Localization and topology in high temperature QCD

Tamás G. Kovács

Institute for Nuclear Research, Debrecen, Hungary and Eötvös University, Budapest, Hungary

with

Réka Á. Vig

University of Debrecen, Hungary

Lattice 2018, July 24, 2018

Above T_c low Dirac eigenmodes are localized

Below T_c

- Chiral symmetry broken
- All eigenmodes delocalized

Above T_c low Dirac eigenmodes are localized

Below T_c

- Chiral symmetry broken
- All eigenmodes delocalized

Above T_c

- Chiral symmetry restored
- Lowest eigenmodes localized

- Instanton \longrightarrow quark zero mode
- Instanton + antiinstanton \longrightarrow two cmplx conj. modes
- QCD at $T < T_c$: $r_l \approx d_{lA}$ instanton liquid
- Zero-mode zone \longrightarrow finite density of modes at 0 (S χ SB)

Above T_c dilute instanton gas

- Instanton density falls sharply with increasing T
- Zero modes exponentially localized
- $r_I, r_A \ll d_{IA} \Rightarrow |\lambda_{IA}|$ small
- Can the zero-mode zone explain localized modes?

Is this the ZMZ?

Above T_c dilute instanton gas

- Instanton density falls sharply with increasing T
- Zero modes exponentially localized
- $r_I, r_A \ll d_{IA} \Rightarrow |\lambda_{IA}|$ small
- Can the zero-mode zone explain localized modes?

• How to count modes in the zero-mode zone?

Above T_c the ZMZ separates from bulk spectrum

Overlap spectral density

• Is this really the full ZMZ?

• Count topological charge: $\langle Q^2 \rangle \longrightarrow$ density of top. obj.-s (Assume non-interacting gas.)

Instanton gas is non-interacting

The topological charge distribution at $1.06 T_c$

Simulation data compared with non-interacting instanton gas with the same topological susceptibility

Peak at zero in the density is the ZMZ

Localization extends beyond the ZMZ

The ZMZ and localized part in the overlap spectral density

$ZMZ \subset$ localized part of the spectrum

Fraction of localized modes contained in the ZMZ

Staggered ZMZ also separates from bulk sectrum

Staggered spectral density

- Zero-mode zone can be identified
- Finer lattice \longrightarrow better precision

ZMZ accounts for tiny fraction of localized modes

Fraction of localized modes contained in the ZMZ

Conclusions and outlook

- "Good" chiral action \rightarrow ZMZ separates from bulk spectrum (staggered + 2 stout $N_t = 6$ already good).
- Zero-mode zone consists of localized modes.
- Only a small fraction of localized modes are in the ZMZ (falls sharply with icreasing *T*).
- Quark modes related to topology cannot explain localization.
- Dynamical quarks? (See talk by Holicki, Friday).

Conclusions and outlook

- "Good" chiral action \rightarrow ZMZ separates from bulk spectrum (staggered + 2 stout $N_t = 6$ already good).
- Zero-mode zone consists of localized modes.
- Only a small fraction of localized modes are in the ZMZ (falls sharply with icreasing *T*).
- Quark modes related to topology cannot explain localization.
- Dynamical quarks? (See talk by Holicki, Friday).
- interesting structure in locality properties of lowest modes.
 - \longrightarrow maybe connected to chiral polarization?
 - (See Alexandru and Horvath Lattice 2014)

Participation ratio for different volumes

Participation ratio for different volumes

Lowest part of the spectrum

