
Causal set is a partially ordered set defined as: a ≺ b if and only if one can travel from
a to b without going faster than the speed of light

Topology is defined by Alexandrov sets α(p, q) = {r|p ≺ r ≺ q}

Discreteness is defined through local finiteness: ]α(p, q) <∞

Metric is defined through τ(p, q) = ξmax{n|∃r1, · · · , rn−1(p ≺ r1 ≺ · · · ≺ rn−1 ≺ q)}

Note: It is max rather than min because of the minus sign in Minkowskian metric. For
example, if geodesic is along t-axis, |dt| ≥

√
(dt)2 − |d~x|2 (sign convention is (+−−−))
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Key idea

a) Assume smooth manifold and the presence of coordinates

b) Re-express coordinate-dependent expressions in a way that coordinates aren’t explic-
itly mentioned

c) Copy the result for the non-manifold situation (ex: tree-like causal structure, etc)

Key difference between causal sets and other discrete theories: In manifold
situation, the causal set assumption is Poisson scattering =⇒ lack of structure, emphasis on
statistical properties

Key difference between my work and other types of causal set theory: I am
trying to re-interpret causal structure, the definition of fields, etc, while still sticking to
statistical approach
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Conventional version of causal set Lagrangian (Sorkin at el)

Use −φ∆φ instead of +∂µφ∂µφ

2D case:
(∆φ)(p) =

∑
{(r,s)|α(r,p)={s}}

(φ(p) + φ(r)− 2φ(s)) (1)

d dimension

∆φ =
∑

rn(d)≺rn(d)−1≺···≺r1≺p

(c0(d)φ(p) + c1(d)φ(r1) + · · ·+ cn(d)(d)φ(rn(d))) (2)

NOTE Cancelation only occurs sufficiently far away from the boundary

What I don’t like about it: Existence of the boundary =⇒ Preferred frame =⇒
invalidation of stated claim of causal set theory
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Steven Johnston’s propagator

Summing over all possible paths

1) Propagators are defined direction, WITHOUT the use of Lagrangians

2) Propagators don’t face the problem of non-locality because of the TWO endpoints

Problem: Coupling different propagators to each other during φ4-coupling

Easy solution: Impose a condition by hand which edges are allowed to be φ4-coupled
and which aren’t

4



DILLEMA: Locality =⇒ Finately many neighbors =⇒ Nearest neighbor =⇒ Preferred
frame

MY ANSWER: The price for nearest edge neighbor is violation of Newtons first law
INSTEAD OF preferred frame

a) the nearest edge-neighbor relates to the fact that geodesic wiggles

b) wiggling of geodesic is interpretted as gravity

THEREFORE

c) nearest edge-neighbor phenomenon is ”explained away” through gravity
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Conventional thinking

a(p, q) =

∫
γ(p,q)

Aµ(γ(τ))γ̇µ(τ)dτ (3)

where γ is a geodesic connecting p and q

φ(x) is given

My thinking

a) Replace Aµ(x) and φ(x) with Aµ(x, p) and φ(x, p)

b) Assume Aµ(x, p1) ≈ Aµ(x, p2) and φ(x, p1) ≈ φ(x, p2) if the relative velocity of refer-
ence frames corresponding to p1 and p2 is not too close to c

c) Assume that in the reference frames, with resect to which p/|p| isn’t too close to c,
φ(x, p) and Aµ(x, p) are both locally linear

d) Define

a(p, q) =

∫
γ(p,q)

Aµ(γ(τ), γ̇(τ))ẋµ(τ)dτdτ (4)

φ(p, q) =
1

τ(p, q)

∫
γ(p,q)

φ(γ(τ), γ̇(τ))ẋµ(τ)dτ (5)

NOTE: Since path integral is dominated by NON-DIFFERENTIABLE paths, the
ssumptions b and c are dropped once we are under the path integral; those assumptions
ONLY apply to “well behaved” functions we are thinking of in order to “motivate” our
definition of the action.

NOTE: a(p, q) = −a(q, p), BUT φ(p, q) = +φ(q, p)
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Setup

L = ηscal

∫
α(p,q)

(K1(φ; p, q, r)− Cscal(d)K2(φ; p, q)) (6)

K1 =

∫
α(p,q)

ddr(top− bottom)2 =

∫
α(p,q)

ddr(φ(r, q)− φ(p, r))2 (7)

K1 =

∫
α(p,q)

ddr

(
φ

(
r+

ê0
2

)
−φ
(
r
ê0
2

))2

=

∫
α(p,q)

ddr

(
∂φ

∂x0

∣∣∣∣
0

)2

=

(
∂φ

∂x0

∣∣∣∣
0

)2 ∫
α(p,q)

ddr (8)

K2 =

∫
α(p,q)

ddr(left− right)2 =

∫
α(p,q)

ddr

(
φ(p, r) + φ(r, q)

2
− φ(p, q)

)2

(9)

K2 =

∫
α(p,q)

ddr

(
φ

(
r

2

)
− φ(0)

)2

=

∫
α(p,q)

ddr

(
∂φ

∂r0

∣∣∣∣
0

r0

2
+
∂φ

∂r0

∣∣∣∣
0

r0

2

)2

=

=
1

4

[(
∂φ

∂r0

∣∣∣∣
0

)2 ∫
α(p,q)

ddr(r0)2 +

(
∂φ

∂r1

∣∣∣∣
0

)2 ∫
α(p,q)

ddr(r1)2 + 2
∂φ

∂r0
∂φ

∂r1

∫
α(p,q)

ddrr0r1
]

(10)

Odd Function =⇒
∫
α(p,q)

ddr r0r1 = 0 (11)

K2 =
1

4

((
∂φ

∂r0

∣∣∣∣
0

)2 ∫
α(p,q)

ddr(r0)2 +

(
∂φ

∂r1

∣∣∣∣
0

)2 ∫
α(p,q)

ddr(r1)2
)

(12)
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Finding Cscal(d)(
∂φ

∂x0

∣∣∣∣
0

)2

− Cscal(d)

4

(
〈t2〉
(
∂φ

∂x0

∣∣∣∣
0

)2

+ 〈(r1)2〉
(
∂φ

∂x1

∣∣∣∣
0

)2)
=

=

(
(1− Cscal(d)

4
〈t2〉
)(

∂φ

∂x0

∣∣∣∣
0

)2

− Cscal(d)

4
〈(r1)2〉

(
∂φ

∂x1

∣∣∣∣
0

)2

(13)

1−Cscal(d)

4
〈t2〉 =

Cscal(d)

4
〈(r1)2〉 =⇒ 1 =

Cscal(d)

4
(〈t2〉+〈(r1)2〉 =⇒ Cscal(d) =

4

〈t2〉+ 〈(r1)2〉

ξ = 1− t =⇒ 〈(1− t)k〉 =

∫ 1

0
ξkξd−1dξ∫ 1

0
ξd−1dξ

=

∫ 1

0
ξd+k−1dξ∫ 1

0
ξd−1dξ

=
1

d+k
1
d

=
d

d+ k
(14)

〈t〉 = 1− 〈1− t〉 = 1− d

d+ 1
=

1

d+ 1
(15)

〈t2〉 = 〈(1− (1− t))2〉 = 1− 2〈1− t〉+ 〈(1− t)2〉 = 1− 2d

d+ 1
+

d

d+ 2
=

=
(d+ 1)(d+ 2)− 2d(d+ 2) + d(d+ 1)

(d+ 1)(d+ 2)
=
d2 + 3d+ 2− 2d2 − 4d+ d2 + d

(d+ 1)(d+ 2)
=

=
(1− 2 + 1)d2 + (3− 4 + 1)d+ 2

(d+ 1)(d+ 2)
=

2

(d+ 1)(d+ 2)
(16)

〈r2〉 =

∫ 1

0
r2rd−2(1− r)dr∫ 1

0
rd−2(1− r)dr

=

∫ 1

0
(rd − rd+1)dr∫ 1

0
(rd−2 − rd−1)dr

=
1
d+1
− 1

d+2
1
d−1 −

1
d

=

=

d+2−d−1
(d+1)(d+2)

d−d+1
(d−1)d

=

1
(d+1)(d+2)

1
(d−1)d

=
(d− 1)d

(d+ 1)(d+ 2)
(17)

〈r2〉 =
d−1∑
k=1

〈(xk)2〉 = (d− 1)〈(x1)2〉 =⇒ 〈(x1)2〉 =
1

d− 1
〈r2〉 =

d

(d+ 1)(d+ 2)
(18)

Cscal(d) =
4

〈t2〉+ 〈(x1)2〉
=

4
2

(d+1)(d+2)
+ d

(d+1)(d+2)

=
4
d+2

(d+1)(d+2)

=
4
1
d+1

= 4(d+ 1) (19)
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Avoiding C(d)

K1(f ; p1, q1)− C(d)K2(f ; p1, q1) = K1(f ; p2, q2)− C(d)K2(f ; p2, q2) (20)

K1(f ; p1, q1)−K1(f ; p2, q2) = C(d)(K2(f ; p1, q1)−K2(f ; p2, q2)) (21)

C(d) =
K1(f ; p1, q1)−K1(f ; p2, q2)

K2(f ; p1, q1)−K2(f ; p2, q2)
(22)

L = η(K1(φ; p0, q0)− C(d)K2(φ; p0, q0)) (23)

L = η

(
K1(φ; p0, q0)−

K1(f ; p1, q1)−K1(f ; p2, q2)

K2(f ; p1, q1)−K2(f ; p2, q2)
K2(φ; p0, q0)

)
(24)

L = η
∑[

W (p1, q1, p2, q2)

(
K1(φ; p0, q0)−

K1(f ; p1, q1)−K1(f ; p2, q2)

K2(f ; p1, q1)−K2(f ; p2, q2)
K2(φ; p0, q0)

)]
(25)

w(p1, p2, q1, q2) = η
W (p1, p2, q1, q2)

K1(f ; p1, q1)−K1(f ; p2, q2)
(26)

L =
∑(

w(p1, p2, q1, q2)(K1(φ; p0, q0)(K2(f ; p1, q1)−K2(f ; p2, q2))−

−K2(φ; p0, q0))(K1(f ; p1, q1)−K1(f ; p2, q2))
)

(27)

To define f introduce p3 and write

fp3(s) = τ(p3, s) (28)

Need both p3 and q3 for the electromagnetic field
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Charged scalar field based on short edges

Gauge field on the edge:

s1 ≺ s2 =⇒ φ(s1, s2) =
1

τ(s1, s2)

∫
γ(s1,s2)

φ(s)|ds| (29)

Scalar field at the left: φ(p, q)

Scalar field at the right: (φ(p, r) + φ(r, q))/2 (Note: φ(r, q) = +φ(q, r))

Gauge field from left to right: (a(p, r) + a(q, r))/2 (Note: a(r, q) = −a(q, r))

Left-right contribution to the Lagrangian:

∫
α(p,q)

ddr

∣∣∣∣(1 +
i

2
(a(p, r) + a(q, r))

)
φ(p, q)− 1

2
(φ(p, r) + φ(r, q))

∣∣∣∣2 (30)

Scalar field at the top: (φ(p, q) + φ(r, q))/2

Scalar field at the bottom: φ(p, r)

Gauge field from bottom to top: (a(p, r) + a(p, q))/2

Bottom-top contribution to the Lagrangian:

∣∣∣∣(1− i

2
(a(p, r) + a(p, q))

)
φ(r, q)− 1

2
(φ(p, q) + φ(r, q))

∣∣∣∣2 (31)

Total charged scalar field contribution to the Lagrangian:

Lscal = νscal

(∫
α(p,q)

ddr

∣∣∣∣(1− i

2
(a(p, r) + a(p, q))

)
φ(r, q)− 1

2
(φ(p, q) + φ(r, q))

∣∣∣∣2

−C(d)

∫
α(p,q)

ddr

∣∣∣∣(1 +
i

2
(a(p, r) + a(q, r))

)
φ(p, q)− 1

2
(φ(p, r) + φ(r, q))

∣∣∣∣2) (32)
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Adjusting coefficients ( arXiv:1805.08064)

L = ηEM

[ ∫
α(p,q)

(
ddr

∫
α(r,q)

dds(a(p, r) + a(r, s) + a(s, q) + a(q, p))2
)

−CEM(d)

∫
α(p, q)ddrdds(a(p, r) + a(r, q) + a(q, s) + a(s, p))2

]
(33)

CEM(d) is very complicated

Use of test functions (arXiv:1807.07403)

L =
∑{

w(p1, p2, q1, q2)

[(∫
α(p0,q0)

ddr0

∫
α(p0,q0)

dds0(a(p0, r0)+a(r0, s0)+a(s0, q0)+a(q0, p0))
2

)
×

×
(∫

α(p1,q1)

ddr1d
ds1(b(p1, r1) + b(r1, q1) + b(q1, s1) + b(s1, p1))

2−

−
∫
α(p2,q2)

ddr2d
ds2(b(p2, r2) + b(r2, q2) + b(q2, s2) + b(s2, p2))

2

)
−

−
(∫

α(p0,q0)

ddr0d
ds0(a(p0, r0) + a(r0, q0) + a(q0, s0) + a(s0, p0))

2

)
×

×
(∫

α(p1,q1)

ddr1

∫
α(r1,q1)

dds1(b(p1, r1) + b(r1, s1) + b(s1, q1) + b(q1, p1))
2−

−
∫
α(p2,q2)

ddr2

∫
α(r2,q2)

dds2(b(p2, r2) + b(r2, s2) + b(s2, q2) + b(q2, p2))
2

)]}
(34)

test function

bpq(r, s) =
1

2
(τ(p, r) + τ(p, s))(τ(q, s)− τ(q, r)) (35)
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Momentum coordinate (arXiv: arXiv:0910.2498)

— Sprinkling in the manifold is replaced with sprinkling on a tangent bundle

— An EDGE on a spacetime-based causal set is replaced by a POINT in a phase-
spacetime-based causal set

— FINITE density on phase-spacetime becomes INFINITE after projection onto the
spacetime (see illustration below)

— Finite denisty on phase spacetime =⇒ nearest neighbor on phase spacetime =⇒
preferred acceleration for any given position and velocity

— Infinite density in spacetime =⇒ no nearest neighbor =⇒ absence of THE preferred
direction corresponding to a given x
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The density can become finite again IF the sprinkling on the tangent bundle is
replaced with the following process:

a) Sprinkle random points on a manifold

b) On a tangent plane to each sprinkled point, sprinkle timelike tangent vectors

A point on a manifold is defined IN TERMS OF a construction involving tangent
vectors (see above)
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Instead of using bounded acceleration, use parallel transport

Due to Poisson nature, parallel transport is almost parallel, not exactly parallel

Still, upper bound on shift from parallelism � upper bound on horizontal shift

NOTE: The shape of light cone is, once again, an exact cone
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Long edges (arXiv:1805.11420)

— Kinetic term only has “parallel” component (∂‖φ)2

— In order for “parallel” component not to INADVERTEDLY produce “orthogonal”
term, the CONSTRAINT ∂2⊥φ = −ε(R)φ is needed

— In order to impose that constraint, we need to DEFINE orthogonal derivative ∂2⊥φ

— In order for the definition of ∂2⊥φ not to INADVERTEDLY contain ∂2‖φ term, ALMOST-
EXACT orthogonality is needed

— In order to have almost-exact orthogonality DESPITE statistical fluctuations, we
need

a) Very large length of edges

b) Several edges we ”ignore” between any couple of edges we ”pick”

Distance between neighboring edges� Distance between edges we pick�

� size of visible objects� size of the laboratory� length of edges (36)

Distance between edges we count

Distance between neighboring edges
� size of the laboratory

distance between edges we count
(37)
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How to read the above picture

— Colored edges designate edges affected by the wave

— Changing in color of the colored edges designate oscillations of the wave

— Black edges designate the edges that the wavee doesn’t affect

Physical content

— In both cases the edges outside the cutoff aren’t affected by the wave

— In one case I restricted it FURTHER so that only parallel edges are affected =⇒ no
need to worry about C(d) *BUT* things we *would* do might be artificial on their own
right (“long edges”, etc)

— In the other case, I didn’t restrict it to parallel line =⇒ C(d) is still there =⇒ we can
get rid of C(d) by means of test functions
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Causal sites (Christensen, Crane)

— Replace point by the region

— Subset relations defined AXIOMATICALLY

— See arXiv:gr-qc/0410104 for more detail

Connection between Christensen’s idea and mine

— Shape of the region might determine momentum

— APART FROM momentum, their idea can also be applied to renormalization group

future work:

— Work something out more concretely on the level of position-momentum

— Generalize it to causal sites

NOTE: They haven’t introduced Lagrangians (for all I know), so thats something for
me to do
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Conclusions

— Causal set theory prefers Poisson distributions to specific structures

— This comes at the cost of locality and other issues

— I try to address those issues by diverting from “traditional” causal set theory and
inventing my own

— There might be several ways of filling those gaps and I am in the process of inventing
new ones and comparing them to the other ones I invented
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