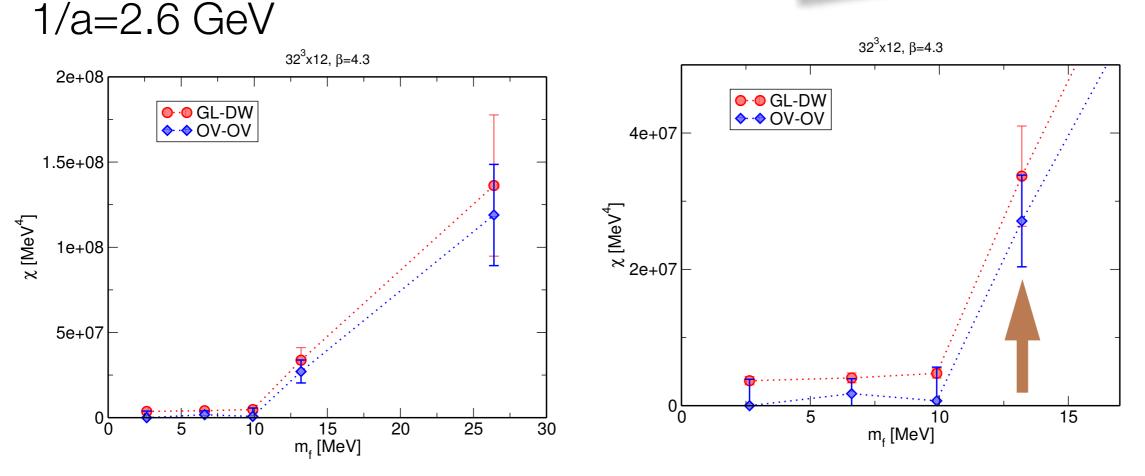
suggesting 2 regions

1: χ_t is very small (may vanish in *a*→0): 0 ≤ m ≤ 10 MeV

(\rightarrow consistent w/ Aoki-Fukaya-Tanigchi for U(1)_A symm.)

- 2: sudden growth of χ_t : 10 MeV \lesssim m
- physical ud mass point: m≃4 MeV

GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble



suggesting 2 regions

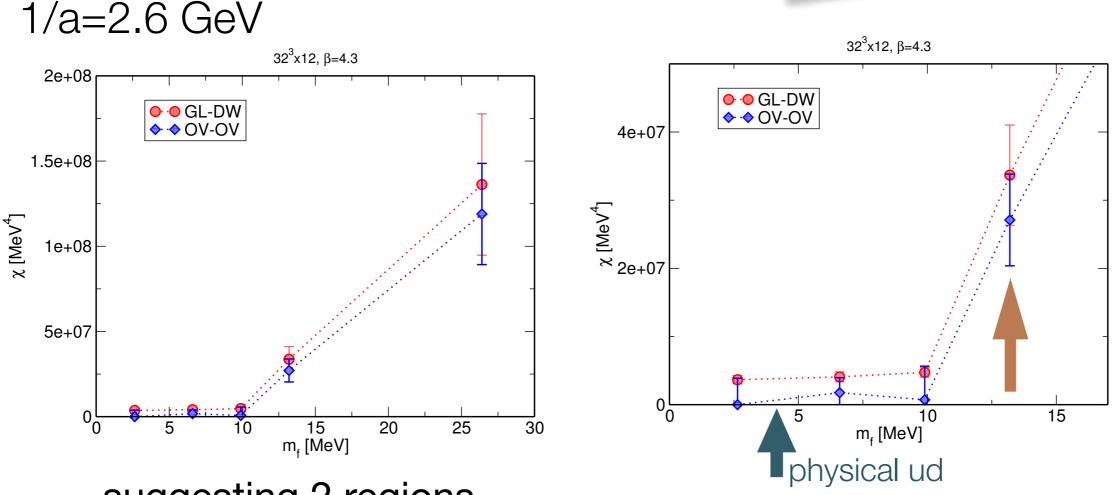
1: χ_t is very small (may vanish in $a \rightarrow 0$): $0 \le m \le 10$ MeV

 $(\rightarrow \text{ consistent } w/\text{ Aoki-Fukaya-Tanigchi for U(1)}_A \text{ symm.})$

2: sudden growth of χ_t : 10 MeV \lesssim m

physical ud mass point: m≃4 MeV

GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble



suggesting 2 regions

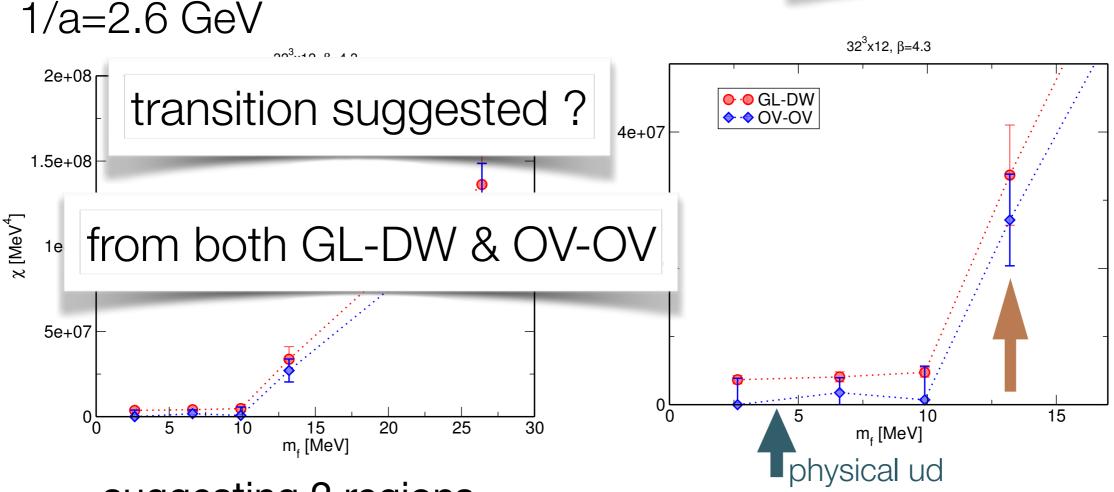
1: χ_t is very small (may vanish in $a \rightarrow 0$): $0 \le m \le 10$ MeV

(\rightarrow consistent w/ Aoki-Fukaya-Tanigchi for U(1)_A symm.)

2: sudden growth of χ_t : 10 MeV \lesssim m

physical ud mass point: m≈4 MeV

GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble



suggesting 2 regions

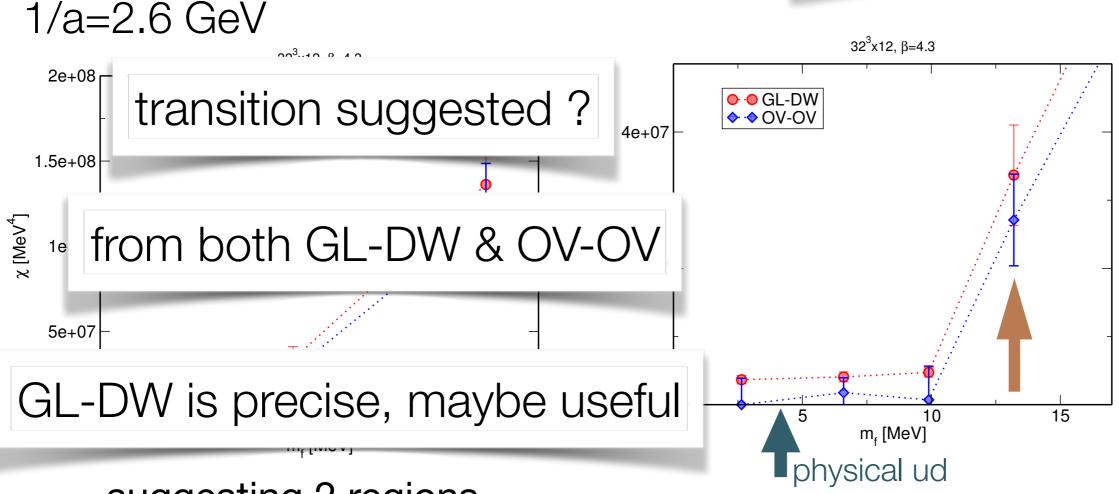
1: χ_t is very small (may vanish in *a*→0): 0 ≤ m ≤ 10 MeV

 $(\rightarrow \text{ consistent } w/\text{ Aoki-Fukaya-Tanigchi for U(1)}_A \text{ symm.})$

2: sudden growth of χ_t : 10 MeV \lesssim m

physical ud mass point: m≃4 MeV

GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble



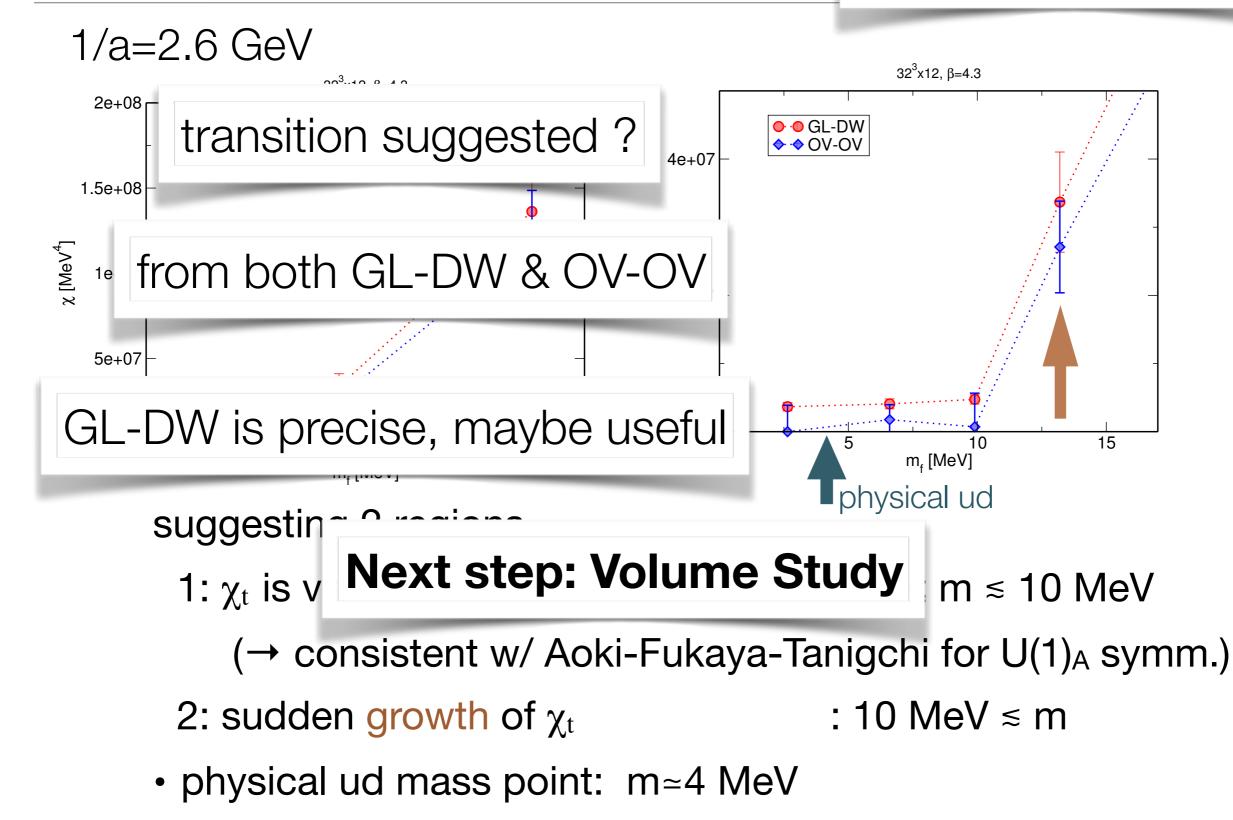
suggesting 2 regions

1: χ_t is very small (may vanish in *a*→0): 0 ≤ m ≤ 10 MeV

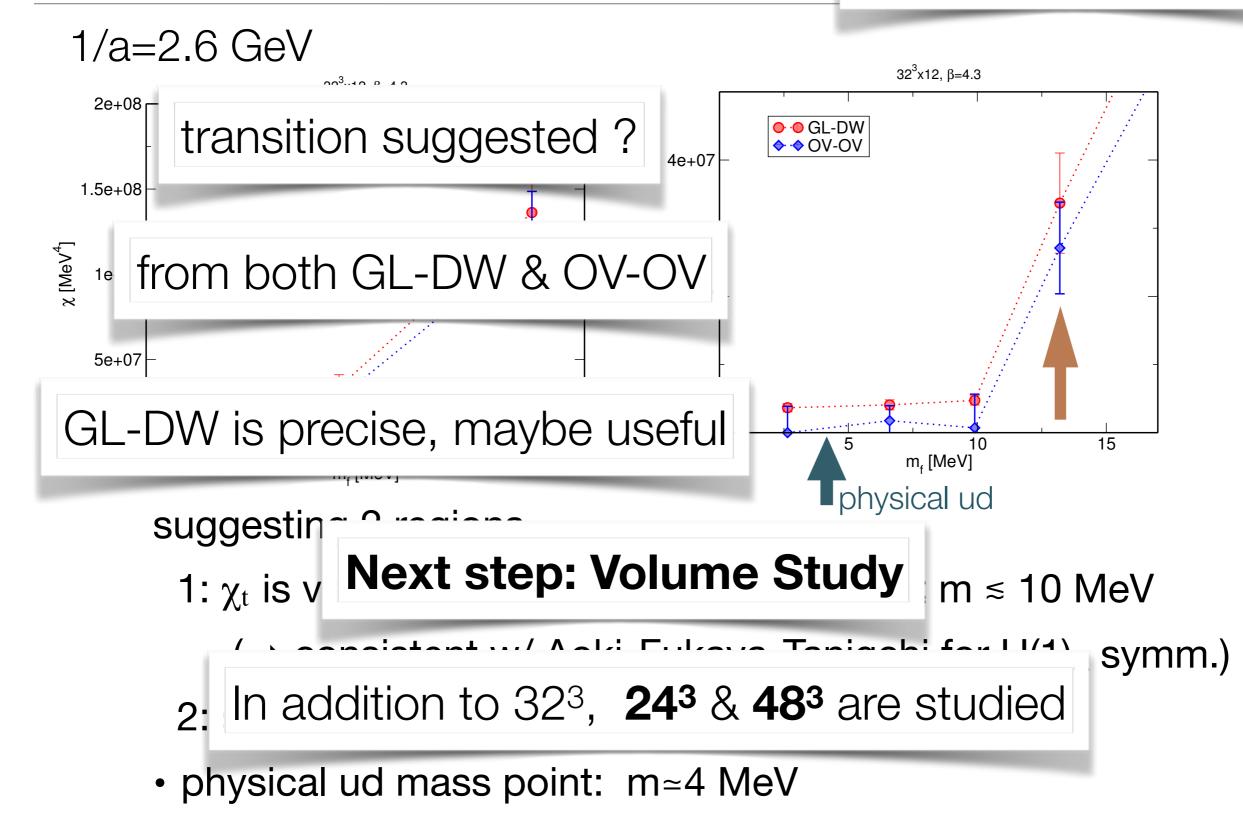
(\rightarrow consistent w/ Aoki-Fukaya-Tanigchi for U(1)_A symm.)

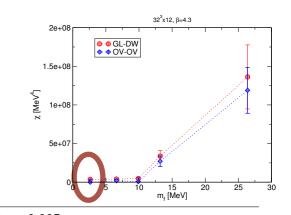
- 2: sudden growth of χ_t : 10 MeV \lesssim m
- physical ud mass point: m≈4 MeV

GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble

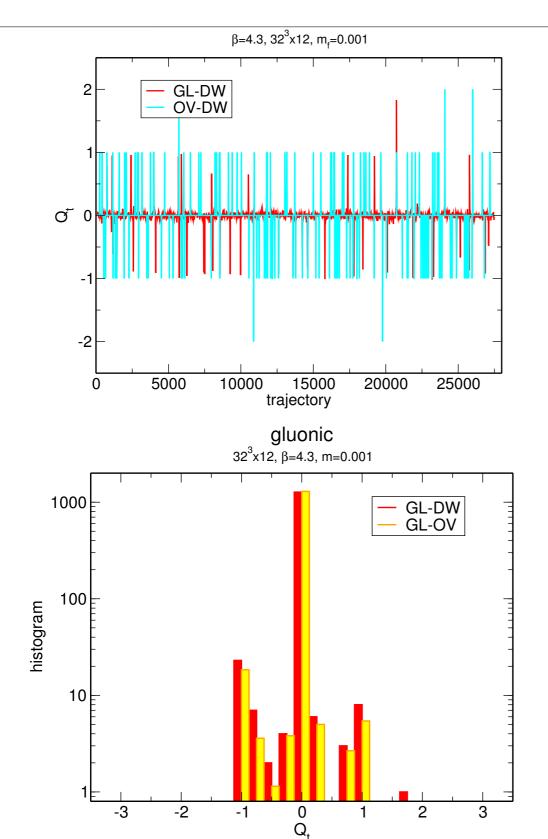


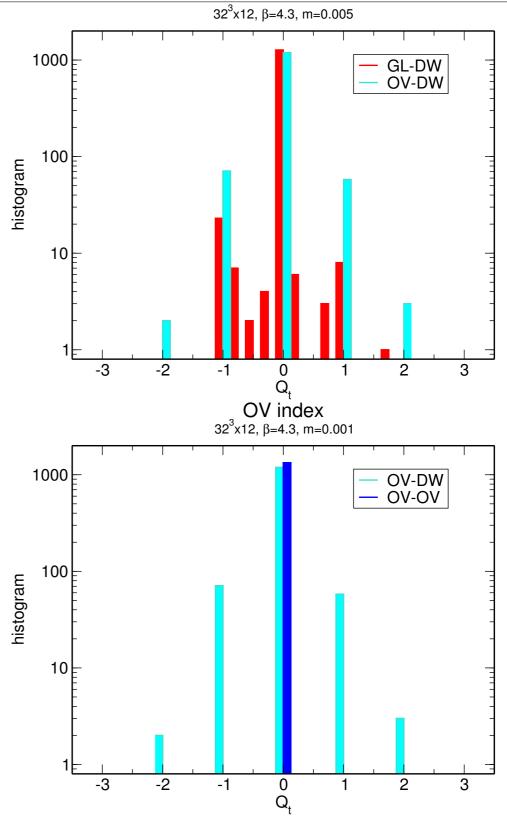
GL-DW	gluonic charge on DW
GL-OV	gluonic charge on OV
OV-DW	OV index on DW ensemble
OV-OV	OV index on OV ensemble

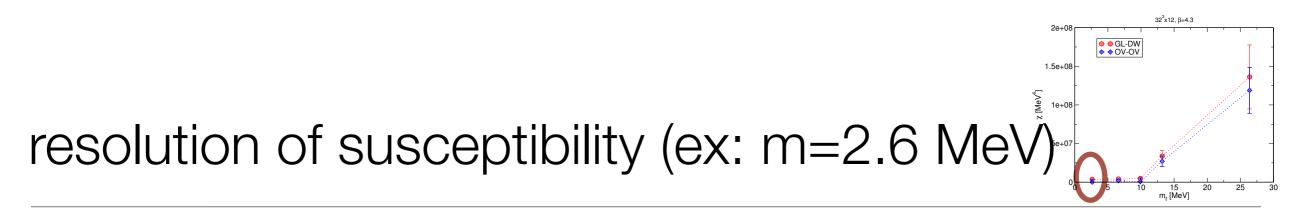


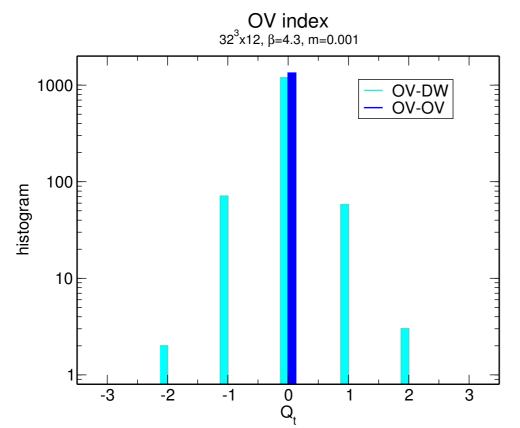


32³ m=2.6 MeV history and histogram









Effective number of statistics

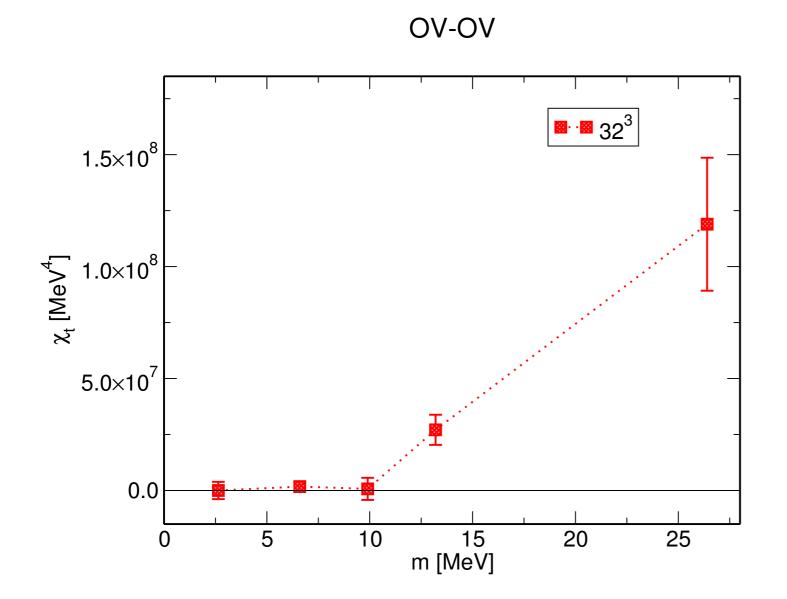
- decreases with reweighting
- $N_{eff}=N_{conf} < R > /R_{max}$
- N_{conf}=1326 \rightarrow N_{eff} = 32

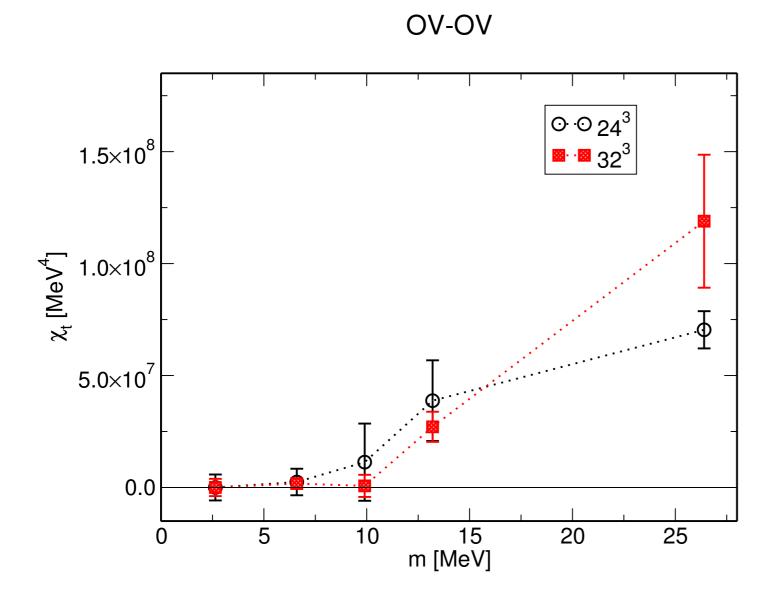
null measurement of topological excitation after reweighting

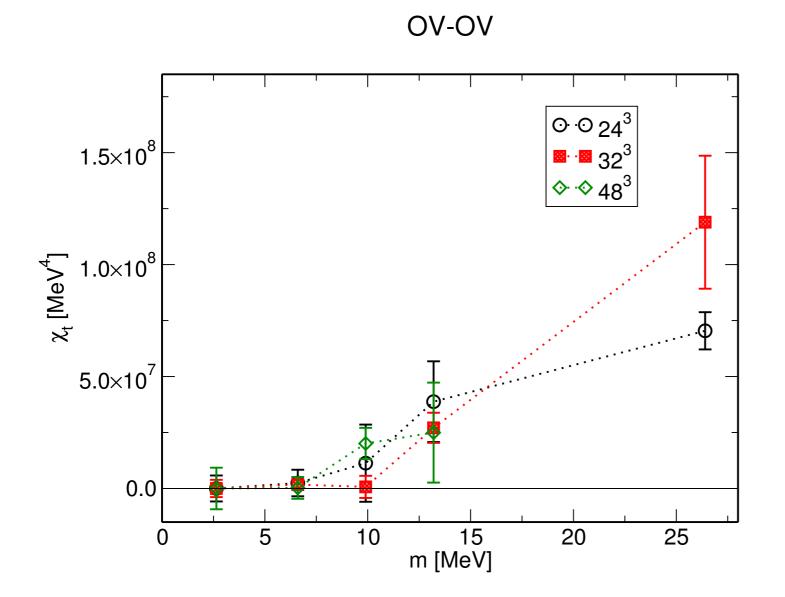
• does not readily mean $\chi_t=0$:

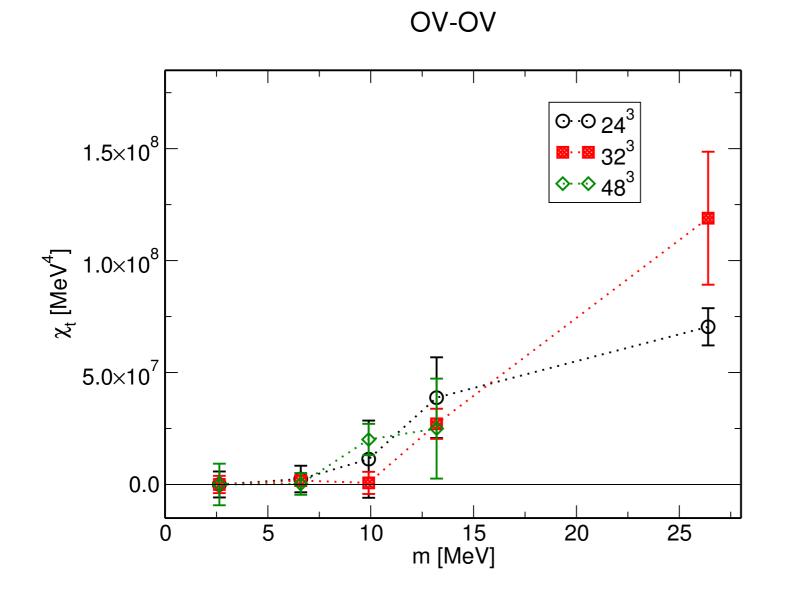
(this case $\langle Q^2 \rangle = 4(4) \times 10^{-6} \leftrightarrow 6(3) \times 10^{-3} @m = 13 MeV$)

- there must be a resolution of χ_t under given statistics
 - [resolution of $\langle Q^2 \rangle$] = 1/N_{eff}
- shall take the "statistical error" of $\langle Q^2 \rangle = max(\Delta \langle Q^2 \rangle, 1/N_{eff})$

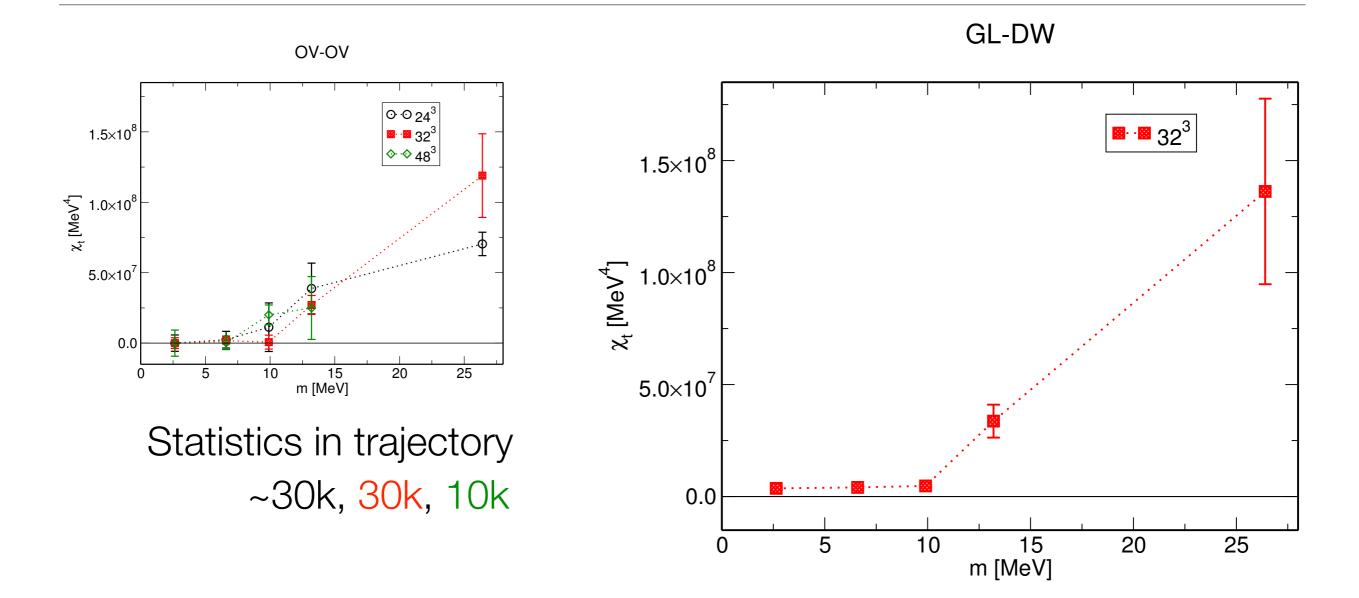


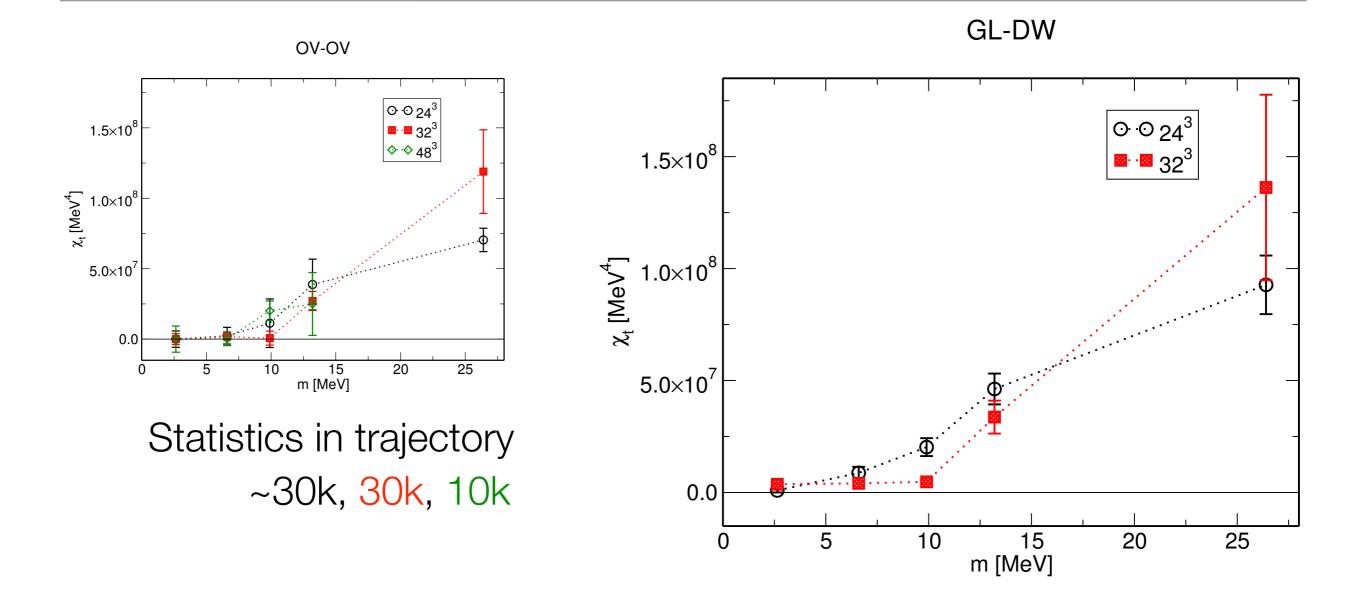


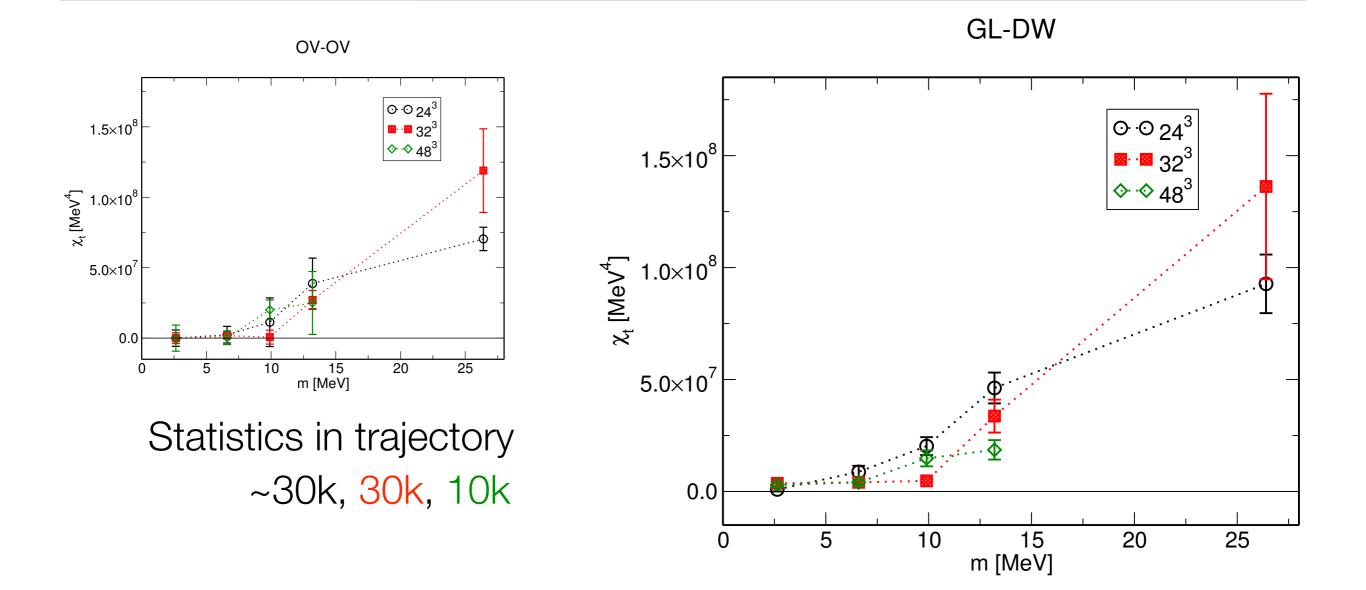


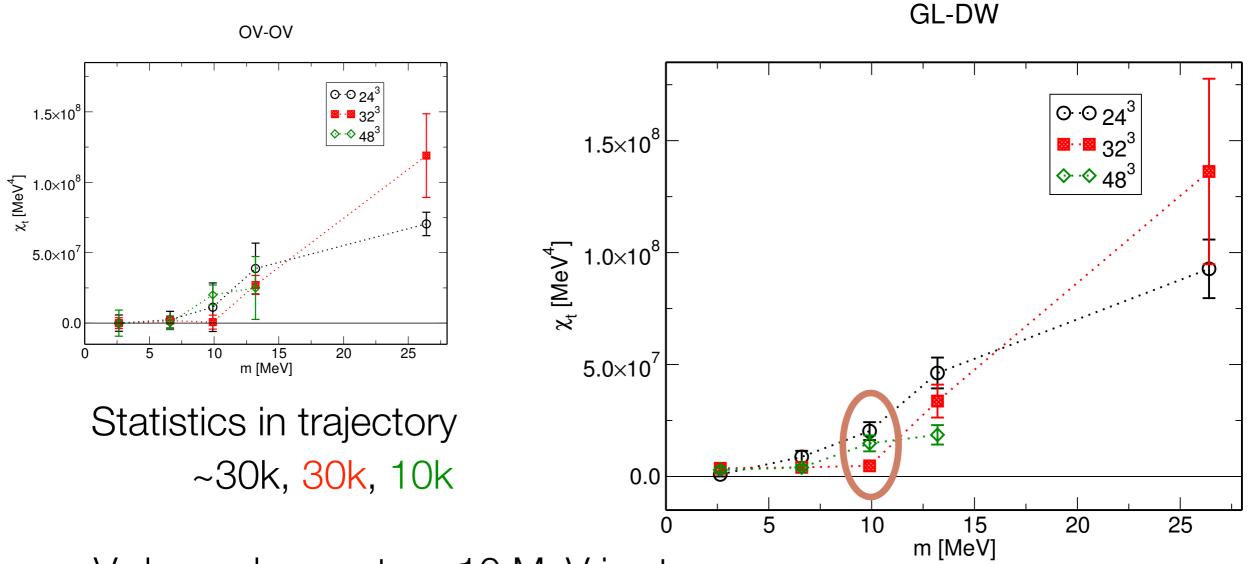


 Statistics in trajectory ~30k, 30k, 10k

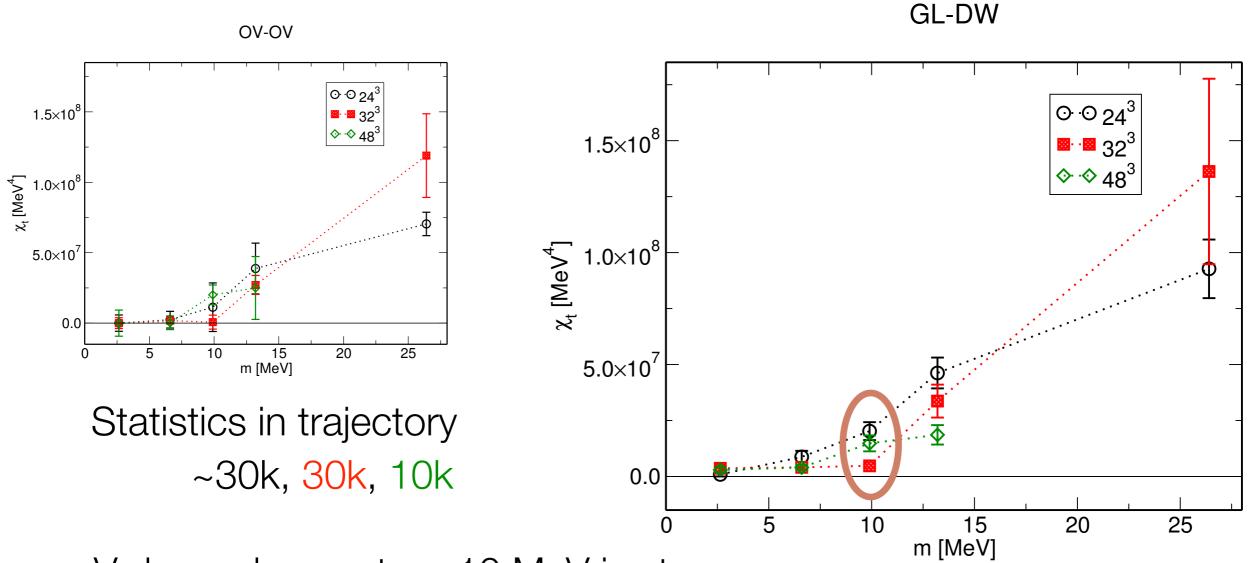






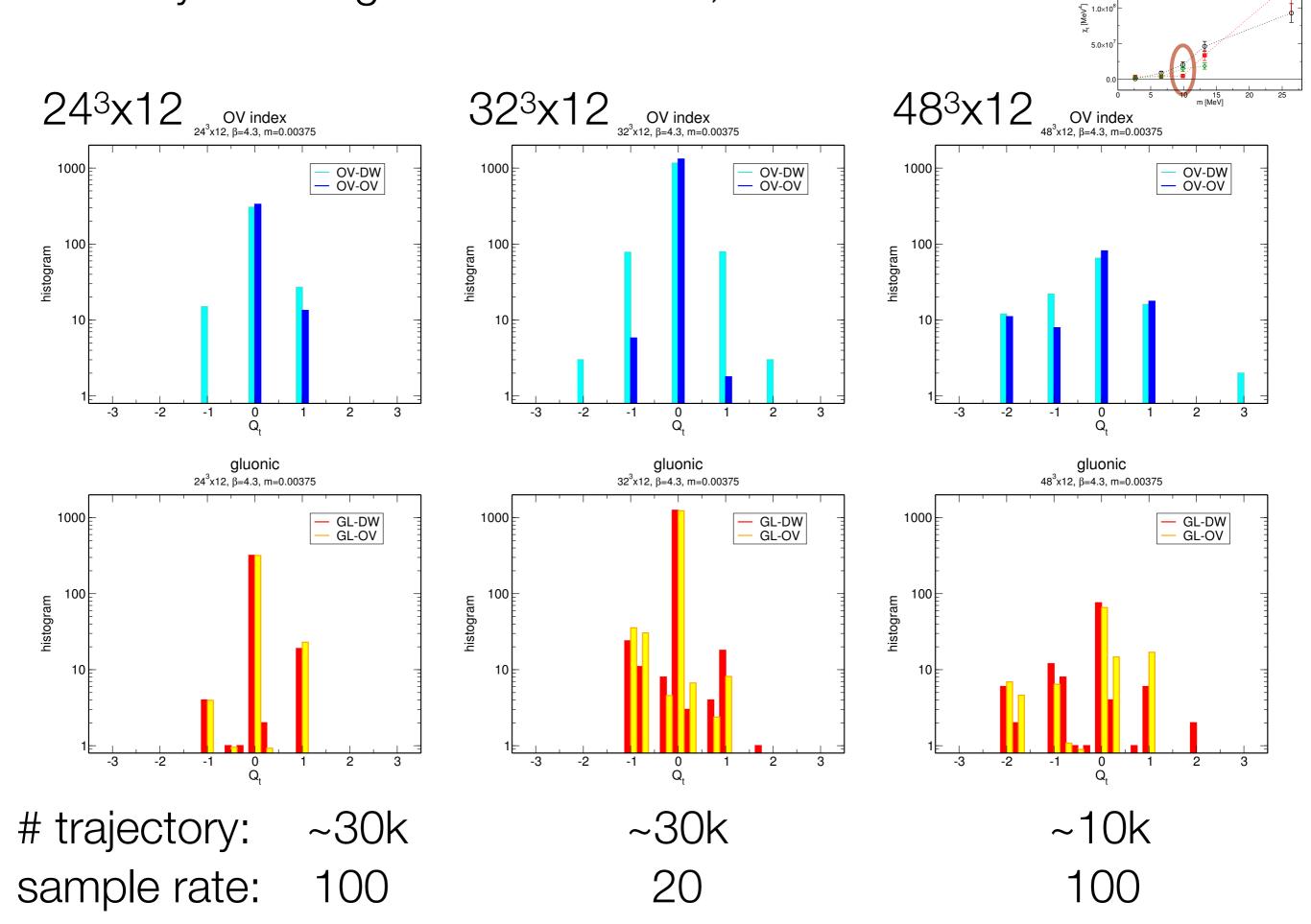


- V dependence at m=10 MeV is strange
 - non-monotonic
 - important region, where a phase boundary was suggested w/ 32³



- V dependence at m=10 MeV is strange
 - non-monotonic
 - important region, where a phase boundary was suggested w/ 32³
- Let's look at the histogram of Q

summary of histogram: T=220 MeV, m=10 MeV

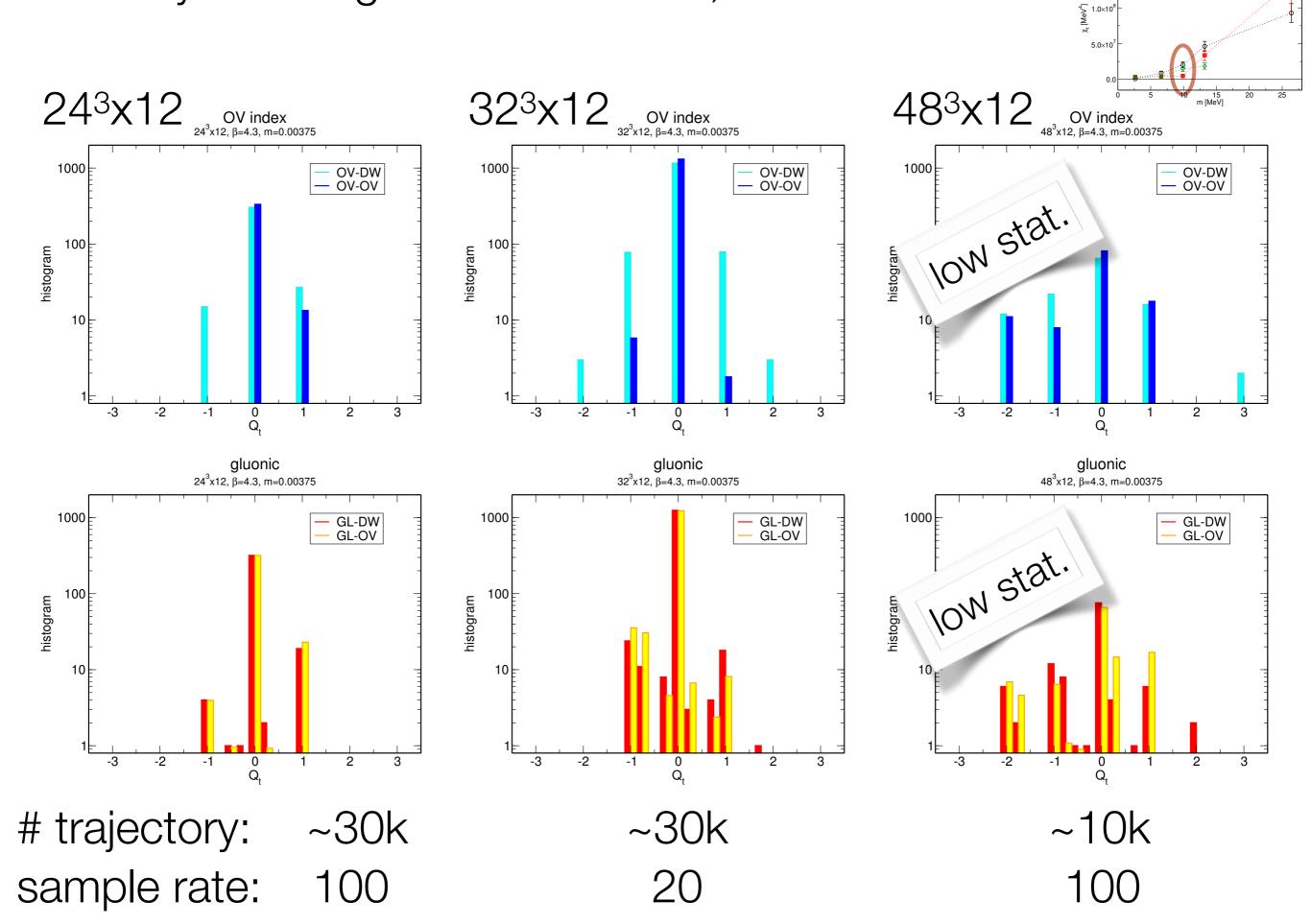


 $\bigcirc \odot 24^3$ $\blacksquare 32^3$

♦ ♦ 48³

1.5×10

summary of histogram: T=220 MeV, m=10 MeV

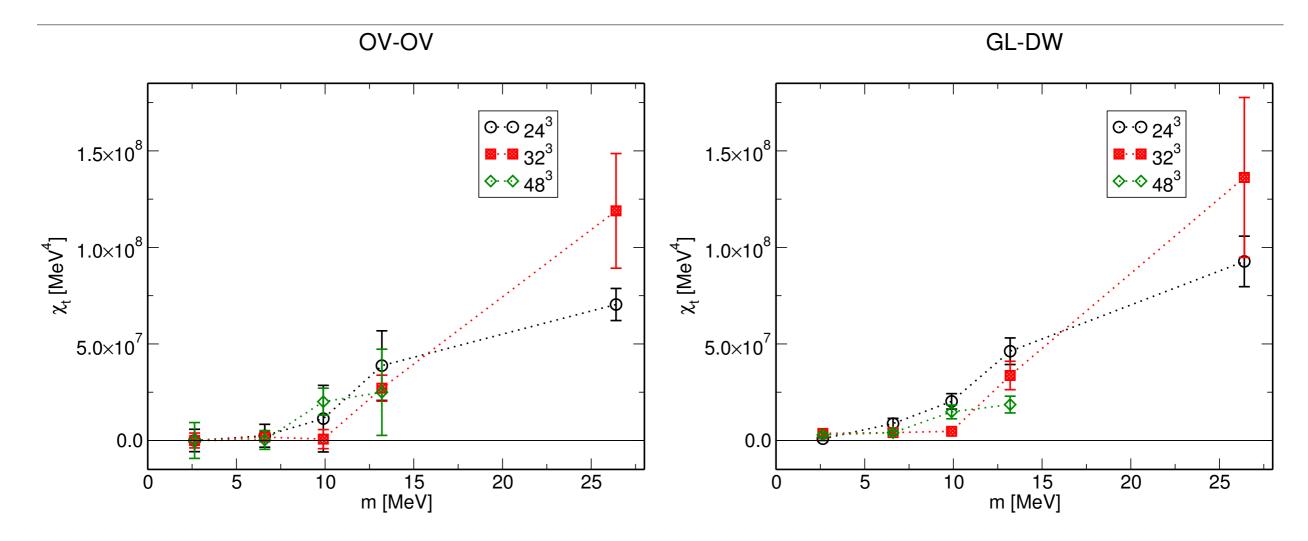


⊙ ⊙ 24³ ■ ■ 32³

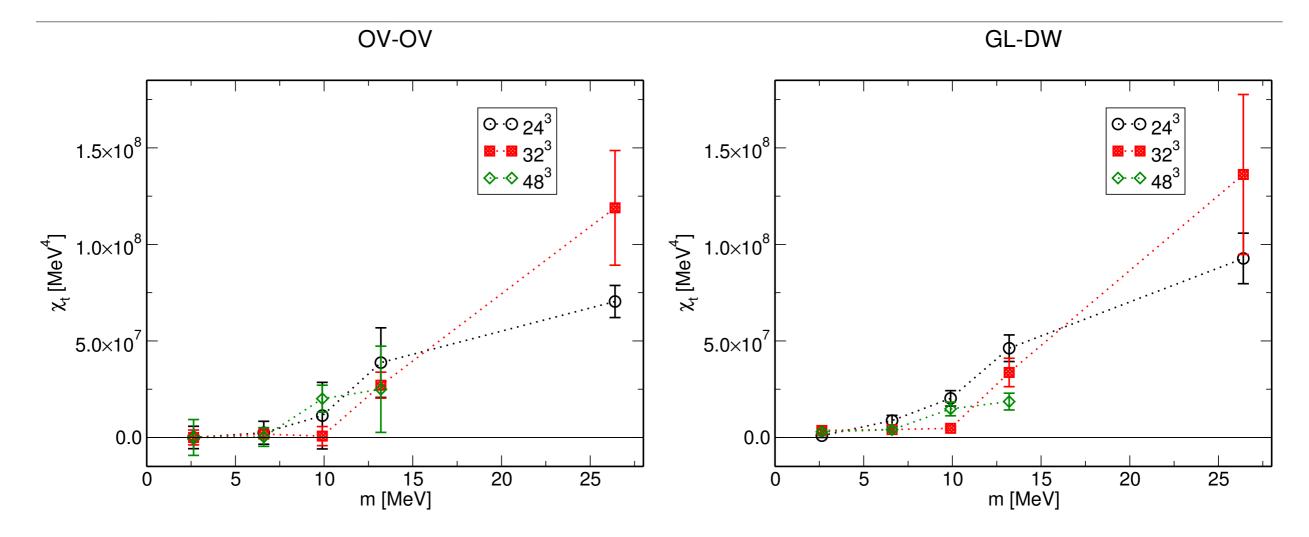
Q Q 48

1.5×10

Results of $\chi_t(m)$ at T=220 MeV; multiple volume



Results of $\chi_t(m)$ at T=220 MeV; multiple volume

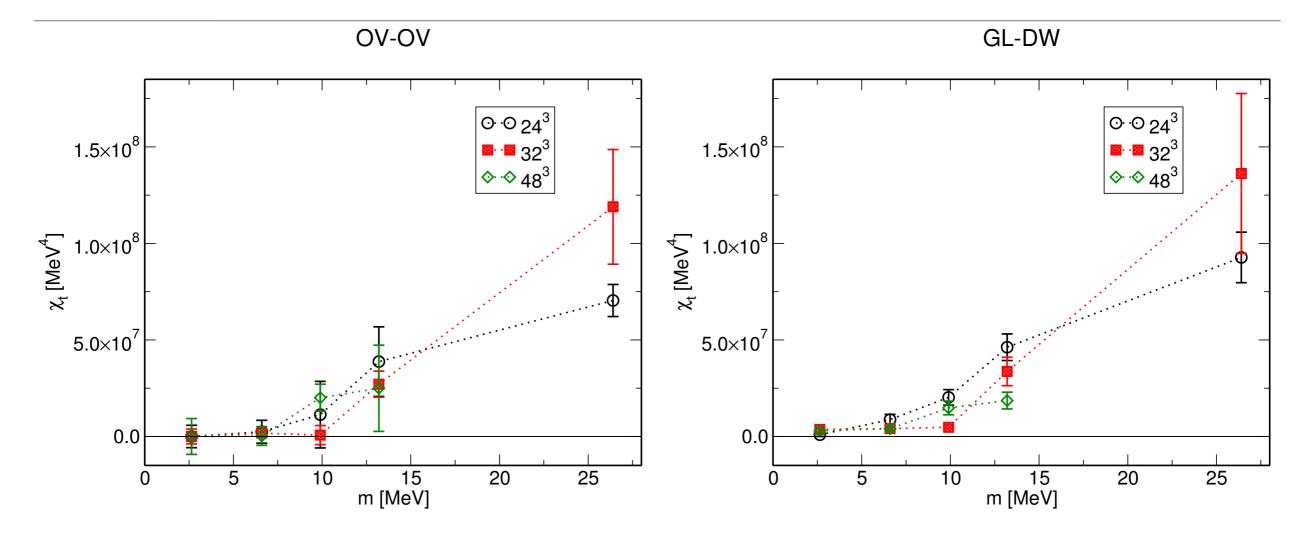


V dependence at m=10 MeV is strange

Low statistics for 48³

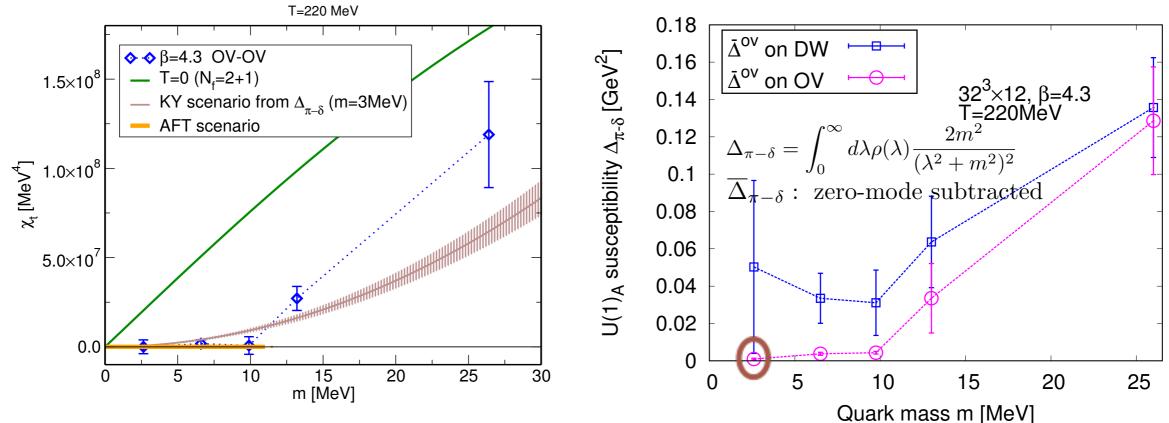
 \rightarrow not really conclusive

Results of $\chi_t(m)$ at T=220 MeV; multiple volume



- V dependence at m=10 MeV is strange
 - Low statistics for $48^3 \rightarrow not$
- decrease as V at m=13 MeV
 - but, also low statistics for $48^3 \rightarrow$ not really conclusive
- \rightarrow not really conclusive

competing scenarios for $\[discussion last year \] \chi_t and \Delta_{\pi-\delta}$ (UA(1) oder parameter) @ T=220 MeV



• KY scenario [Kanazawa, Yamamoto 2016]

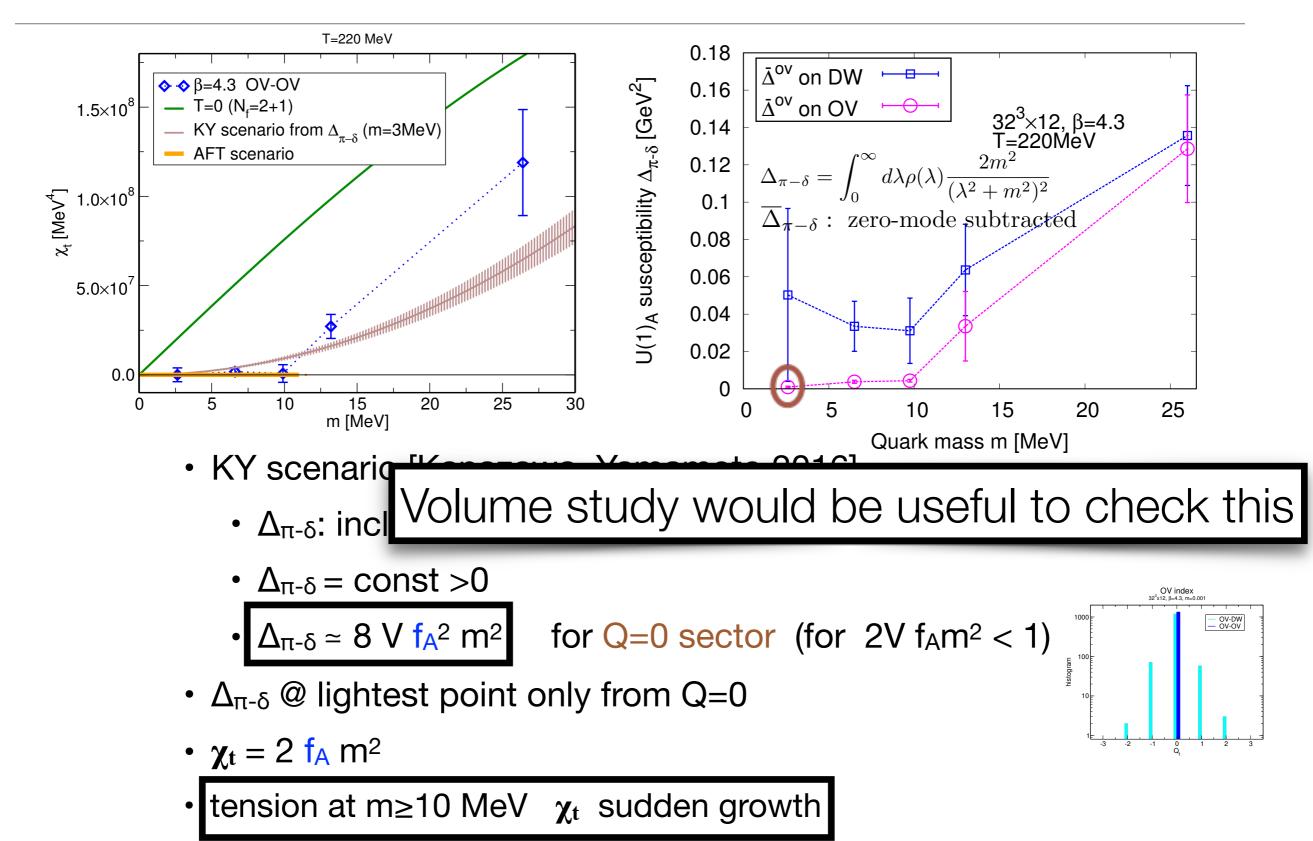
- $\Delta_{\pi-\delta}$: including zero mode cont. is proper
- $\Delta_{\pi-\delta} = const > 0$
- $\Delta_{\pi-\delta} \simeq 8 V f_A^2 m^2$ for Q=0 sector (for 2V $f_A m^2 < 1$)

OV index 32³x12, 8=4.3, m=0.00

> OV-DW OV-OV

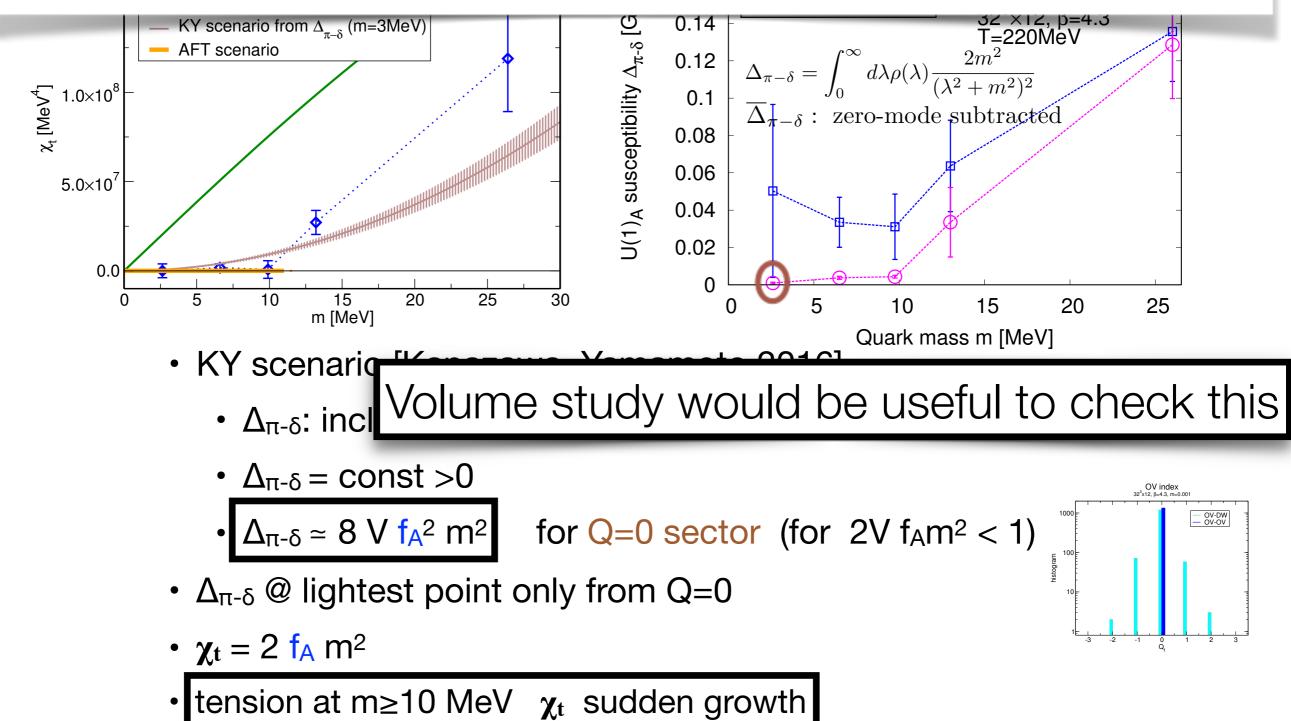
- $\Delta_{\pi-\delta}$ @ lightest point only from Q=0
- $\chi_t = 2 f_A m^2$
- tension at m \geq 10 MeV χ_t sudden growth

competing scenarios for $\[discussion last year\] \chi_t and \Delta_{\pi-\delta}$ (U_A(1) oder parameter) @ T=220 MeV

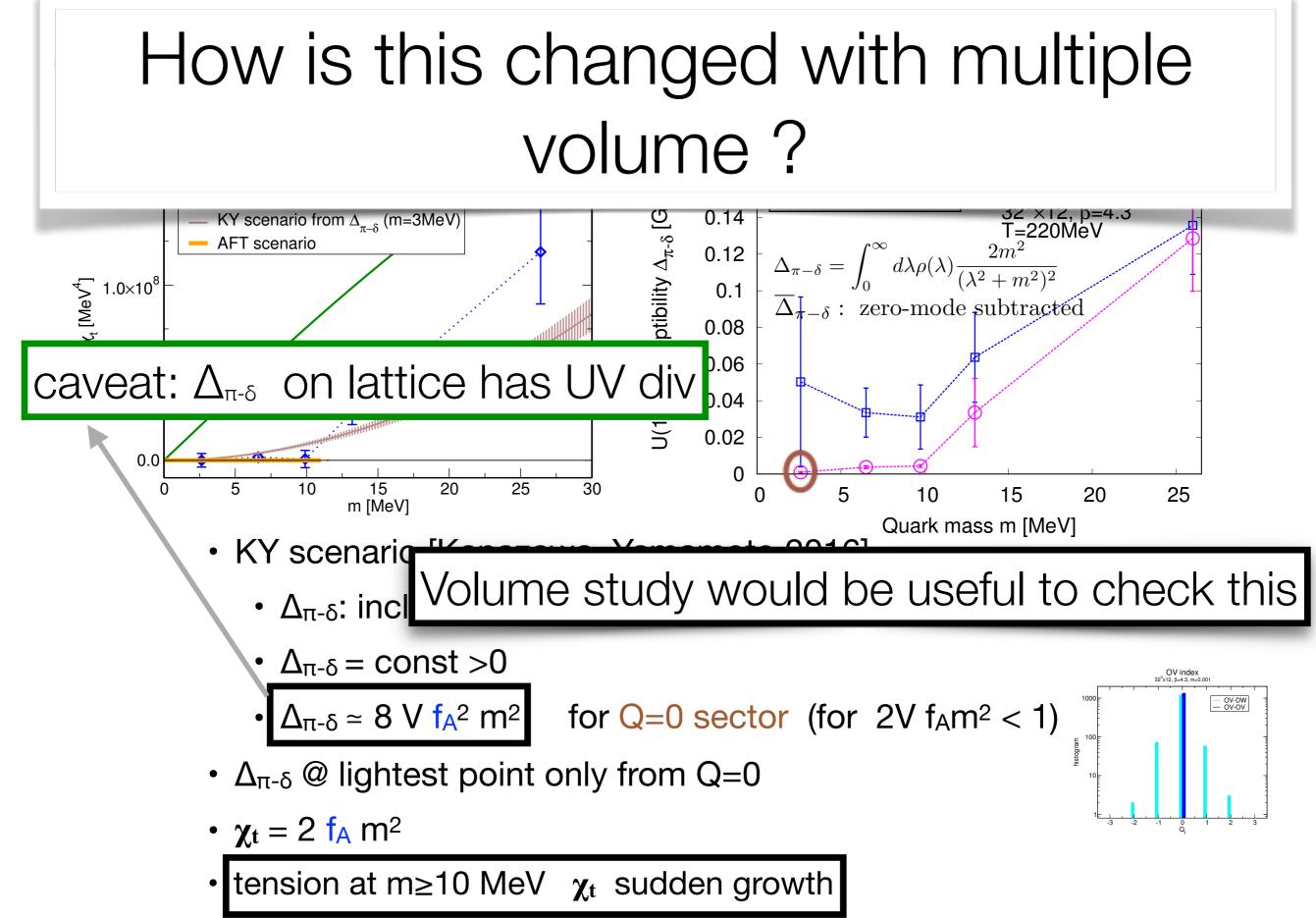


comnating econariae for

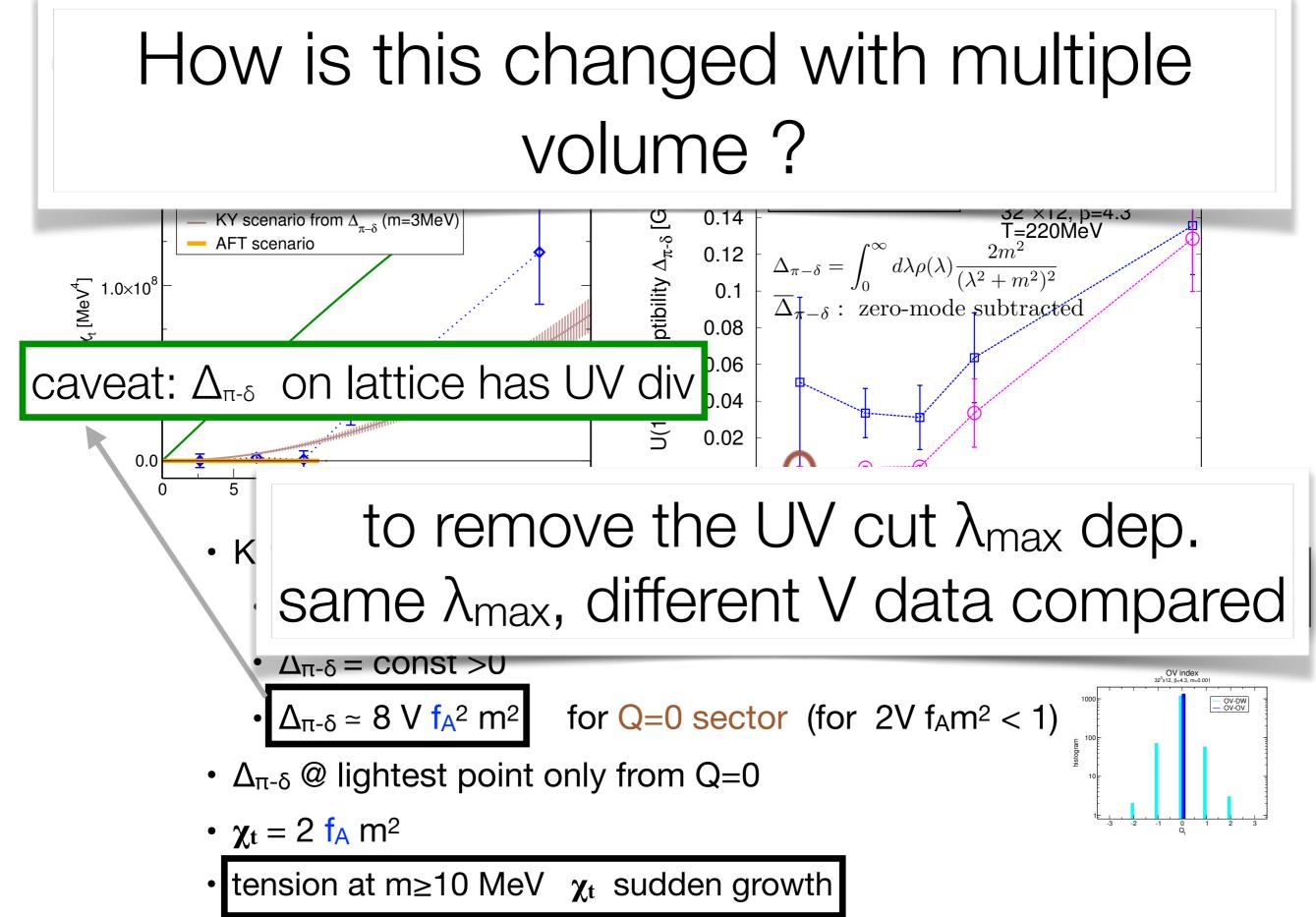




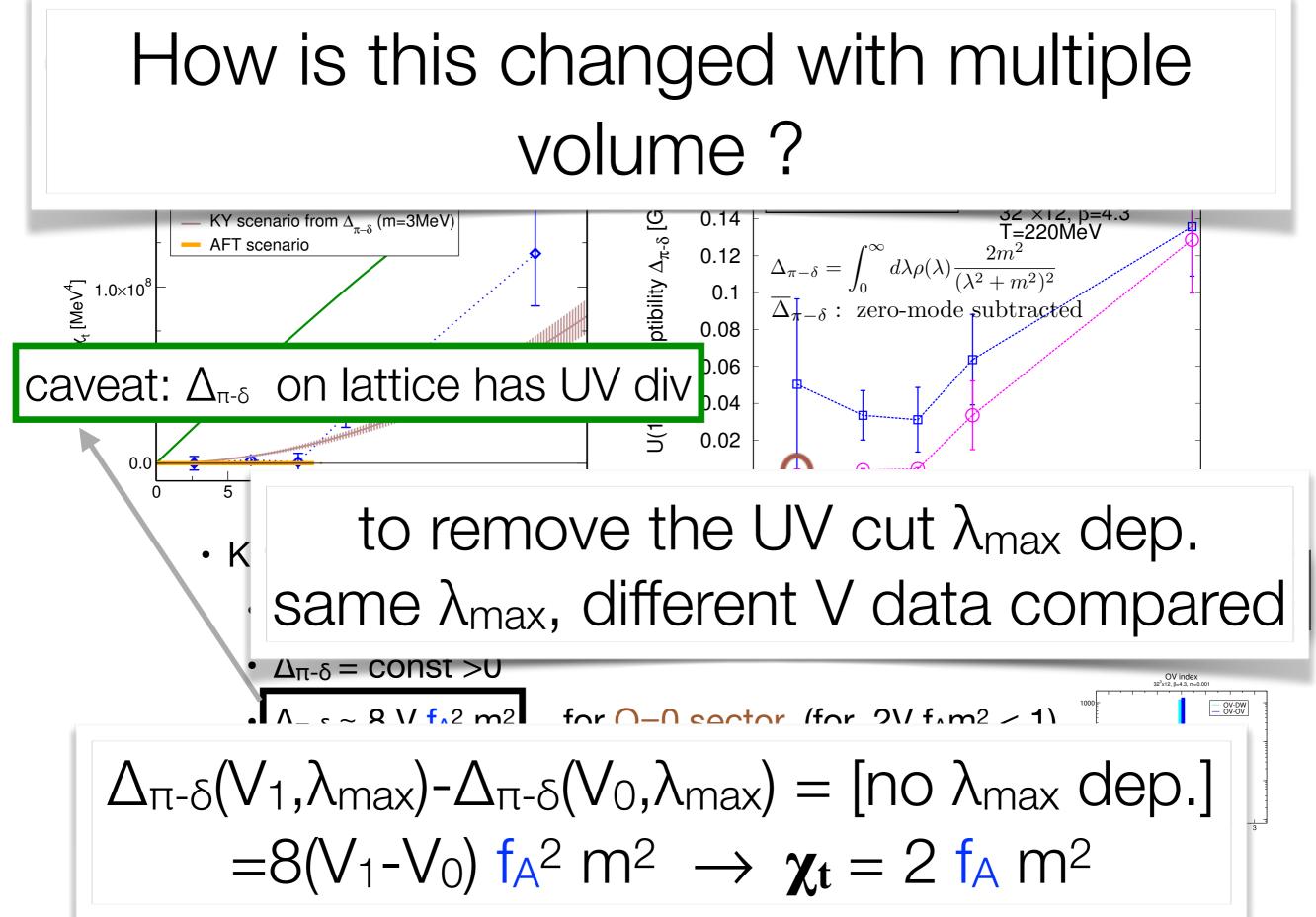
comnation econarios for



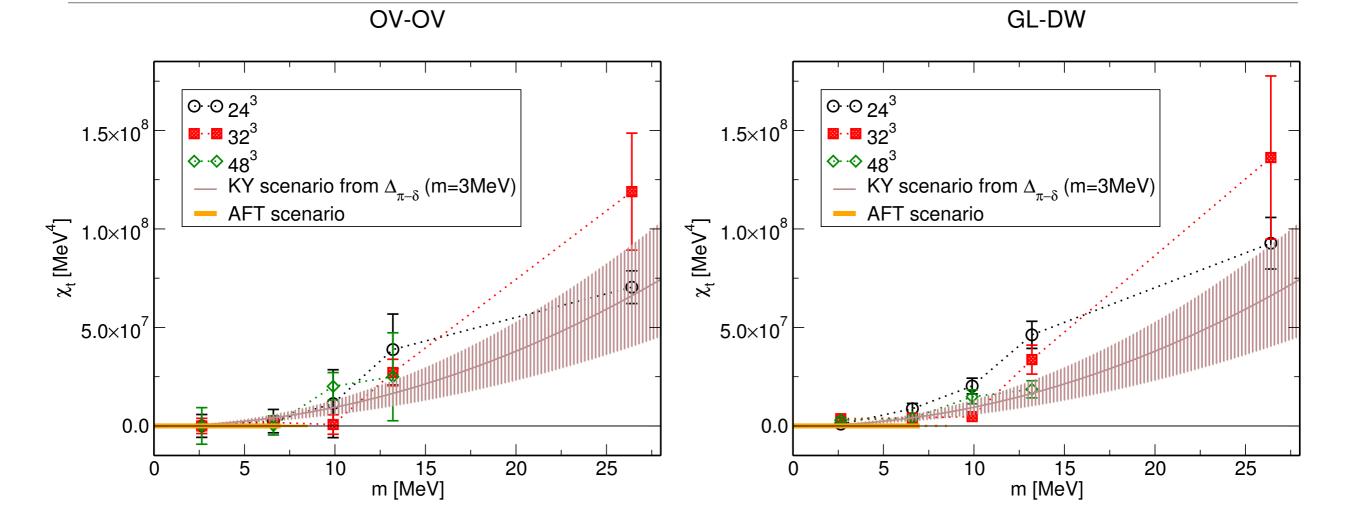
comnating econariae for



comnating econariae for



competing scenarios with multiple volumes for χ_t given $\Delta_{\pi-\delta}$ (U_A(1) oder parameter) @ T=220 MeV



- AFK scenario: $\chi_t = 0$ for $0 < m < m_c$
- KY scenario: $\chi_t = 2 f_A m^2$
- There are no strong tensions
- Neither scenario is excluded

Summary and Outlook

Summary and Outlook

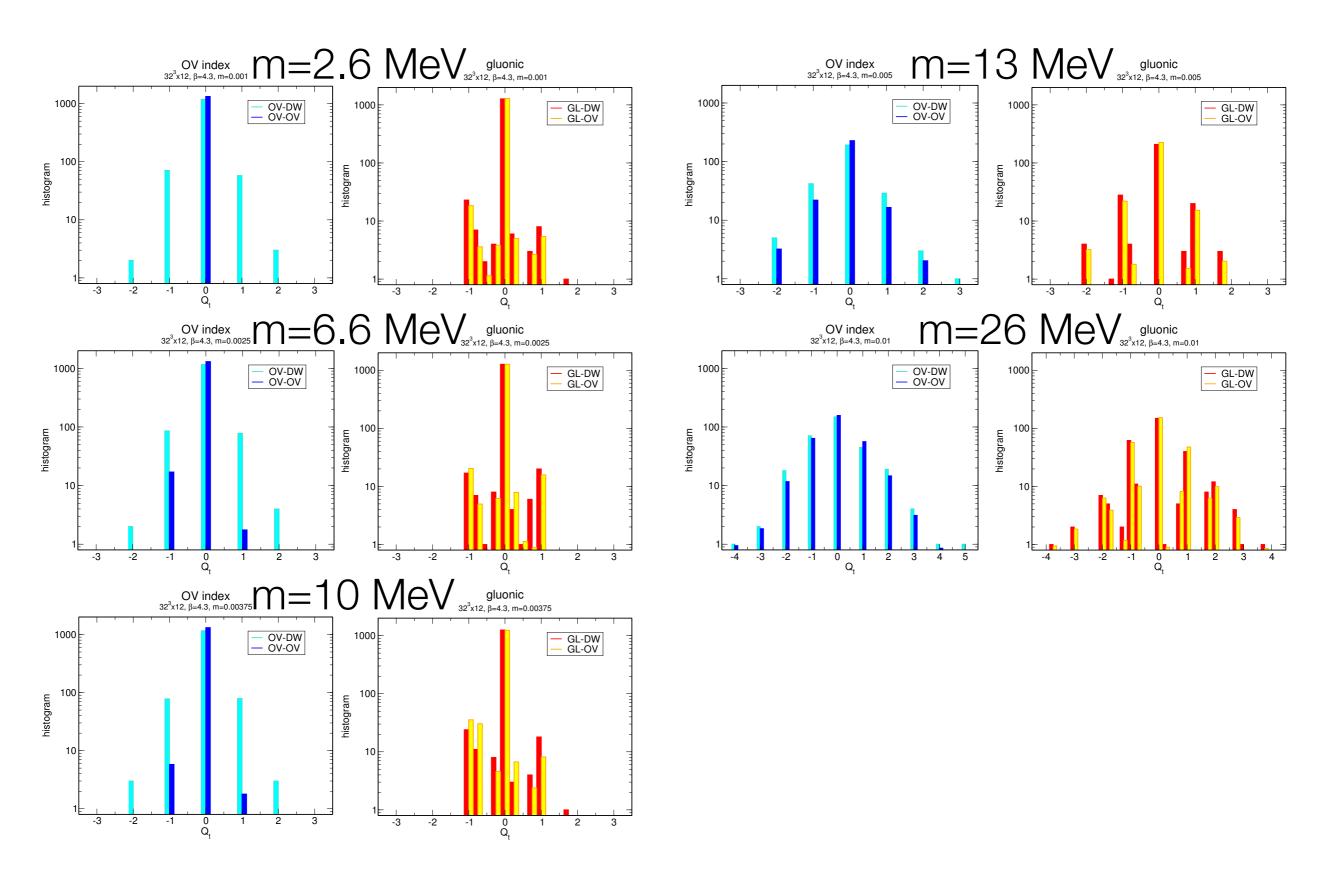
- χ_t investigated w/ unitary overlap fermion through reweighting from JLQCD DWF
- focus on T=220 MeV and N_t=12 (1/a = 2.64 GeV): ** still preliminary **
- 32³ lattice: phase transition like behavior at $m \approx 10$ MeV (last year)
- 24³ & 48³ are newly studied
- in m≈10 MeV region, volume dependence is not conclusive
 - likely due to poor statistics of 48³ lattices
- in $V \rightarrow \infty$ limit one cannot eliminate either

 $\chi_{top} = 0$ for $0 < m < m_c$ || $\chi_{top} = 2 f_A m^2$

- significant improvement of the statistics is required
 - determinant breakup of reweighting factor tested (sometimes works)
- lower temperature may be easier (χ_{top} increases \rightarrow easier topology sampling)

Thank you very much for your attention !

summary of histogram: T=220 MeV, 32³x12

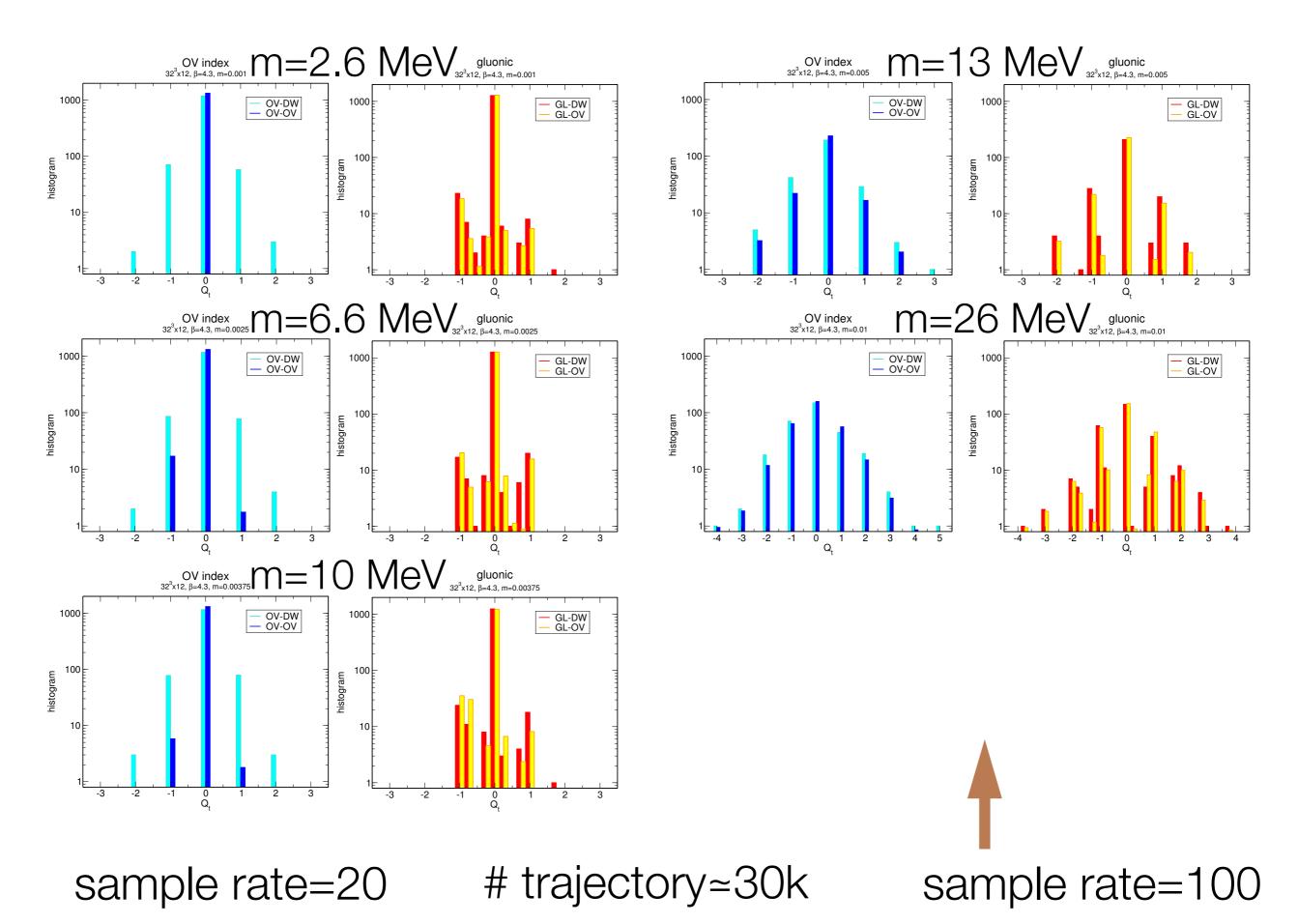


sample rate=20

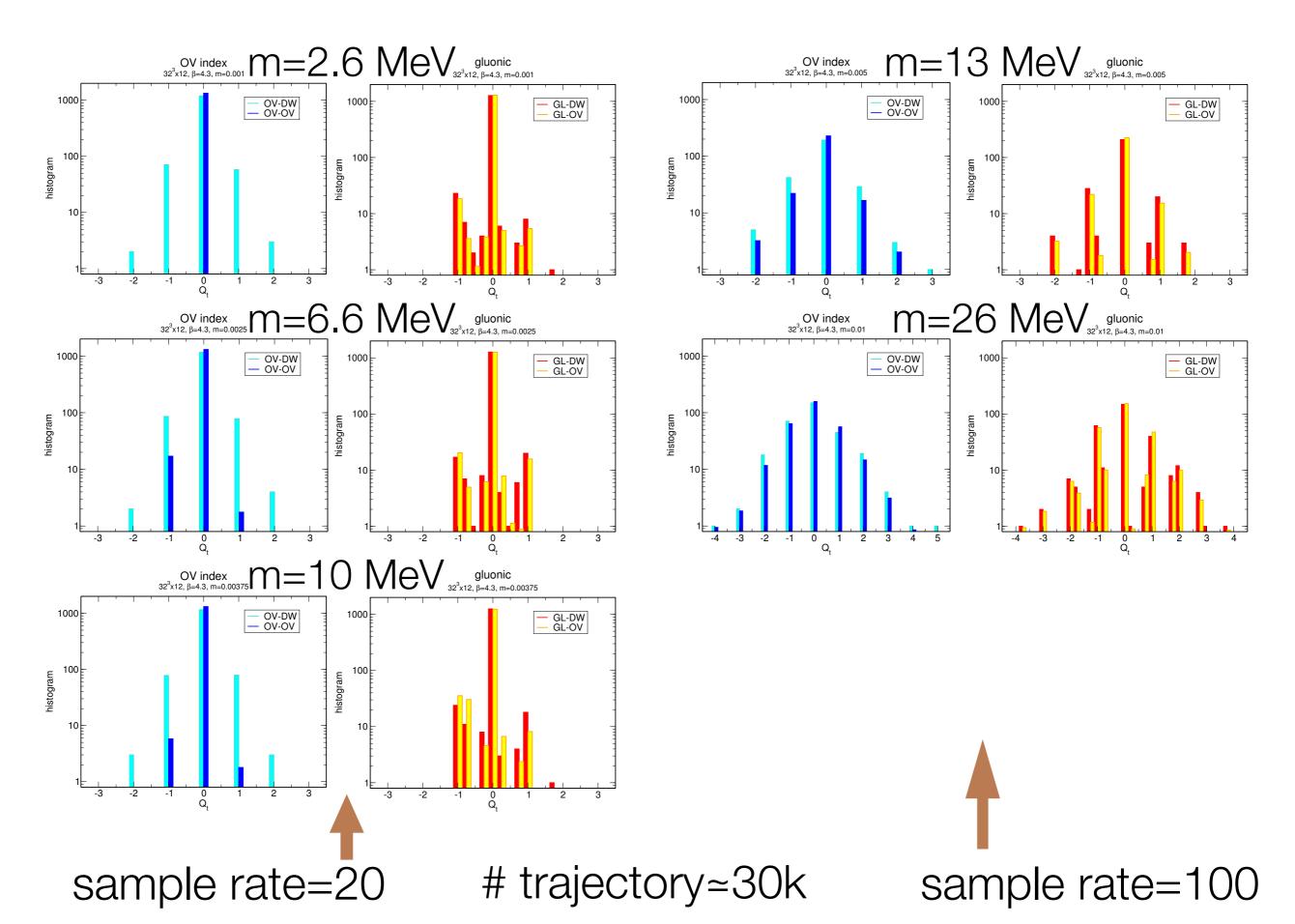
trajectory ≈ 30k

sample rate=100

summary of histogram: T=220 MeV, 32³x12



summary of histogram: T=220 MeV, 32³x12



Implication of $\chi_t(m_f)=0$ for $0 < m_f < m_c$

axion cosmology scenario may fail for $U(1)_A$ restoration

due to vanishing / suppressed topological susceptibility

- $\chi_t |_{m=0} = 0 \& d^n \chi_t / dm^n |_{m=0} = 0$ Aoki-Fukaya-Tanigchi
 - → $\chi_t = 0$ for small non-zero m OR
 - → exponential decay for T>T_c

$$\chi_t(T) \sim \begin{cases} m_q \Lambda_{\text{QCD}}^3, & T < T_c, \\ m_q^2 \Lambda_{\text{QCD}}^2 e^{-2c(m_q)T^2/T_c^2}, & T > T_c, \end{cases}$$
$$c(m_q) \to \infty \text{ as } m_q \to 0, \end{cases}$$

- axion mass and decay constant: $\chi_t = m_a^2 f_a^2$
- axion window can possibly be closed

Kitano-Yamada JHEP [1506.00370]

- see also for $\theta = \pi$ QCD non-standard case with rich implications

Di Vecchia et al. JHEP [1709.00731]

a $U(1)_A$ order parameter

- symmetry in switching flavor non-singlet pseudoscalar and scalar
- order parameter:

$$\Delta_{\pi-\delta} = \int d^4x [\langle \pi^a(x)\pi^a(0)\rangle - \langle \delta^a(x)\delta^a(0)\rangle],$$

→ 0 for $U(1)_A$ restoration

- as a result, screening masses for these channel will degenerate
 - not a sufficient condition for $U(1)_A$ restoration

relation with Dirac eigenmode spectrum $\rho(\lambda)$

- -

$$-\langle \overline{q}q \rangle = \lim_{m \to 0} \int_0^\infty d\lambda \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(0)$$

$$\Delta_{\pi-\delta} = \int_0^\infty d\lambda \rho(\lambda) \frac{2m^2}{(\lambda^2 + m^2)^2} \to \sim \rho'(0)$$

relation with Dirac eigenmode spectrum $\rho(\lambda)$

chiral condensate : order parameter of SU(2)_A

$$-\langle \overline{q}q \rangle = \lim_{m \to 0} \int_0^\infty d\lambda \rho(\lambda) \frac{2m}{\lambda^2 + m^2} = \pi \rho(0)$$

• U(1)_A:

$$\Delta_{\pi-\delta} = \int_0^\infty d\lambda \rho(\lambda) \frac{2m^2}{(\lambda^2 + m^2)^2} \to \sim \rho'(0)$$
very roughly

very roughly speaking

- very sensitive to the spectrum near $\lambda=0$
- overlap fermion, able to distinguish zero/nonzero modes, is ideal

Analytic works

- · Aoki-Fukaya-Taniguchi
 - QCD with OV regulator
 - assuming analyticity of $\rho(0)$
- $f_A \rightarrow 0$: U(1)_A br. parameter
- $\chi_{top} = 0$ for $0 < m < m_c$

- Kanazawa-Yamamoto
 - assuming $f_A \neq 0$
 - expansing free energy in m
- discussing
 - contributions of topological sectors
 - finite m and V effect
- $\chi_{top} = 2 f_A m^2$
- yields AFK results

← same assumption on p

Kanazawa - Yamamoto

- assuming $f_A \neq 0$
- expansing free energy in m

$$Z(T, V_3, M) = \exp\left[-\frac{V_3}{T}f(T, V_3, M)\right],$$

$$f(T, V_3, M) = f_0 - f_2 \operatorname{tr} M^{\dagger}M - f_A(\det M + \det M^{\dagger}) + \mathcal{O}(M^4),$$

$$M \to e^{-2i\theta_A} V_L M V_R^{\dagger} \qquad \det M \to e^{4i\theta_A} \det M \quad \text{breaks U(1)}_A$$

other terms are invariant under $U(1)_A$ all invariant under SU(2)LxR

to study topological sectors

$$M \to M e^{i\theta/N_f} \qquad Z_Q(T, V_3, M) \equiv \oint \frac{d\theta}{2\pi} e^{-iQ\theta} Z(T, V_3, M e^{i\theta/2}).$$

$$= e^{-V_4[f_0 - f_2(m_u^2 + m_d^2)]} \oint \frac{d\theta}{2\pi} e^{-iQ\theta} e^{2V_4 f_A m_u m_d \cos \theta}$$

$$= e^{-V_4[f_0 - f_2(m_u^2 + m_d^2)]} I_Q(2V_4 f_A m_u m_d),$$

$$\Delta_{\pi-\delta} = \sum_{Q=-\infty}^{\infty} \frac{Z_Q}{Z} P_Q \qquad P_Q = 8f_A \frac{I'_Q(2V_4 f_A m^2)}{I_Q(2V_4 f_A m^2)}$$

Kanazawa - Yamamoto: U(1)_A br. scenario

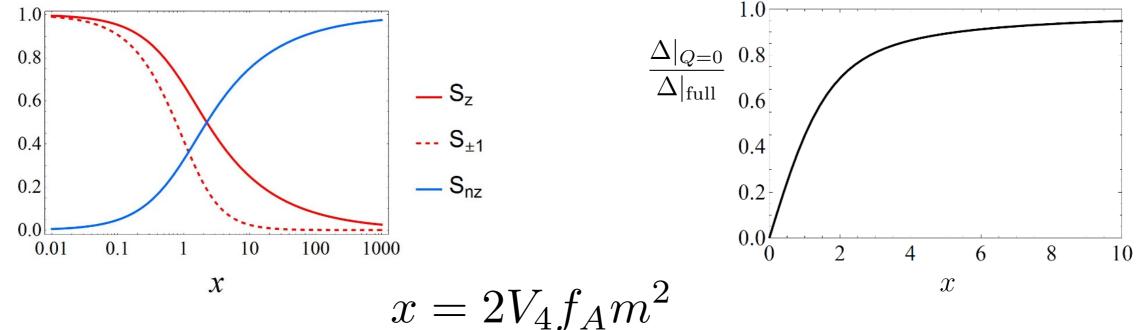
to study topological sectors

$$M \to M e^{i\theta/N_f} \qquad Z_Q(T, V_3, M) \equiv \oint \frac{d\theta}{2\pi} e^{-iQ\theta} Z(T, V_3, M e^{i\theta/2}).$$

= $e^{-V_4[f_0 - f_2(m_u^2 + m_d^2)]} \oint \frac{d\theta}{2\pi} e^{-iQ\theta} e^{2V_4 f_A m_u m_d \cos \theta}$
= $e^{-V_4[f_0 - f_2(m_u^2 + m_d^2)]} I_Q(2V_4 f_A m_u m_d),$

$$\Delta_{\pi-\delta} = \sum_{Q=-\infty}^{\infty} \frac{Z_Q}{Z} P_Q \qquad P_Q = 8f_A \frac{I'_Q(2V_4 f_A m^2)}{I_Q(2V_4 f_A m^2)}$$

relative contribution of modes



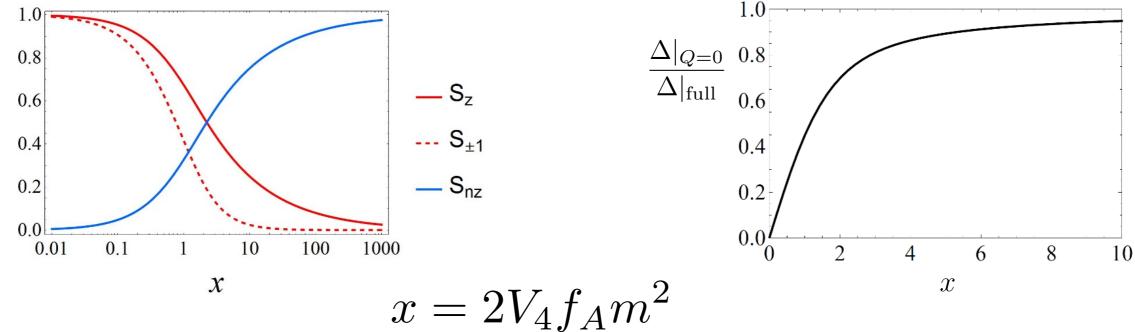
Kanazawa - Yamamoto: U(1)_A br. scenario

KY tells

- fixed topology gives wrong result at small V
- adding all Q sector or large enough volume necessary

$$\Delta_{\pi-\delta} = \sum_{Q=-\infty}^{\infty} \frac{Z_Q}{Z} P_Q \qquad P_Q = 8f_A \frac{I'_Q(2V_4 f_A m^2)}{I_Q(2V_4 f_A m^2)}$$

relative contribution of modes



Kanazawa - Yamamoto: U(1)_A br. scenario

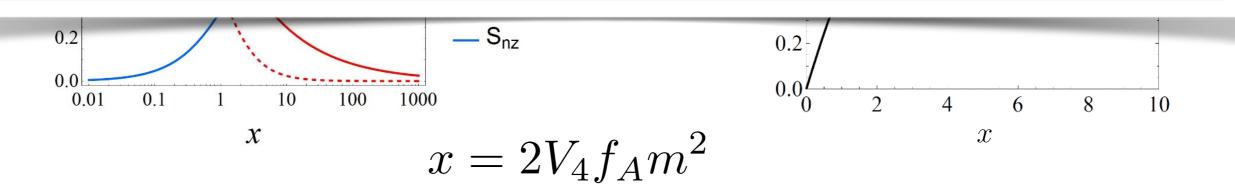
KY tells

- fixed topology gives wrong result at small V
- adding all Q sector or large enough volume necessary

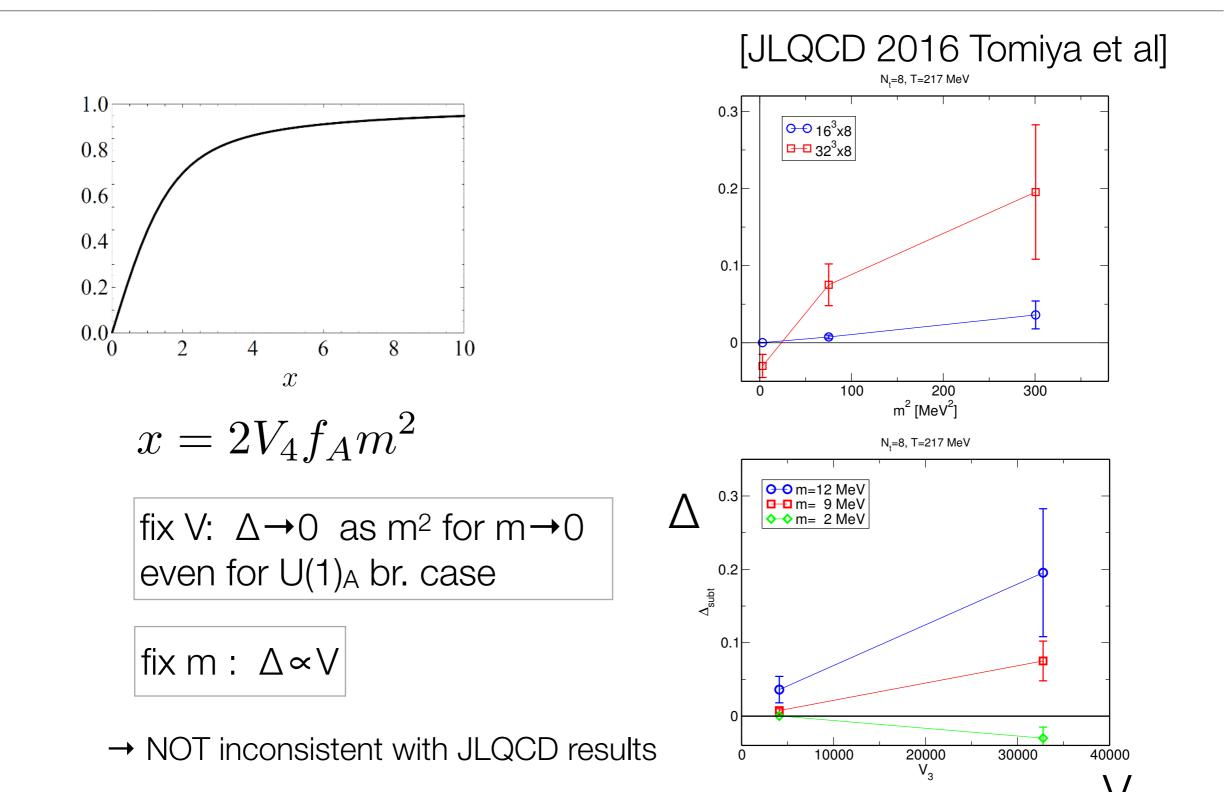
$$\Delta_{\pi-\delta} = \sum_{Q=-\infty}^{\infty} \frac{Z_Q}{Z} P_Q \qquad P_Q = 8f_A \frac{I'_Q(2V_4 f_A m^2)}{I_Q(2V_4 f_A m^2)}$$

JLQCD

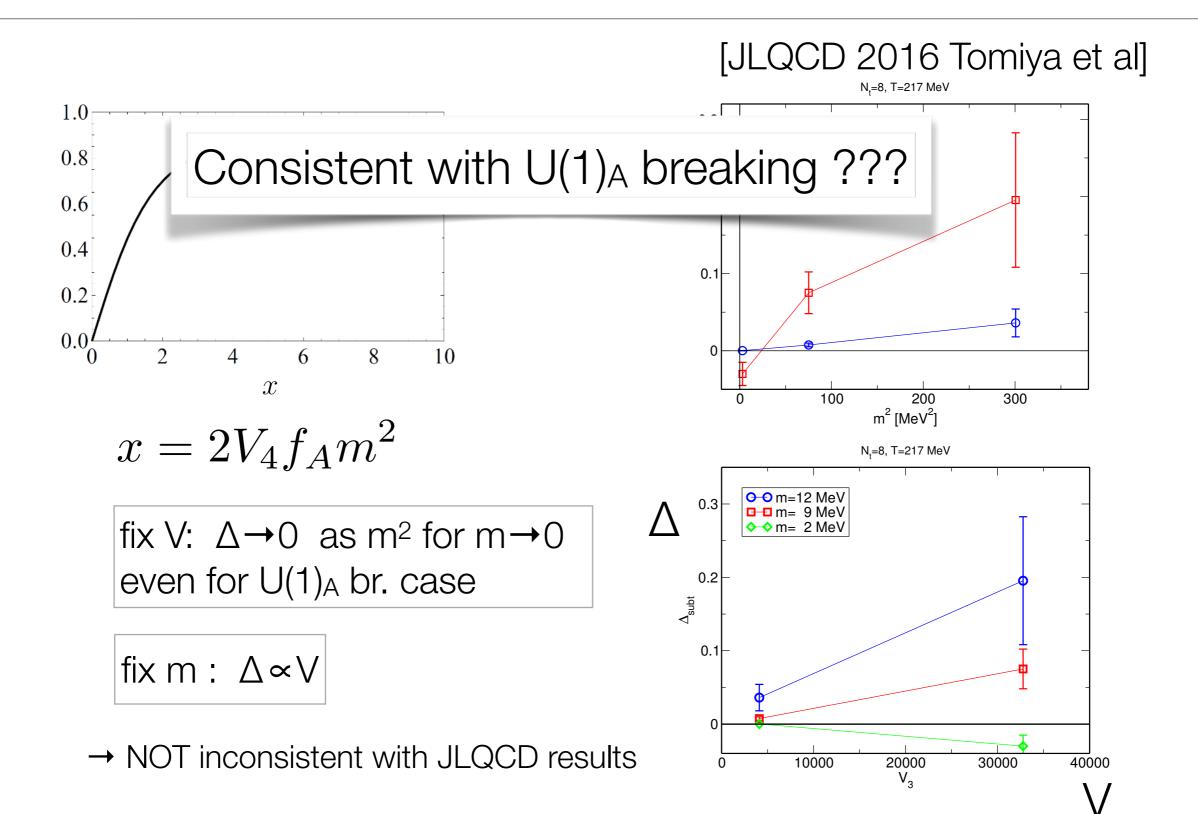
- does not fix topology (DW)
- zero-mode subtraction may have similar effect to fix Q=0
 - for smallest m: actually effectively fixed to Q=0



compare with JLQCD Δ with non-zero modes



compare with JLQCD Δ with non-zero modes



- DWF ensemble \rightarrow reweighted to overlap
 - Möbius DWF: almost exact chiral symmetry: $m_{res} = 0.05(3)$ MeV ($\beta=4.3$, $L_s=16$)
 - Overlap: exact chiral symmetry
- DW→OV reweighting

- DWF ensemble \rightarrow reweighted to overlap
 - Möbius DWF: almost exact chiral symmetry: $m_{res} = 0.05(3)$ MeV (β =4.3, Ls=16)
 - Overlap: exact chiral symmetry
- DW→OV reweighting $\langle \mathcal{O} \rangle_{\text{ov}} = \frac{\langle \mathcal{O} R \rangle_{\text{DW}}}{\langle R \rangle_{\text{DW}}},$

- DWF ensemble \rightarrow reweighted to overlap
 - Möbius DWF: almost exact chiral symmetry: $m_{res} = 0.05(3)$ MeV (β =4.3, Ls=16)
 - Overlap: exact chiral symmetry
- DW \rightarrow OV reweighting $\langle \mathcal{O} \rangle_{\text{ov}} = \frac{\langle \mathcal{O} R \rangle_{\text{DW}}}{\langle R \rangle_{\text{DW}}},$ $R \equiv \frac{\det[H_{\text{ov}}(m)]^2}{\det[H_{\text{DW}}^{4\text{D}}(m)]^2} \times \frac{\det[H_{\text{DW}}^{4\text{D}}(1/4a)]^2}{\det[H_{\text{ov}}(1/4a)]^2}.$

- DWF ensemble \rightarrow reweighted to overlap
 - Möbius DWF: almost exact chiral symmetry: $m_{res} = 0.05(3)$ MeV (β =4.3, Ls=16)
 - Overlap: exact chiral symmetry

$$\begin{aligned} \mathsf{DW} \to \mathsf{OV} \text{ reweighting} \\ \langle \mathcal{O} \rangle_{\mathrm{ov}} &= \frac{\langle \mathcal{O}R \rangle_{\mathrm{DW}}}{\langle R \rangle_{\mathrm{DW}}}, \\ R &\equiv \frac{\det[H_{\mathrm{ov}}(m)]^2}{\det[H_{\mathrm{ov}}^{4D}(m)]^2} \times \frac{\det[H_{\mathrm{DW}}^{4D}(1/4a)]^2}{\det[H_{\mathrm{ov}}(1/4a)]^2}. \\ D_{ov} &= \frac{1}{2} \underbrace{\sum_{\lambda_i < \lambda_{th}} (1 + \gamma_5 \mathrm{sgn}\lambda_i) |\lambda_i\rangle \langle \lambda_i| + D_{DW}^{4D}}_{\mathrm{Exact low modes}} \underbrace{\left(1 - \sum_{\lambda_i < \lambda_{th}} |\lambda_i\rangle \langle \lambda_i|\right)}_{\mathrm{High modes}}, \end{aligned}$$

- DWF ensemble → reweighted to overlap
 - Möbius DWF: almost exact chiral symmetry: $m_{res} = 0.05(3)$ MeV (β =4.3, Ls=16)
 - Overlap: exact chiral symmetry

$$DW \rightarrow OV \text{ reweighting} \qquad \lambda \text{ for } H_M = \gamma_5 \frac{\alpha D_W}{2 + D_W}$$

$$\langle \mathcal{O} \rangle_{ov} = \frac{\langle \mathcal{O} R \rangle_{DW}}{\langle R \rangle_{DW}},$$

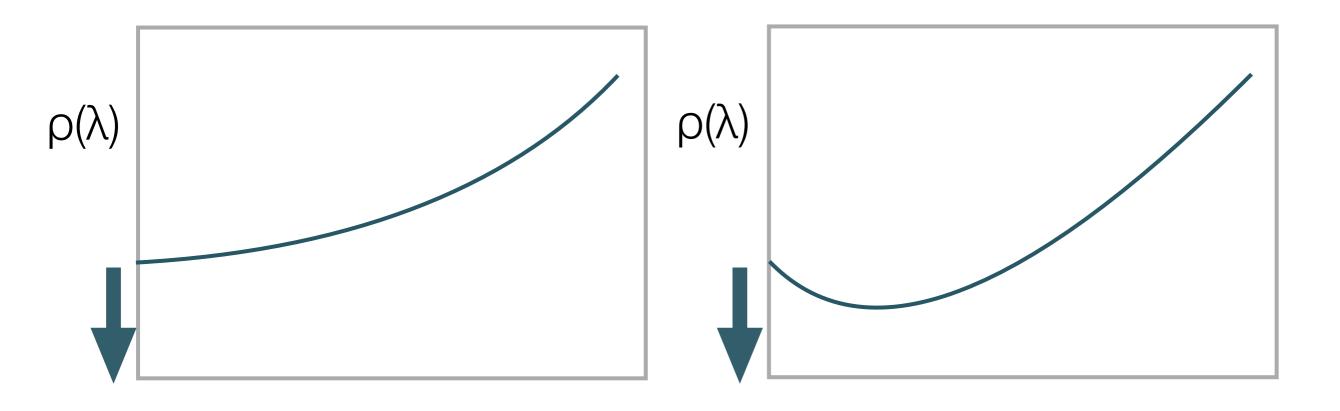
$$R \equiv \frac{\det[H_{ov}(m)]^2}{\det[H_{DW}^{4D}(m)]^2} \times \frac{\det[H_{DW}^{4D}(1/4a)]^2}{\det[H_{ov}(1/4a)]^2}.$$

$$D_{ov} = \frac{1}{2} \underbrace{\sum_{\lambda_i < \lambda_{th}} (1 + \gamma_5 \text{sgn}\lambda_i) |\lambda_i\rangle \langle \lambda_i| + D_{DW}^{4D}}_{\text{Exact low modes}} \underbrace{\left(1 - \sum_{\lambda_i < \lambda_{th}} |\lambda_i\rangle \langle \lambda_i|\right)}_{\text{High modes}},$$

simply speaking, in the $m \rightarrow 0$ limit

• $U(1)_A$ restores if

and not if



with $\rho(0) \rightarrow 0$ and $\rho'(0) \neq 0$ • non-analyticity at $\lambda \rightarrow 0$ required

with $\rho(0) \rightarrow 0$ and $\rho'(0) \rightarrow 0$