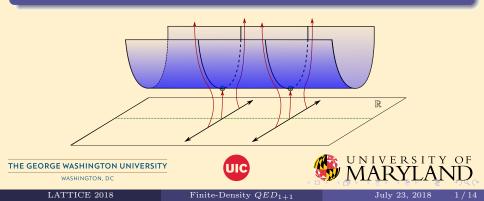
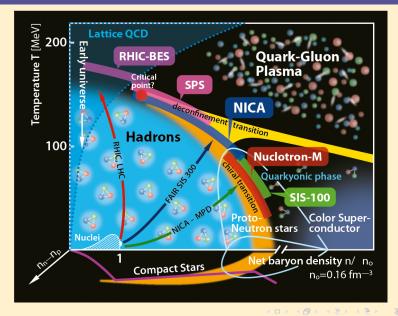
Flowing Gauge Theories: Finite-Density QED_{1+1} Henry Lamm

w/ Andrei Alexandru, Gökçe Başar, Paulo Bedaque, and Scott Lawrence

1807.02027



Many interesting problems in QFT exist at $\mu \neq 0$



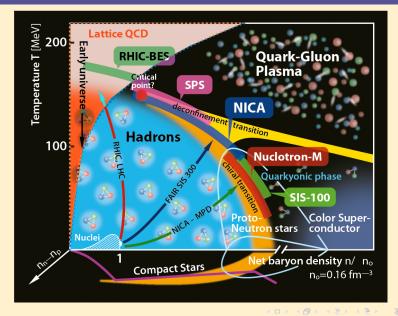
LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018

2/14

Many interesting problems in QFT exist at $\mu \neq 0$



LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018

2/14

...but analytically, we know ways to deal¹

¹M. Cristoforetti et al. "New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble". In: *Phys. Rev.* D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].

LATTICE 2018

Finite-Density QED_{1+1}

 Image: black in the second second

...but analytically, we know ways to deal¹

$$\int \mathbf{D}\phi e^{-S} = \int_{-\infty}^{+\infty} \mathrm{d}x e^{-(x-i\alpha)^2} = \sqrt{\pi}$$

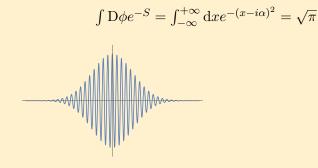
¹M. Cristoforetti et al. "New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble". In: *Phys. Rev.* D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].

LATTICE 2018

Finite-Density QED_{1+1}

イロト イポト イヨト イヨト

...but analytically, we know ways to deal¹



LATTICE 2018

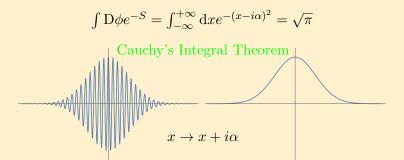
Finite-Density QED_{1+1}

 July 23, 2018
 3 / 14

イロト イポト イヨト イヨ

¹M. Cristoforetti et al. "New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble". In: *Phys. Rev.* D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].

...but analytically, we know ways to $deal^1$



• CIT guarantees holomorphic f(x) (*physics*) unchanged

LATTICE 2018

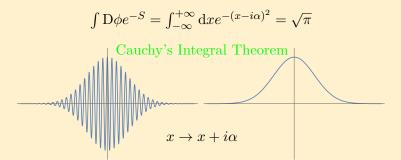
Finite-Density QED_{1+1}

July 23, 2018 3 / 14

イロト イポト イヨト イヨト

¹M. Cristoforetti et al. "New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble". In: *Phys. Rev.* D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].

...but analytically, we know ways to $deal^1$



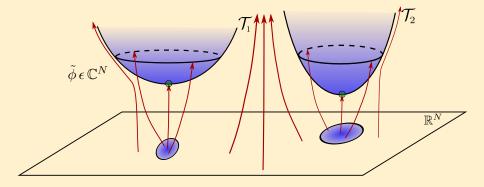
CIT guarantees holomorphic f(x) (physics) unchanged
Nonholomorphic f(x), like the average sign, (σ), can change!

LATTICE 2018

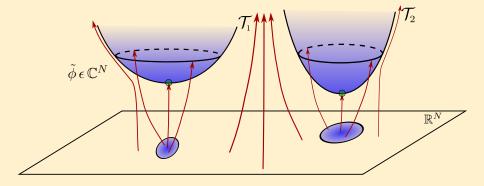
イロト イポト イヨト イヨト 二日

¹M. Cristoforetti et al. "New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble". In: *Phys. Rev.* D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].

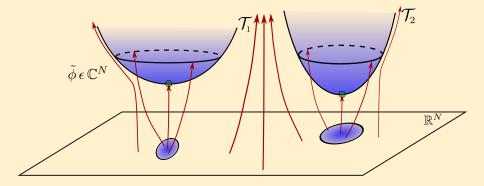
• Lefschetz thimbles: steepest descent from *isolated* critical points



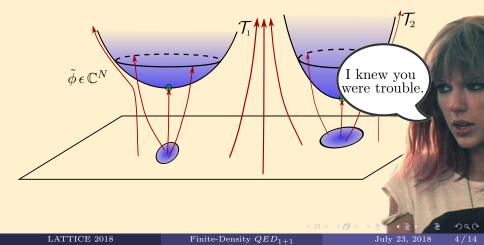
- Lefschetz thimbles: steepest descent from *isolated* critical points
- $S_I = \text{constant}$ over one thimble $\implies \langle \sigma \rangle_{\mathcal{T}} \approx 1$



- Lefschetz thimbles: steepest descent from *isolated* critical points
- $S_I = \text{constant}$ over one thimble $\implies \langle \sigma \rangle_{\mathcal{T}} \approx 1$
- Thimbles usually unknown; hard to determine correct set.



- Lefschetz thimbles: steepest descent from *isolated* critical points
- $S_I = \text{constant}$ over one thimble $\implies \langle \sigma \rangle_{\mathcal{T}} \approx 1$
- Thimbles usually unknown; hard to determine correct set.



Evolve \mathbb{R}^N with holomorphic gradient flow²: $\frac{d\phi_i}{dt} = \overline{\frac{\partial S}{\partial \phi_i}}$

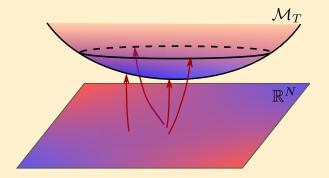
LATTICE 2018

Finite-Density QED_{1+1}

(1) (A) (A) (A) (A)

 $^{^2}A.$ Alexandru et al. "Sign problem and Monte Carlo calculations beyond Lefschetz thimbles". In: JHEP 05 (2016), p. 053. arXiv: 1512.08764 [hep-lat].

Evolve \mathbb{R}^N with holomorphic gradient flow²: $\frac{d\phi_i}{dt} = \overline{\frac{\partial S}{\partial \phi_i}}$



 $^2A.$ Alexandru et al. "Sign problem and Monte Carlo calculations beyond Lefschetz thimbles". In: JHEP 05 (2016), p. 053. arXiv: 1512.08764 [hep-lat].

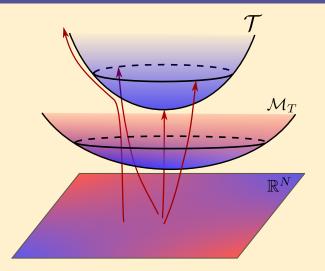
LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018 5

イロト イポト イヨト イヨト 三日

Evolve \mathbb{R}^N with holomorphic gradient flow²: $\frac{d\phi_i}{dt} = \overline{\frac{\partial S}{\partial \phi_i}}$



²A. Alexandru et al. "Sign problem and Monte Carlo calculations beyond Lefschetz thimbles". In: *JHEP* 05 (2016), p. 053. arXiv: 1512.08764 [hep-lat].

LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018 5/

(日) (同) (注) (注) (注)

The Jacobian must be flowed as well: $\frac{dJ_{ij}}{dt} = 1$

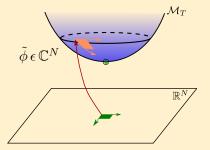
LATTICE 2018

Finite-Density QED_{1+1}

³A. Alexandru et al. "Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles". In: *Phys. Rev.* D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

⁴A. Alexandru et al. "Deep Learning Beyond Lefschetz Thimbles". In: *Phys. Rev.* D96.9 (2017), p. 094505. arXiv: 1709.01971 [hep-lat].

The Jacobian must be flowed as well: $\frac{dJ_{ij}}{dt} = \frac{\partial^2 S}{\partial \zeta_i \partial \zeta_j}$



⁴A. Alexandru et al. "Deep Learning Beyond Lefschetz Thimbles". In: *Phys. Rev.* D96.9 (2017), p. 094505. arXiv: 1709.01971 [hep-lat].

LATTICE 2018

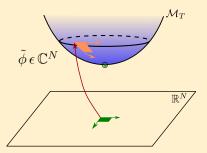
Finite-Density QED_{1+1}

July 23, 2018 6 / 14

³A. Alexandru et al. "Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles". In: *Phys. Rev.* D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

The Jacobian must be flowed as well: $\frac{dJ_{ij}}{dt} = \frac{\partial^2 S}{\partial C_i \partial C_k} \bar{J}_{kj}$

Wrongians: $J \approx 1$ or $\text{Im}(J) = 0 \implies \text{Speed up but reweighting}^3$



LATTICE 2018

Finite-Density QED_{1+1}

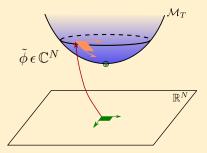
July 23, 2018 6 / 14

³A. Alexandru et al. "Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles". In: *Phys. Rev.* D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

⁴A. Alexandru et al. "Deep Learning Beyond Lefschetz Thimbles". In: *Phys. Rev.* D96.9 (2017), p. 094505. arXiv: 1709.01971 [hep-lat].

The Jacobian must be flowed as well: $\frac{dJ_{ij}}{dt} = \frac{\partial^2 S}{\partial \zeta_i \partial \zeta_i}$

Wrongians: $J \approx 1$ or $\text{Im}(J) = 0 \implies \text{Speed up but reweighting}^3$



Prohibitive reweighting from W - J from **exceptional** configurations when T is large

LATTICE 2018

Finite-Density QED_{1+1}

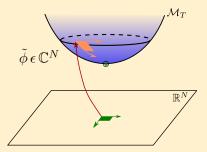
July 23, 2018 6 / 14

³A. Alexandru et al. "Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles". In: *Phys. Rev.* D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

⁴A. Alexandru et al. "Deep Learning Beyond Lefschetz Thimbles". In: *Phys. Rev.* D96.9 (2017), p. 094505. arXiv: 1709.01971 [hep-lat].

The Jacobian must be flowed as well: $\frac{dJ_{ij}}{dt} = \frac{\partial^2 S}{\partial \zeta_i \partial \zeta_k} \bar{J}_{kj}$

Wrongians: $J \approx 1$ or $\text{Im}(J) = 0 \implies \text{Speed up but reweighting}^3$



Prohibitive reweighting from W - J from **exceptional** configurations when T is large

Gets worse in: $d > 1, g \to \infty$, gauge theories, and at transition⁴

LATTICE 2018

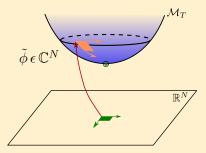
Finite-Density QED_{1+1}

³A. Alexandru et al. "Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles". In: *Phys. Rev.* D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

⁴A. Alexandru et al. "Deep Learning Beyond Lefschetz Thimbles". In: *Phys. Rev.* D96.9 (2017), p. 094505. arXiv: 1709.01971 [hep-lat].

The Jacobian must be flowed as well: $\frac{dJ_{ij}}{dt} = \frac{\partial}{\partial \zeta_i}$

Wrongians: $J \approx 1$ or $\text{Im}(J) = 0 \implies \text{Speed up but reweighting}^3$



Prohibitive reweighting from W - J from **exceptional** configurations when T is large

Gets worse in: $d > 1, g \to \infty$, gauge theories, and at transition⁴ These are technical complications... ...but gauge theories have conceptual issues

LATTICE 2018

Finite-Density QED_{1+1}

³A. Alexandru et al. "Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles". In: *Phys. Rev.* D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

⁴A. Alexandru et al. "Deep Learning Beyond Lefschetz Thimbles". In: *Phys. Rev.* D96.9 (2017), p. 094505. arXiv: 1709.01971 [hep-lat].

In the continuum:

$$S = \int \mathrm{d}^2 x \, \left[F_{\mu\nu} F^{\mu\nu} + \bar{\psi}^a (\partial \!\!\!/ + \mu_Q \gamma_0 + m - g Q_a A\!\!\!/) \psi^a \right]$$

In the continuum:

$$S = \int \mathrm{d}^2 x \, \left[F_{\mu\nu} F^{\mu\nu} + \bar{\psi}^a (\partial \!\!\!/ + \mu_Q \gamma_0 + m - g Q_a A) \psi^a \right]$$

which we discretize and integrate out the fermions to obtain:

$$S = \frac{1}{g^2} \sum_{r} (1 - \cos P_r) - \sum_{a} \ln \det D_{xy}^{(a)}$$
$$P_r \equiv A_1(r) + A_0(r + \hat{x}) - A_1(r + \hat{t}) - A_0(r) .$$
$$D_{xy}^{(a)} = m_a \delta_{xy} + \frac{1}{2} \sum_{\nu \in \{0,1\}} \eta_\nu \left[e^{iQ_a A_\nu(x) + \mu \delta_{\nu 0}} \delta_{x+\hat{\nu},y} - e^{-iQ_a A_\nu(x) - \mu \delta_{\nu 0}} \delta_{x,y+\hat{\nu}} \right].$$

・ロト ・御子 ・モチ・・モー

In the continuum:

$$S = \int \mathrm{d}^2 x \, \left[F_{\mu\nu} F^{\mu\nu} + \bar{\psi}^a (\partial \!\!\!/ + \mu_Q \gamma_0 + m - g Q_a A\!\!\!/) \psi^a \right]$$

which we discretize and integrate out the fermions to obtain:

$$S = \frac{1}{g^2} \sum_{r} (1 - \cos P_r) - \sum_{a} \ln \det D_{xy}^{(a)}$$
$$P_r \equiv A_1(r) + A_0(r + \hat{x}) - A_1(r + \hat{t}) - A_0(r) .$$
$$D_{xy}^{(a)} = m_a \delta_{xy} + \frac{1}{2} \sum_{\nu \in \{0,1\}} \eta_\nu \left[e^{iQ_a A_\nu(x) + \mu \delta_{\nu 0}} \delta_{x+\hat{\nu},y} - e^{-iQ_a A_\nu(x) - \mu \delta_{\nu 0}} \delta_{x,y+\hat{\nu}} \right].$$

•
$$g = 0.50$$
 and $m_a = 0.05$, $Q_1 = Q_+ = +2$ and $Q_{2,3} = Q_- = -1$

・ロト ・御子 ・モチ・・モー

In the continuum:

$$S = \int \mathrm{d}^2 x \, \left[F_{\mu\nu} F^{\mu\nu} + \bar{\psi}^a (\partial \!\!\!/ + \mu_Q \gamma_0 + m - g Q_a A\!\!\!/) \psi^a \right]$$

which we discretize and integrate out the fermions to obtain:

$$S = \frac{1}{g^2} \sum_{r} (1 - \cos P_r) - \sum_{a} \ln \det D_{xy}^{(a)}$$
$$P_r \equiv A_1(r) + A_0(r + \hat{x}) - A_1(r + \hat{t}) - A_0(r) .$$
$$D_{xy}^{(a)} = m_a \delta_{xy} + \frac{1}{2} \sum_{\nu \in \{0,1\}} \eta_\nu \left[e^{iQ_a A_\nu(x) + \mu \delta_{\nu 0}} \delta_{x + \hat{\nu}, y} - e^{-iQ_a A_\nu(x) - \mu \delta_{\nu 0}} \delta_{x, y + \hat{\nu}} \right].$$

•
$$g = 0.50$$
 and $m_a = 0.05$, $Q_1 = Q_+ = +2$ and $Q_{2,3} = Q_- = -1$

• Baryon with $am_B \approx 0.6$

LATTICE 2018

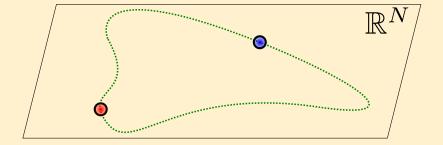
July 23, 2018 7/2

LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018 8 / 14

3



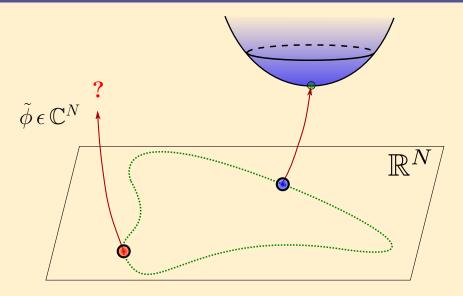
LATTICE 2018

Finite-Density QED_{1+1}

 ■

 ■

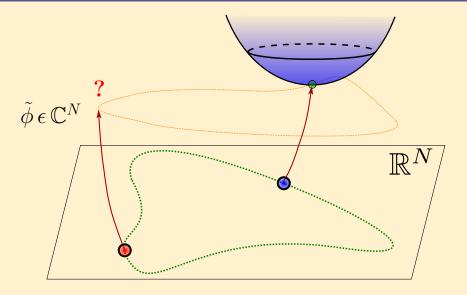
メロト メタト メヨト メヨト



LATTICE 2018

Finite-Density QED_{1+1}

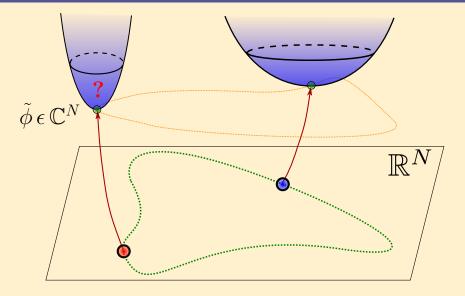
メロト メタト メヨト メヨト



LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018 8 / 1



LATTICE 2018

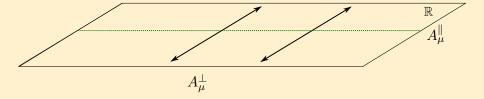
Finite-Density QED_{1+1}

July 23, 2018 8 / 1

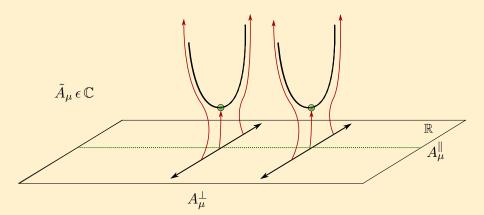
メロト メタト メヨト メヨト

- E

э



3

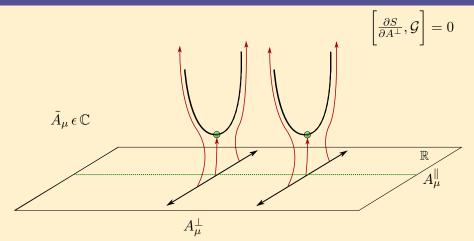


LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018 9/

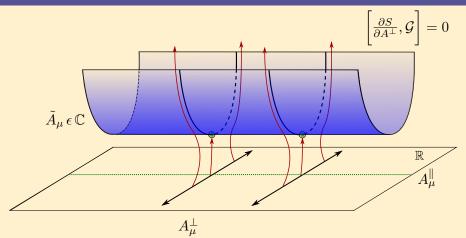
э



LATTICE 2018

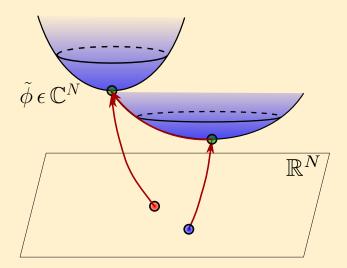
Finite-Density QED_{1+1}

July 23, 2018 9 /



Manifold under flow is just $\mathcal{M}_g \oplus \mathcal{G}!$

Stokes' phenomenon prevent thimble decomposition



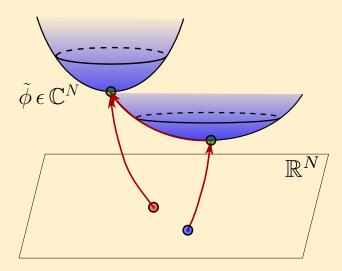
LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018

0/14

Stokes' phenomenon prevent thimble decomposition

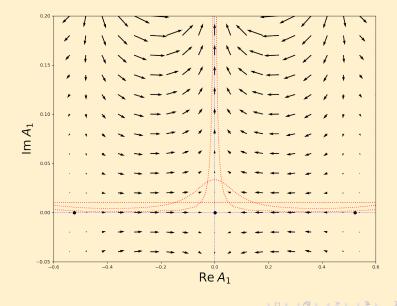


Effect of Stokes' phenomenon on flow is $\langle \sigma \rangle < 1$ due to "bumps"

LATTICE 2018

)/14

Ain't no thang but a flow thang.



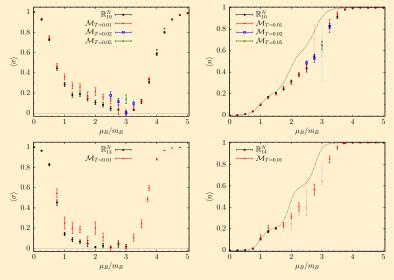
LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018

11/14

QED_{1+1}



 $\langle \sigma \rangle$ and $\langle n \rangle$ as a function of μ for 10, 14 × 10 for QED_{1+1} with $N_f = 3$

LATTICE 2018

Finite-Density QED_{1+1}

July 23, 2018 1

LATTICE 2018

• Complexification is a systematic way to reduce the sign problem

=

- Complexification is a **systematic** way to reduce the sign problem
- QED_{1+1} (and other abelian gauge theories) don't have any theoretical issues

イロト イポト イヨト イヨト

- Complexification is a **systematic** way to reduce the sign problem
- QED_{1+1} (and other abelian gauge theories) don't have any theoretical issues
- The computational expense requires novel developments that can be model-dependent

イロト イポト イヨト イヨト

- Complexification is a **systematic** way to reduce the sign problem
- QED_{1+1} (and other abelian gauge theories) don't have any theoretical issues
- The computational expense requires novel developments that can be model-dependent
- Ongoing work toward **non-abelian** theories!

- Complexification is a **systematic** way to reduce the sign problem
- QED_{1+1} (and other abelian gauge theories) don't have any theoretical issues
- The computational expense requires novel developments that can be model-dependent
- Ongoing work toward **non-abelian** theories!

Questions?