Scale Setting on the MDWF in Gradient Flow HISQ Action With the Omega Baryon

LOGAN CARPENTER LLNL SULI INTERN UNDERGRADUATE AT BYU-I

The Importance of Scale Setting

- Necessary for dimensional predictions from Lattice QCD simulations.
- □ We use ω_0 , derived from the Wilson Flow [S. Bornsani et al. JHEP 1209 (2012) 010], to find the lattice spacing.
- ❑ We use 10 ensembles generated by MILC [Bazavov et al. PRD82 (2010) [1004.0342], PRD87 (2013) [1212.4768]].
- \Box It's the first time that this action has been used in determining w_0 .

Our Lattice QCD Action

 Möbius Domain Wall Fermions on gradient flowed 2+1+1 HISQ ensembles Berkowitz et al. PRD96 (2017) [1701.07559]

- □ Approximate chiral symmetry, many finite lattice spacing operators not allowed
- \Box Leading discretization errors begin at O(a^2)
- $\hfill\square$ To control the three standard systematics for LQCD calculations, need
 - □ multiple lattice spacings
 - \Box multiple volumes
 - □ pion masses at/near the physical pion mass
- □ The only set of publicly available ensembles which satisfy these criteria are the Nf=2+1+1 Highly Improved Staggered Quark (HISQ: Follana et al. PRD75 (2007) [hep-lat/0610092]) ensembles generated by the MILC Collaboration Bazavov et al. PRD82 (2010) [1004.0342], PRD87 (2013) [1212.4768]
- □ The DWF on asqtad action (Renner et al. [LHPC] NPPS 140 (2005) [hep-lat/0409130]) was used very successfully: LHPC; NPLQCD; Aubin, Laiho, Van de Water; ...
 - □ Fully developed Mixed-Action EFT: Bar, Bernard, Rupak, Shoresh; Tiburzi; Chen, O'Connell, Van de Water, Walker-Loud; ...
 - $\hfill\square$ This motivated us to use an improved version of this action

Our Lattice QCD Action

- Möbius Domain Wall Fermions on gradient flowed 2+1+1 HISQ ensembles Berkowitz et al. PRD96 (2017) [1701.07559]
- □ Gradient Flow smearing of HISQ cfgs more effective at reducing residual chiral symmetry breaking than the HYP smearing used in DWF on asqtad $m_{res} < 0.1 m_l$ on all ensembles for small-to-moderate L_5 and $M_5 \le 1.3$

Our Lattice QCD Action

I	IISQ g	auge conf	igurat	ion para	meters				va	lence	param	ieters		
abbr.	$N_{ m cfg}$	volume	~ a [fm]	m_l/m_s	$\sim m_{\pi_5}$ [MeV]	$\sim m_{\pi_5}L$	$N_{ m src}$	L_5/a	aM_5	b_5	c_5	$am_l^{\mathrm{val.}}$	$\sigma_{ m smr}$	$N_{\rm smr}$
a15m400	1000	$16^3 \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^{3} \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	- 30
a15m310	1960	$16^{3} \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^{3} \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^3 \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^3 \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^3 \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^{3} \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^3 \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^3 \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^{3} \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^{3} \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^3 \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^3 \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^{3} \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^{3} \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

MDWF pion mass tuned to taste-5 HISQ pion mass within 1-2% - ensuring the unitary limit is recovered in the continuum. additional HISQ ensembles generated @ LLNL

available to interested parties

Effective Mass, Correlation Functions, & Overlap Factors

We get effective mass by the typical equation:

$$m_{eff} = \frac{1}{\tau} \ln \left(\frac{C(t)}{C(t+\tau)} \right).$$

Taking the long time limit we get the ground state of the effective overlap factors

$$C_{SS}(t) = \sum_{n=0}^{\infty} \{ Z_{S,n}^{2} \ e^{-E_{n}t} \} \rightarrow C_{SS} = Z_{S,0}^{2} \ e^{-E_{0}t} \rightarrow Z_{S,0} = \sqrt{C_{SS} \ e^{E_{0}t}}$$
$$C_{PS}(t) = \sum_{n=0}^{\infty} \{ Z_{P,n} \ Z_{S,n} \ e^{-E_{n}t} \} \rightarrow C_{SS} = Z_{P,0} \ Z_{S,0} \ e^{-E_{0}t} \rightarrow Z_{P,0} = \sqrt{\frac{C_{PS}^{2} \ e^{E_{0}t}}{C_{SS}}}$$

Bayesian Constrained Curve Fitting

- □ We need to choose the center and standard deviation for the priors $E_n, Z_{S,n}, \& Z_{P,n}$.
- Method for E_n : ■ $E_0 \approx m_{\text{platue}} \pm m_{\text{platue}} * 0.1$ ■ E_n gaps = 2 * $m_\pi \pm m_\pi$
- Method for $Z_{S,n}$: ■ $Z_{S,0} \approx Z_{S-platue} \pm Z_{S-platue}^* 0.5$ ■ Z_S gaps $\approx Z_{S,0} * c \pm (Z_{S,0} * c) * 100$ where $c \in [0.5, 1]$.
- Method for $Z_{P,n}$: ■ $Z_{P,0} \approx Z_{P-platue} \pm Z_{P-platue} * 0.5$ ■ Z_P gaps = 0 ± 0.1

Stability Plots & Choosing a Fit

Using w_0 as the scale

Previous calculations:

Collaboration	N_{f}	$\sqrt{t_0}$ (fm)	$\Delta \sqrt{t_0} / \sigma$	$w_0 ~({\rm fm})$	$\Delta w_0 / \sigma$
MILC	2+1+1	$0.1416(1)(^{+8}_{-5})$		$0.1714(2)(^{+15}_{-12})$	
HPQCD [30]	2 + 1 + 1	0.1420(8)	+0.4	0.1715(9)	+0.1
ETMC* [31]	2 + 1 + 1			0.1782	
HotQCD $[33]$	2 + 1			0.1749(14)	+1.8
BMW $[5]$	2 + 1	0.1465(21)(13)	+1.9	0.1755(18)(04)	+1.7
QCDSF-UKQCD* $[32]$	2 + 1	0.153(7)	+1.6	0.179(6)	+1.2
$ALPHA^*$ [29]	2	0.1535(12)	+8.3	0.1757(13)	+2.2

[A. Bazavov et. al. Phys. Rev. D 93, 094510 (2016)]

s_Ω vs ℓ_Ω

Where $s_{\Omega} = \frac{2m_k^2 - m_{\pi}^2}{m_{\Omega}^2}$ and $\ell_{\Omega} = \frac{m_{\pi}^2}{m_{\Omega}^2}$ [Huey-Wen Lin et al. Phys.Rev.D79:034502,2009].

Fit Function Derivation

□ We construct a fit function that has strange and light dependence and Taylor expand about the continuum and chiral limits to order ℓ_{Ω}^2 , s_{Ω}^2 , ϵ_a^4

$$\begin{split} w_0 m_\Omega(\ell_\Omega, s_\Omega, \epsilon_a) &= w_0 m_0 + \ell_\Omega c_1 + s_\Omega c_2 + \epsilon_a^2 c_3 + \\ \ell_\Omega^2 c_4 + s_\Omega^2 c_5 + \ell_\Omega s_\Omega c_6 + \\ \epsilon_a^4 c_7 + \ell_\Omega \epsilon_a^2 c_8 + s_\Omega \epsilon_a^2 c_9 + \ell_\Omega^2 \ln(\ell_\Omega) \end{split}$$

where
$$\ell_{\Omega} = \frac{m_{\pi}^2}{m_{\Omega}^2}$$
, $s_{\Omega} = \frac{2m_k^2 - m_{\pi}^2}{m_{\Omega}^2}$, and $\epsilon_a = \frac{a}{\sqrt{4 \pi w_0}}$

$w_0 m_\Omega$ vs l_Ω

Construct the fit $\omega_0 m_\Omega(\epsilon_a, \ell_\Omega, s_\Omega^*)$

Data rescaled by $\frac{\omega_0 m_{\Omega}(\epsilon_a, \ell_{\Omega}, s_{\Omega}^*)}{\omega_0 m_{\Omega}(\epsilon_a, \ell_{\Omega}, s_{\Omega})}$ where s_{Ω}^* = physical point.

Continuum Limit Extrapolation

 $w_0 = \frac{w_0 \ m_\Omega}{m_\Omega^{PDG}}$ w0(a=0) = 0.17473(65) fm Calculated with w0(a=0): a 09 = 0.08920(33) fm $a^{-}12 = 0.12294(45)$ fm a 15 = 0.15383(58) fm w0s calculated on ensembles: w0(a09) = 0.16836(71)fm w0(a12) = 0.1626(11)fm w0(a15) = 0.1558(17)fm Calculated with w0s a09, a12, & a15: a 09 = 0.08595(37)fm a 12 = 0.11443(76)fm fm a 15 = 0.1372(15)

$w_0 m_\Omega$ vs s_Ω

Construct the fit $\omega_0 m_\Omega(\epsilon_a, \ell_\Omega^*, s_\Omega)$ and Extrapolate to the Continuum Limit

Comparison with Other Calculations

-	Collaboration	N_{f}	$\sqrt{t_0}$ (fm)	$\Delta \sqrt{t_0} / \sigma$	$w_0 ~({ m fm})$	$\Delta w_0/\sigma$ *		
	MILC	2 + 1 + 1	$0.1416(1)(^{+8}_{-5})$		$0.1714(2)(^{+15}_{-12})$			
	HPQCD $[30]$	2 + 1 + 1	0.1420(8)	+0.4	0.1715(9)	+0.1		
	ETMC* [31]	2 + 1 + 1			0.1782			
	HotQCD $[33]$	2 + 1			0.1749(14)	+1.8		
	BMW $[5]$	2 + 1	0.1465(21)(13)	+1.9	0.1755(18)(04)	+1.7		
	$QCDSF-UKQCD^*$ [32]	2 + 1	0.153(7)	+1.6	0.179(6)	+1.2		
	$ALPHA^*$ [29]	2	0.1535(12)	+8.3	0.1757(13)	+2.2		
us this wor	k: CALLAT	2+1+1	•••		0.17473(65)	+ syster		

*[A. Bazavov et. al. Phys. Rev. D 93, 094510 (2016)]

Stuff to Do Next

□ Mass of the Proton.

Apply the scale to get observables in other projects.

Acknowledgments

Evan Berkowitz
Chris Bouchard
David Brantley
Chia Cheng (Jason) Chang
Kate Clark
Arjun Gambhir
Nicolas Garron
Bálint Joó
Thorsten Kurth

- Nolan Miller
- Chris Monahan
- □ Henry Monge-Camacho
- Amy Nicholson
- Kostas Orginos
- Enrico Rinaldi
- Karl Sallmén
- Pavlos Vranas
- André Walker-Loud

Questions

