# $B_s \rightarrow D_s^{(*)} l \bar{\nu}$ with Heavy HISQ Quarks

Euan McLean

with Christine Davies, Andrew Lytle & Jonna Koponen University of Glasgow

Lattice 2018, Michigan State University



### Outline

### 1 Background

Motivation

Connection to  $B \to D^{(*)}$ 

Heavy HISQ

### **2** Calculation Details

Correlation Functions

Currents & Normalizations

Form Factors

Extrapolations

#### 3 Results

 $\begin{array}{l} B_s \rightarrow D_s^* @ \text{zero recoil} \\ B_s \rightarrow D_s @ \text{zero recoil} \\ B_s \rightarrow D_s & \forall q^2 \\ B_s \rightarrow D_s & \forall q^2 \end{array}$ 

Background

#### Motivation

 Semileptonic decays are an important input to determinations of CKM matrix elements.



▶  $\exists$  number of **tensions** in *B* decays that point to e.g. lepton flavour violation, for example in  $B \to D^*$  and  $B \to D$ .

#### Connection to $B \to D^{(*)}$

▶ B<sub>s</sub> → D<sub>s</sub><sup>(\*)</sup> more feasible than B → D<sup>(\*)</sup> on the lattice, avoids valence light quarks.



▶  $b \to c$  transitions insensitive to spectator quark mass  $\implies B_s \to D_s^{(*)} \simeq B \to D^{(*)}$ .

$$\begin{split} h^s_{A_1}(q^2_{\max})/h_{A_1}(q^2_{\max}) &= 1.013(22) \quad \text{[Harrison et al. 1711.11013]} \\ f^s_0(m^2_\pi)/f_0(m^2_\pi) &= 1.006(62) \quad \text{[Monahan et al. 1703.09728]} \end{split}$$

#### Heavy HISQ: A Recent History

- ▶ HISQ = Highly Improved Staggered Quarks [0610092]
- $\blacktriangleright\,$  Successful at simulating light, strange & charm quarks.
- ▶ b quarks more difficult due to  $(am_b)^2$  discretization effects. Recent calculations have used *heavy-HISQ* approach; simulate with light b's and extrapolate to physical b mass.



• example -  $B_c \to \eta_c$  form factors [Lytle et al. 1605.05645]

#### Benefits of Heavy HISQ

$$S_{\text{HISQ}} = \sum_{x} \bar{\psi}(x) \left( \gamma \cdot \left( \nabla_{\mu}(W) - \frac{a^2}{6} (1+\epsilon) \nabla^3_{\mu}(X) \right) + m \right) \psi(x)$$

 All normalization are done non-perturbatively - self-contained calculations - no matching errors.

- ▶ NRQCD:  $\mathcal{O}(\alpha_s^2, \alpha_s/m_b, 1/m_b^2)$  matching errors.
- Fermilab:  $\mathcal{O}(\alpha_s^2)$  matching errors.
- ► Heavy HISQ: No matching errors
- ► Fully relativistic
- Well controlled extrapolations to physical  $m_b$  using **HQET**

## **Calculation Details**

#### **Calculation Details**

- ▶ Goal: Deduce  $B_s \to D_s$  form factors  $f_{0,+}$  @ all  $q^2$ , and  $B_s \to D_s^*$  form factor  $h_{A_1}$  @ zero recoil.
- ▶ We use the CSD3 cluster @ Cambridge, part of STFC's DiRAC II facility.
- ▶ 2nd Generation MILC Gluon Ensembles [1212.4768]:
  - ▶ 2+1+1 flavours in the sea, using HISQ action
  - ► Lüscher-Weisz Gauge action, improved up to  $\mathcal{O}(N_f \alpha_s a^2)$ .

| $a/\mathrm{fm}$ | $N_x^3 \times N_t$ | $am_l$  | $am_s$ | $am_c$ | $am_s^{val}$ | $am_c^{val}$ | $am_h^{val}$                 |
|-----------------|--------------------|---------|--------|--------|--------------|--------------|------------------------------|
| 0.0884(6)       | $32^3 \times 96$   | 0.0074  | 0.037  | 0.440  | 0.0376       | 0.45         | 0.5, 0.65, 0.8               |
| 0.05922(12)     | $48^3 \times 144$  | 0.0048  | 0.0048 | 0.286  | 0.0234       | 0.274        | $0.427,\ 0.525,\ 0.65,\ 0.8$ |
| 0.04406(23)     | $64^3 \times 192$  | 0.00316 | 0.0158 | 0.188  | 0.0165       | 0.194        | 0.5, 0.65, 0.8               |

Masses tuned in Chakraborty et. al. [1408.4169].

#### **Correlation Functions**

- ► Use random wall sources.
- $$\begin{split} & \blacktriangleright \text{ Calculate 2- and 3-point correlation functions:} \\ & \sum_{\underline{x},\underline{y}} \langle \Phi^{\dagger}_{D_{s}^{(*)}}(\underline{x},0) \Phi_{D_{s}^{(*)}}(\underline{y},t) \rangle, \ \sum_{\underline{x},\underline{y}} \langle \Phi^{\dagger}_{H_{s}}(\underline{x},0) \Phi_{H_{s}}(\underline{y},t) \rangle, \\ & \sum_{\underline{x},\underline{y},\underline{z}} \langle \Phi^{\dagger}_{H_{s}}(\underline{x},0) J_{\mu}(\underline{y},t) \Phi_{D_{s}^{(*)}}(\underline{z},T) \rangle. \end{split}$$
- Extract  $\langle D_s^{(*)} | J_{\mu} | H_s \rangle$  from a simultaneous **Bayesian fit**.
- ▶ 2-point fit form:

$$C_{H}(t) = \sum_{k=0}^{N_{exp}} |a_{k}^{H}|^{2} (e^{-E_{k}^{H}t} + e^{-E_{k}^{H}(N_{t}-t)})$$
$$+ (-1)^{t} \sum_{k=0}^{N_{exp}} |a_{k}^{H_{o}}|^{2} (e^{-E_{k}^{H_{o}}t} + e^{-E_{k}(N_{t}-t)})$$



#### **Correlation Functions**

► Use random wall sources.

- $\begin{array}{l} \blacktriangleright \quad \text{Calculate 2- and 3-point correlation functions:} \\ \sum_{\underline{x},\underline{y}} \langle \Phi_{D_s^{(*)}}^{\dagger}(\underline{x},0) \Phi_{D_s^{(*)}}(\underline{y},t) \rangle, \ \sum_{\underline{x},\underline{y}} \langle \Phi_{H_s}^{\dagger}(\underline{x},0) \Phi_{H_s}(\underline{y},t) \rangle, \\ \sum_{\underline{x},\underline{y},\underline{z}} \langle \Phi_{H_s}^{\dagger}(\underline{x},0) J_{\mu}(\underline{y},t) \Phi_{D_s^{(*)}}(\underline{z},T) \rangle. \end{array}$
- Extract  $\langle D_s^{(*)} | J_{\mu} | H_s \rangle$  from a simultaneous **Bayesian fit**.
- ▶ 3-point fit form:

$$C_{J_{\mu}}(t,T) = \sum_{k,j=0}^{N_{exp}} (A_{jk}e^{-E_{k}^{H_{s}}t}e^{-E_{j}^{D_{s}^{(*)}}(T-t)} + B_{jk}(-1)^{t}e^{-E_{k}^{B_{so}}t}e^{-E_{j}^{D_{s}^{(*)}}(T-t)} + C_{jk}(-1)^{T-t}e^{-E_{k}^{H_{s}}t}e^{-E_{j}^{D_{so}^{(*)}}(T-t)} + D_{jk}(-1)^{T}e^{-E_{k}^{B_{so}}t}e^{-E_{j}^{D_{so}^{(*)}}(T-t)})$$

$$H_{s} = \int_{C_{s}} \int_{C_{s}}$$

#### **Currents & Normalizations**

- ▶ Use only **local** HISQ currents.
- ▶  $B_s \to D_s$ : Use scalar S and temporal vector  $V_0$  currents.

$$S = \bar{\psi}_c \psi_h$$
 ,  $V_0 = \bar{\psi}_c \gamma_0 \psi_h$ 

S is absolutely normalized in HISQ.  $Z_{V_0}$  fixed via Ward identity between  $V_0$  and S @ zero recoil:

$$(M_{H_s} - M_{D_s})Z_{V_0}\langle D_s | V_0 | H_s \rangle = (m_h - m_c)\langle D_s | S | H_s \rangle$$

►  $B_s \to D_s^*$ : Use an axial vector current  $A_k = \bar{\psi}_c \gamma_5 \gamma_k \psi_h$ .  $Z_{A_k}$  fixed via Ward identity between axial vector and (absolutely normalized) pseudoscalar [1311.6669].

$$M_{H_s} Z_{A_k} \langle 0 | A_k | H_s \rangle = (m_h + m_c) \langle 0 | P | H_s \rangle$$

#### Form Factors

▶ From currents  $\langle D_s^{(*)} | J_{\mu} | H_s \rangle \equiv \langle J_{\mu} \rangle$ , can deduce form factors.

 $\blacktriangleright \ B_s \to D_s :$ 

$$f_{0}(q^{2}) = \frac{m_{b} - m_{c}}{M_{H_{s}}^{2} - M_{D_{s}}^{2}} \langle S \rangle$$

$$f_{+}(q^{2}) = \frac{1}{2M_{H_{s}}} \frac{\delta^{M} \langle S \rangle - q^{2} Z_{V_{0}} \langle V_{0} \rangle}{\underline{p}_{D_{s}}^{2}}$$

$$(\delta^{M} = (m_{h} - m_{c})(M_{H_{s}} - M_{D_{s}})$$

▶  $B_s \to D_s^*$ :

$$h_{A_1}(q_{\max}^2) = 2\sqrt{M_{H_s}M_{D_s^*}}Z_{A_k}\langle A_k \rangle$$

$$h_{A_1}(q_{\max}^2) = \left(1 + p \log\left(\frac{M_{\eta_h}}{M_{\eta_c}}\right)\right) \sum_{i,j,k=0}^{M_{1}\times I} b_{ijk} \left(\frac{\Lambda_{\text{QCD}}}{M_{\eta_h}}\right)^i \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k} + \left(c_0 + c_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + c_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_c} - M_{\eta_c}^{\text{phys}}\right) + \left(s_0 + s_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + s_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_s}^2 - M_{\eta_s}^{\text{phys}}\right)$$

$$h_{A_1}(q_{\max}^2) = \left(1 + p \log\left(\frac{M_{\eta_h}}{M_{\eta_c}}\right)\right) \sum_{i,j,k=0}^{2,1,2} b_{ijk} \left(\frac{\Lambda_{\text{QCD}}}{M_{\eta_h}}\right)^i \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k} + \left(c_0 + c_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + c_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_c} - M_{\eta_c}^{\text{phys}}\right) + \left(s_0 + s_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + s_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_s}^2 - M_{\eta_s}^{\text{phys}2}\right)$$

$$h_{A_1}(q_{\max}^2) = \left(1 + p \log\left(\frac{M_{\eta_h}}{M_{\eta_c}}\right)\right) \sum_{i,j,k=0}^{M+1} b_{ijk} \left(\frac{\Lambda_{\rm QCD}}{M_{\eta_h}}\right)^i \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k} + \left(c_0 + c_1 \frac{\Lambda_{\rm QCD}}{M_{\eta_h}} + c_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_c} - M_{\eta_c}^{\rm phys}\right) + \left(s_0 + s_1 \frac{\Lambda_{\rm QCD}}{M_{\eta_h}} + s_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_s}^2 - M_{\eta_s}^{\rm phys2}\right)$$

$$h_{A_1}(q_{\max}^2) = \left(1 + p \log\left(\frac{M_{\eta_h}}{M_{\eta_c}}\right)\right) \sum_{i,j,k=0}^{2,1,1,2} b_{ijk} \left(\frac{\Lambda_{\text{QCD}}}{M_{\eta_h}}\right)^i \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k} + \left(c_0 + c_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + c_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_c} - M_{\eta_c}^{\text{phys}}\right) + \left(s_0 + s_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + s_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_s}^2 - M_{\eta_s}^{\text{phys}2}\right)$$

$$h_{A_1}(q_{\max}^2) = \left(1 + p \log\left(\frac{M_{\eta_h}}{M_{\eta_c}}\right)\right) \sum_{i,j,k=0}^{M_{PP}} b_{ijk} \left(\frac{\Lambda_{\rm QCD}}{M_{\eta_h}}\right)^i \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k} + \left(c_0 + c_1 \frac{\Lambda_{\rm QCD}}{M_{\eta_h}} + c_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_c} - M_{\eta_c}^{\rm phys}\right) + \left(s_0 + s_1 \frac{\Lambda_{\rm QCD}}{M_{\eta_h}} + s_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_s}^2 - M_{\eta_s}^{\rm phys2}\right)$$

2.2.2

$$h_{A_1}(q_{\max}^2) = \left(1 + p \log\left(\frac{M_{\eta_h}}{M_{\eta_c}}\right)\right) \sum_{i,j,k=0}^{2,2,2} b_{ijk} \left(\frac{\Lambda_{\text{QCD}}}{M_{\eta_h}}\right)^i \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k} + \left(c_0 + c_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + c_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_c} - M_{\eta_c}^{\text{phys}}\right) + \left(s_0 + s_1 \frac{\Lambda_{\text{QCD}}}{M_{\eta_h}} + s_2 \left(\left(\frac{am_c}{\pi}\right)^2 + \left(\frac{am_h}{\pi}\right)^2\right)\right) \left(M_{\eta_s}^2 - M_{\eta_s}^{\text{phys}2}\right)$$

### Continuum, Heavy Mass and Kinematic Extrapolation

$$\frac{f_{0,+}(q^2)}{f_{H_c}\sqrt{M_{H_c}}} = \frac{1 - q_{\max}^2/(M_{H_c^{0,*}})^2}{1 - q^2/(M_{H_c^{0,*}})^2} \left(1 + p\log\left(\frac{M_{\eta_h}}{M_{\eta_c}}\right)\right) \sum_{l=0}^2 A_l z(q^2)^l$$

$$A_{l} = \sum_{i,j,k=0}^{2;2,2} b_{ijkl} \left(\frac{\Lambda_{\rm QCD}}{M_{\eta_{h}}}\right)^{i} \left(\frac{am_{h}}{\pi}\right)^{2j} \left(\frac{am_{c}}{\pi}\right)^{2k} + \left(c_{0l} + c_{1l}\frac{\Lambda_{\rm QCD}}{M_{\eta_{h}}} + c_{2l}\left(\left(\frac{am_{c}}{\pi}\right)^{2} + \left(\frac{am_{h}}{\pi}\right)^{2}\right)\right) \left(M_{\eta_{c}} - M_{\eta_{c}}^{\rm phys}\right) + \left(s_{0l} + s_{1l}\frac{\Lambda_{\rm QCD}}{M_{\eta_{h}}} + s_{2l}\left(\left(\frac{am_{c}}{\pi}\right)^{2} + \left(\frac{am_{h}}{\pi}\right)^{2}\right)\right) \left(M_{\eta_{s}}^{2} - M_{\eta_{s}}^{\rm phys}\right)$$

# Results

### $B_s \to D_s^*$ @ zero recoil



#### $B_s \rightarrow D_s$ @ zero recoil



 $B_s \to D_s \quad \forall q^2$ 



 $B_s \to D_s \quad \forall q^2$ 

 $f_{B_c}\sqrt{M_{B_c}}$  multiplied out by  $f_{B_c} = 0.427(6)$ GeV [McNeile et al. 1207.0994] and  $M_{B_c} = 5.3667(1)$ GeV from PDG.



#### Conclusions

- ▶ Have obtained  $h_{A_1}(q_{\max}^2)$  at zero recoil and  $f_{0,+}$  at all  $q^2$ .
- ► Heavy-HISQ method in good agreement with other approaches e.g. NRQCD.
- ▶ In future:
  - $\blacktriangleright R(D_s^{(*)})$
  - ▶ Find HQET insights, e.g. low energy constants  $l_V, l_A, l_P$
  - extend  $B_s \to D_s^*$  to non-zero recoil?
  - ►  $B \rightarrow D^{(*)}$ ?

thanks for listening!

Backup Slides

 $z(q^2)$  definition

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

$$t_{+} = (M_{H_s} + M_{D_s^{(*)}})^2$$
,  $t_0 = t_{-} = (M_{H_s} - M_{D_s^{(*)}})^2$ 

- $t_0$  chosen so that  $z(q_{max}^2) = 0$ .
- ▶ 0 < z < 0.06 for  $B_s \to D_s$ , 0 < z < 0.05 for  $B_s \to D_s^*$ .

# $M_{H_c}^{*,0}$ poles

Have  $M_{H_c}$  from simulation for each heavy mass, but how to get  $M_{H_c^{*,0}}$  for z-expansion?

►  $M_{H_c}^0$ :  $\Delta_0 = M_{H_c^0} - M_{H_c} = 0.429 \text{GeV}$  [1207.5149], independant of heavy quark mass. So just use

$$M_{H_c^0} = M_{H_c} + \Delta_0$$

►  $M_{H_c^*}$ :  $\Delta_* = M_{H_c^*} - M_{H_c} \to 0$  in infinite mass limit by heavy quark symmetry, so  $\Delta_* \simeq x/M_{\eta_h}$ . Fix x at physical point,  $x = 0.508 \text{GeV}^2$ . Then

$$M_{H_c^*} = M_{H_c} + \frac{0.508 \text{GeV}^2}{M_{\eta_h}}$$

#### Priors for continuum, heavy mass and kinematic extrapolation

• 
$$f_{0,+}(q^2)/f_{H_c}\sqrt{M_{H_c}}$$
:

| p    | $b_{ijkl}$ | $c_i$  | $s_i$  |
|------|------------|--------|--------|
| 0(1) | 0(2)       | 0(0.1) | 0(0.1) |

•  $h_{A_1}(q_{\max}^2)$  :

| p    | $b_{0jk}$  | $b_{1jk}$ | $b_{2jk}$ | $c_i$  | $s_i$  |
|------|------------|-----------|-----------|--------|--------|
| 0(1) | 0.93(1.40) | 0.19(29)  | -0.25(50) | 0(0.1) | 0(0.1) |

 $b_{ijk}$  priors inspired by HQET expression:

$$h_{A_1} = \eta_A \left[ 1 - \frac{l_V}{(2m_c)^2} + \frac{2l_A}{2m_c 2m_b} - \frac{l_P}{(2m_b)^2} \right]$$

### $h_+$ for $B_s \to D_s$



 $f_0(q^2=0)$  for  $B_s \to D_s$ 



# $f_{0,+}(q^2)$ vs. z



# $B_s ightarrow D_s \quad orall q^2$ , no ratio with $f_{H_c}$



### $B_s \to D_s^*$ @ zero recoil



### **HISQ** Details

$$\mathcal{F}_{\mu} = \prod_{\rho \neq \mu} \left( 1 + \frac{a^2 \delta_{\rho}^{(2)}}{4} \right)$$
$$X_{\mu}(x) \equiv \mathcal{UF}_{\mu} U_{\mu}(x)$$
$$W_{\mu}(x) \equiv \left( \mathcal{F}_{\mu} - \sum_{\rho \neq \mu} \frac{a^2 (\delta_{\rho})^2}{2} \right) \mathcal{UF}_{\mu} U_{\mu}(x)$$

$$S_{\text{HISQ}} = \sum_{x} \bar{\psi}(x) \left( \gamma \cdot \left( \nabla_{\mu}(W) - \frac{a^2}{6} (1+\epsilon) \nabla^3_{\mu}(X) \right) + m \right) \psi(x)$$

 $\epsilon$  tuned to satisfy

$$\lim_{\underline{p}\to 0}\frac{E^2(\underline{p})-m^2}{\underline{p}^2}=1$$