Investigation of the 1+1 dimensional Thirring model using the method of matrix product states

C.-J. David Lin National Chiao-Tung University, Taiwan

In collaboration with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz Univ.), Ying-Jer Kao (National Taiwan Univ.), Yu-Ping Lin (Univ. of Colorado, Boulder), David T.-L. Tan (National Chaio-Tung Univ.)

Lattice 2018
East Lansing, MI
26/07/2018

Outline

- Preliminaries
- Lattice simulations, the MPS and DMRG
- Phase structure of the Thirring model
- Remarks and outlook

Preliminaries

Motivation

- Tensor network for lattice field theory
- Topological phase transitions
- Real-time dynamics (long-term goal)

The 1+1 dimensional Thirring model and its duality to the sine-Gordon model

$$S_{\rm Th} \left[\psi, \bar{\psi} \right] = \int d^2x \left[\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi - m_0 \bar{\psi} \psi - \frac{g}{2} \left(\bar{\psi} \gamma_{\mu} \psi \right)^2 \right]$$

$$S_{\rm SG} \left[\phi \right] = \int d^2x \left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x) + \frac{\alpha_0}{\kappa^2} \cos\left(\kappa \phi(x) \right) \right]$$

$$\xrightarrow{\phi \to \phi/\kappa, \text{ and } \kappa^2 = t}} \frac{1}{t} \int d^2x \left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x) + \alpha_0 \cos\left(\phi(x) \right) \right]$$

Works in the zero-charge sector

Dualities and phase structure

Thirring	sine-Gordon	XY
g	$rac{4\pi^2}{t}-\pi$	$\left[\frac{T}{K} - \pi\right]$

The K-T phase transition at $T \sim K\pi/2$ in the XY model. $g \sim -\pi/2$, Coleman's instability point

$$g \sim -\pi/2$$
, Coleman's instability point

- \star The phase boundary at $t \sim 8\pi$ in the sine-Gordon theory.
 - The cosine term becomes relevant or irrelevant.

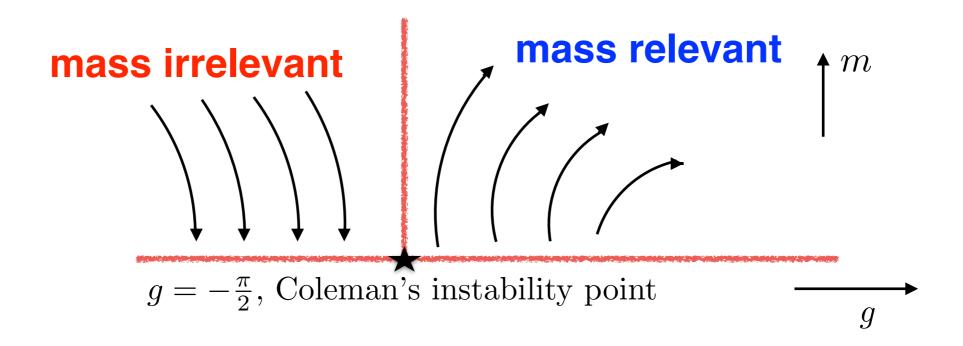
Thirring	sine-Gordon
$ar{\psi}\gamma_{\mu}\psi$	$\left[\begin{array}{c} rac{1}{2\pi}\epsilon_{\mu u}\partial_{ u}\phi \end{array} \right]$
$ar{\psi}\psi$	$-\frac{\Lambda}{\pi}cos\phi$

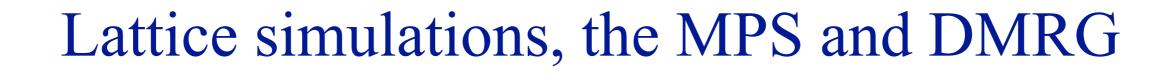
RG flows of the Thirring model

$$\beta_g \equiv \mu \frac{dg}{d\mu} = -64\pi \frac{m^2}{\Lambda^2},$$

$$\beta_m \equiv \mu \frac{dm}{d\mu} = \frac{-2(g + \frac{\pi}{2})}{g + \pi} m - \frac{256\pi^3}{(g + \pi)^2 \Lambda^2} m^3$$

★ Massless Thirring model is a conformal field theory





Operator formalism and the Hamiltonian

Operator formaliam of the Thirring model Hamiltonian

C.R. Hagen, 1967

$$H_{\rm Th} = \int dx \left[-i\bar{\psi}\gamma^1 \partial_1 \psi + m_0 \bar{\psi}\psi + \frac{g}{4} \left(\bar{\psi}\gamma^0 \psi\right)^2 - \frac{g}{4} \left(1 + \frac{2g}{\pi}\right)^{-1} \left(\bar{\psi}\gamma^1 \psi\right)^2 \right]$$

• Staggering, J-W transformation $(S_j^{\pm} = S_j^x \pm iS_j^y)$:

J. Kogut and L. Susskind, 1975; A. Luther, 1976

$$\bar{H}_{XXZ} = \nu(g) \left[-\frac{1}{2} \sum_{n=1}^{N-2} \left(S_{n}^{+} S_{n+1}^{-} + S_{n+1}^{+} S_{n}^{-} \right) + a \tilde{m}_{0} \sum_{n=1}^{N-1} \left(-1 \right)^{n} \left(S_{n}^{z} + \frac{1}{2} \right) + \Delta(g) \sum_{n=1}^{N-1} \left(S_{n}^{z} + \frac{1}{2} \right) \left(S_{n+1}^{z} + \frac{1}{2} \right) \right]$$

$$\nu(g) = \frac{2\gamma}{\pi \sin(\gamma)}, \ \tilde{m}_{0} = \frac{m_{0}}{\nu(g)}, \ \Delta(g) = \cos(\gamma), \ \text{with } \gamma = \frac{\pi - g}{2}$$

$$\bar{H}_{XXZ}^{(\mathrm{penalty})} = \bar{H}_{XXZ} + \lambda \left(\sum_{n=0}^{N-1} S_n^z - S_{\mathrm{target}}\right)^2$$

projected to a sector of total spin

JW-trans of the total fermion number, Bosonise to topological index in the SG theory.

Simulation details

Matrix product operator for the Hamiltonian

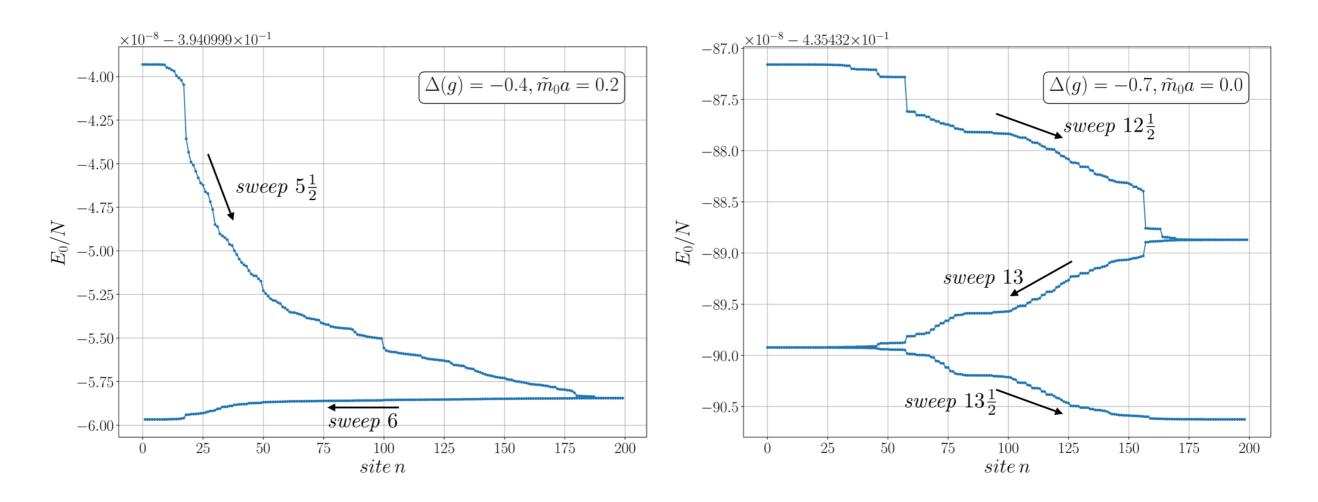
$$W^{[n]} = \begin{pmatrix} 1_{2\times2} & -\frac{1}{2}S^{+} & -\frac{1}{2}S^{-} & 2\lambda S^{z} & \Delta S^{z} & \beta_{n}S^{z} + \alpha 1_{2\times2} \\ 0 & 0 & 0 & 0 & 0 & S^{-} \\ 0 & 0 & 0 & 0 & 0 & S^{+} \\ 0 & 0 & 0 & 1 & 0 & S^{z} \\ 0 & 0 & 0 & 0 & 0 & S^{z} \\ 0 & 0 & 0 & 0 & 0 & 1_{2\times2} \end{pmatrix}$$

$$\beta_n = \Delta + (-1)^n \, \tilde{m}_0 a - 2\lambda \, S_{\text{target}} \,,\, \alpha = \lambda \left(\frac{1}{4} + \frac{S_{\text{target}}^2}{N} \right) + \frac{\Delta}{4}$$

- Choices of parameters
 - ★ Twenty values of $\Delta(g)$, ranging from -0.9 to 1.0
 - $\star \tilde{m}_0 a = 0.0, 0.1, 0.2, 0.3, 0.4 \text{ (run 1)}$
 - $\star \tilde{m}_0 a = 0.005, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.13, 0.16 \text{ (run 2)}$
 - **\star** Bond dimension D = 50, 100, 200, 300, 400, 500, 600
 - **System size** N = 400,600,800,1000

Convergence of DMRG

- Start from random tensors at D=50, then go up in D
- DMRG converges fast at $\tilde{m}_0 a \neq 0$ and $\Delta(g) \gtrsim -0.7$

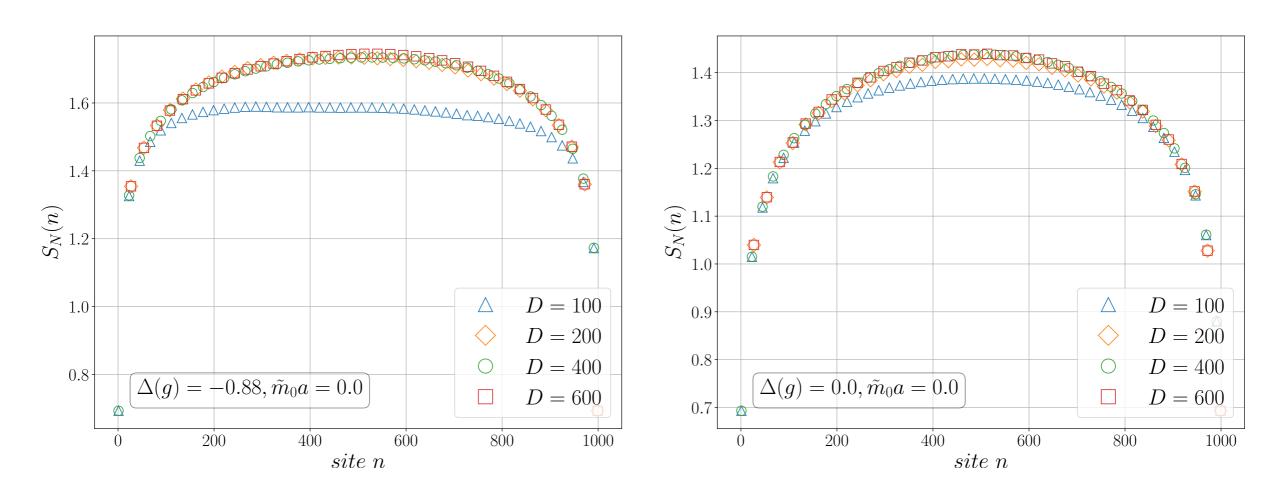


Results for the phase structure

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$S_N(n) = \frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N} \right) \right] + k$$

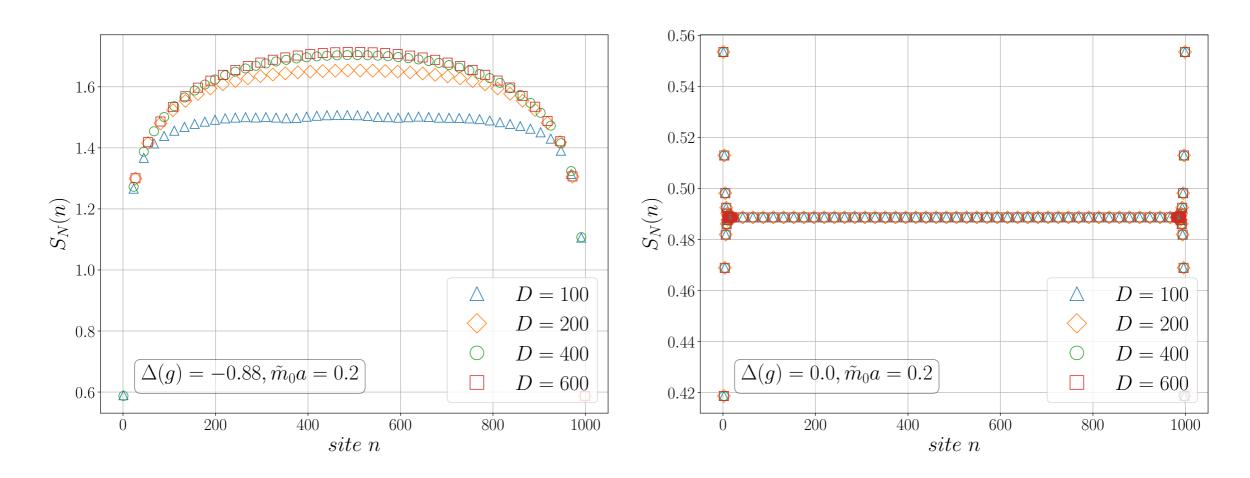


 \star Calabrese-Cardy scaling observed at all values of $\Delta(g)$ for $\tilde{m}_0 a = 0$

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$S_N(n) = \frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N} \right) \right] + k$$

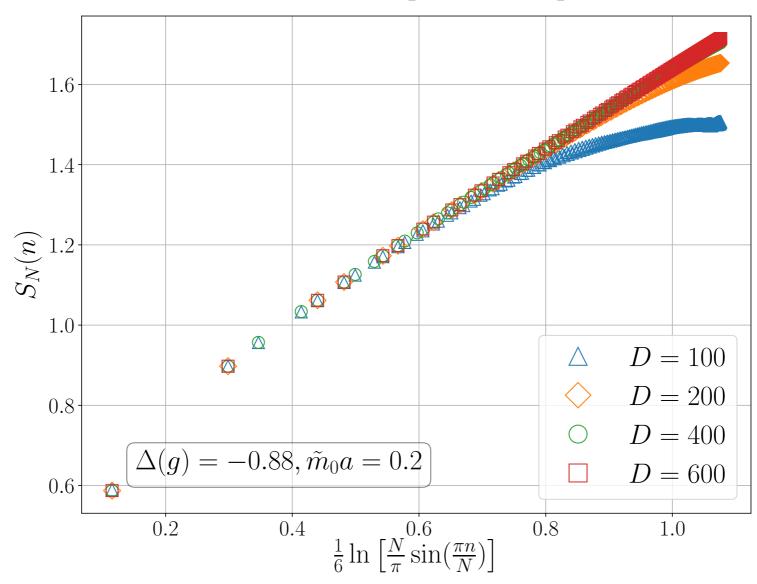


 \bigstar Calabrese-Cardy scaling observed at $\Delta(g) \lesssim -0.7$ for $\tilde{m}_0 a \neq 0$

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$S_N(n) = \frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N} \right) \right] + k$$



★ Central charge is unity in the critical phase

Soliton correlators

S. Mandelstam, 1975

$$\psi_{\alpha}^{\dagger}(x)\psi_{\alpha}(y) = \mp i|2\pi(x-y)|^{-1}|c\mu(x-y)|^{-\beta^2g^2/(2\pi)^3}$$

$$\times : \exp\left\{-2\pi i\beta^{-1}\int_x^y d\xi\,\dot{\phi}(\xi) \mp \frac{1}{2}i\beta\left[\phi(y)-\phi(x)\right] + O(x-y)^2\right\}:$$
Soliton operators
$$\downarrow \text{connecting vortex and anti-vortex}$$

$$\uparrow \text{Power-law in the critical phase}$$

$$\uparrow \text{Exponential-law in the gapped phase}$$

$$\uparrow \text{Power-law}$$

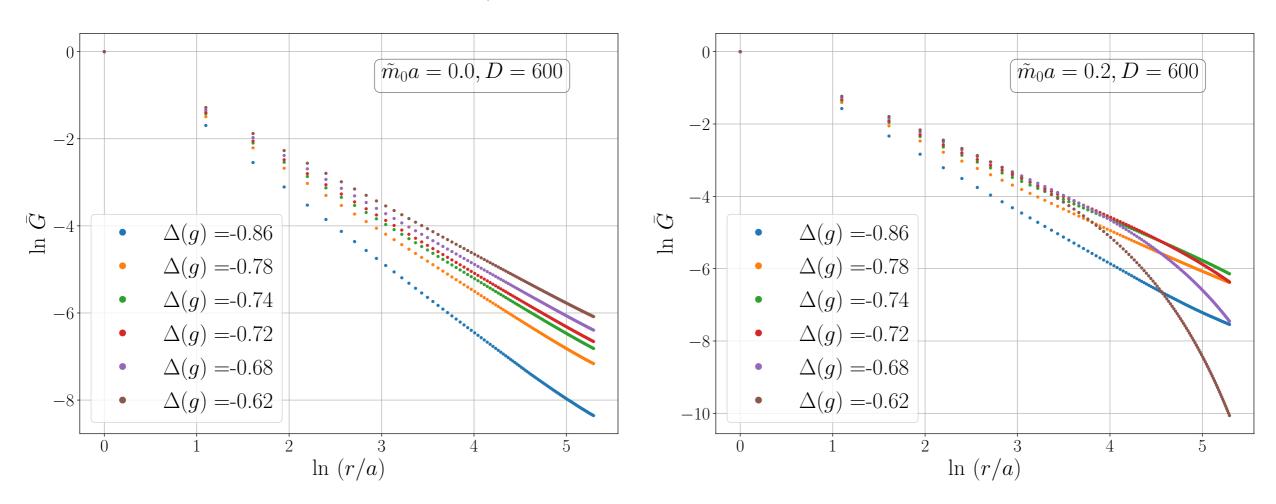
Jordan-Wigner

$$S_m^+ e^{i\pi \sum_{j=m+1}^{n-1} S_j^z} S_n^-$$

Power-law

Soliton correlators

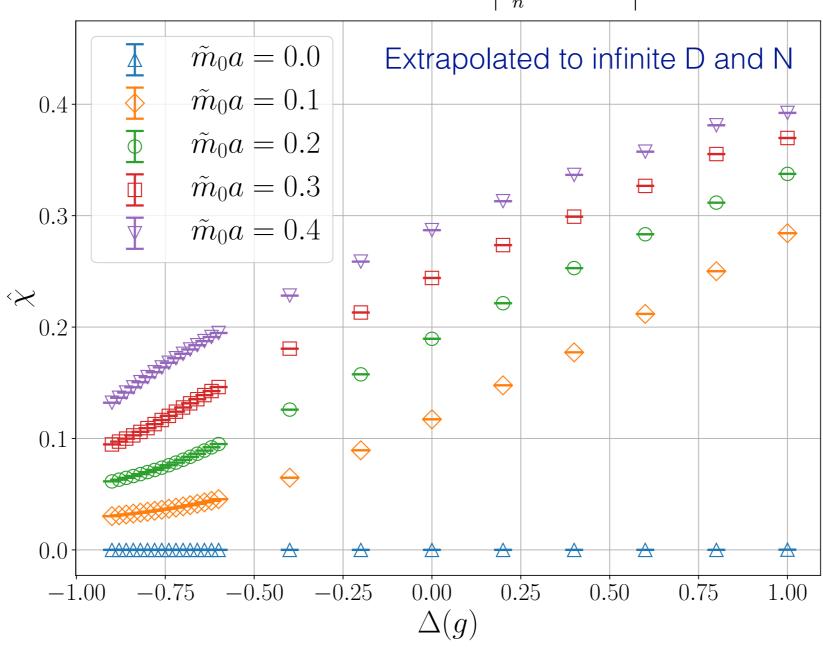
$$G(r) = \langle \psi_+^{\dagger}(r)\psi_+(0)\rangle, \ \bar{G}(r) = G(r)/G(0)$$



★ Evidence for BKT phase transition

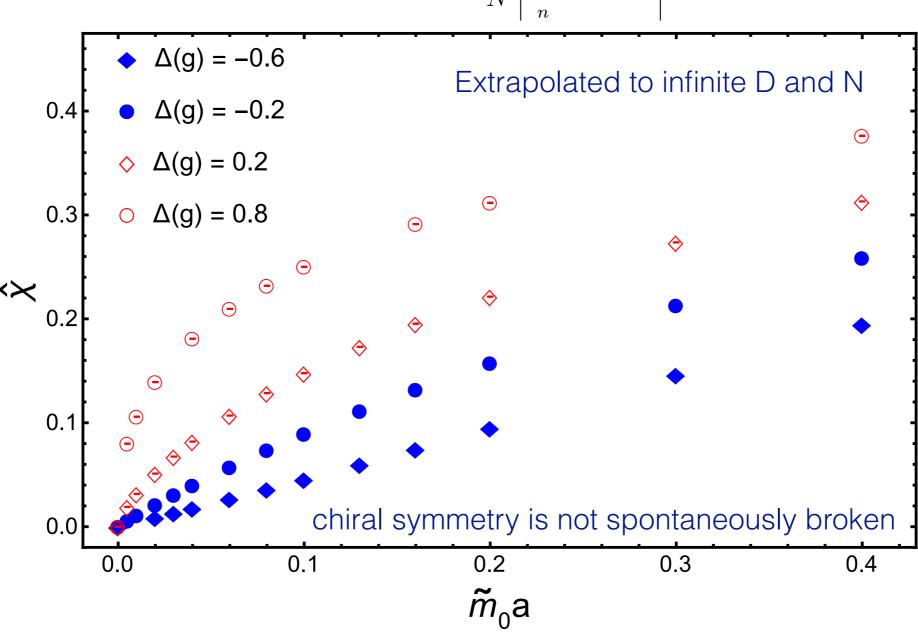
Chiral condensate

$$\hat{\chi} = a \left| \langle \bar{\psi}\psi \rangle \right| = \frac{1}{N} \left| \sum_{n} (-1)^n S_n^z \right|$$



Chiral condensate

$$\hat{\chi} = a \left| \langle \bar{\psi}\psi \rangle \right| = \frac{1}{N} \left| \sum_{n} (-1)^n S_n^z \right|$$



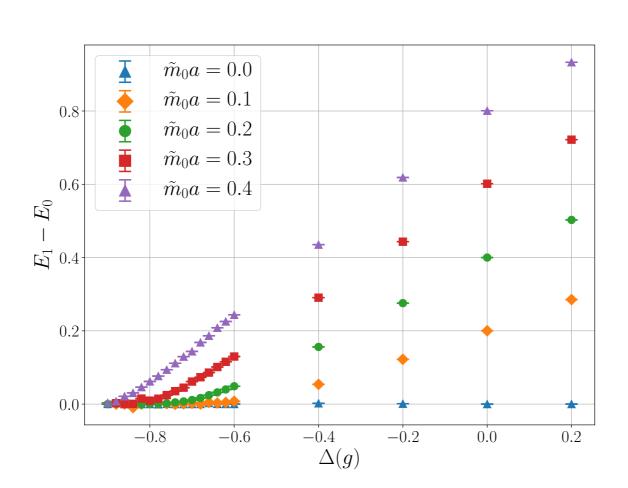
★ Curvature at small mass in the gapped phase

 $(\Pi_m)_{\text{eff}}^k$

 $|\Psi_m\rangle_{ ext{eff}}^k$

$$H_{\text{eff}}[M] = \Pi_{M-1} \dots \Pi_0 H \Pi_0 \dots \Pi_{M-1} = H - \sum_{k=0}^{\infty} E_k |\Psi_k\rangle \langle \Psi_k | \Psi_k \rangle$$

$$\mathcal{H}^k_{ ext{eff}}[\mathrm{M}] = egin{array}{c} \mathcal{H}^k_{ ext{eff}} \\ + \sum_{m=0}^{M-1} E_m imes \end{array}$$

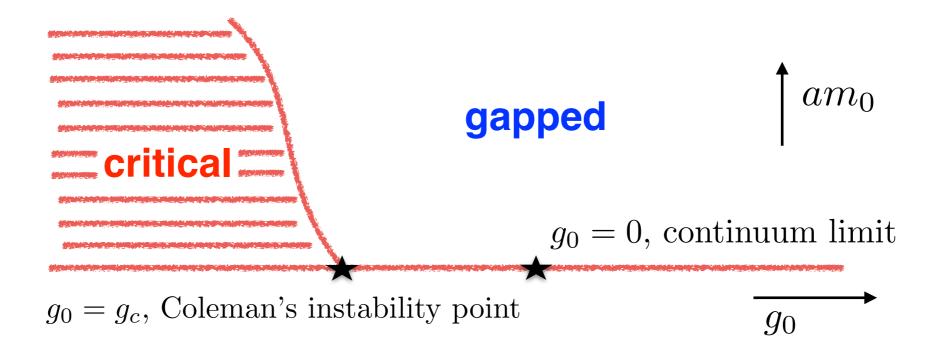


Phase structure of the Thirring model

$$\beta_g \equiv \mu \frac{dg}{d\mu} = -64\pi \frac{m^2}{\Lambda^2},$$

$$\beta_m \equiv \mu \frac{dm}{d\mu} = \frac{-2(g + \frac{\pi}{2})}{g + \pi} m - \frac{256\pi^3}{(g + \pi)^2 \Lambda^2} m^3$$

Massless Thirring model is a conformal field theory



Conclusion and outlook

- Evidence for BKT phase transition found using MPS
 - ★ Chiral symmetry is not spontaneously broken
- Current work for more detailed probe of the phase structure:
 - ★ More simulations at small fermion mass
 - ★ Eigenvalue spectrum of the transfer matrix
- Future projects:
 - **★** Chemical potential
 - ★ Real-time evolution with a quench