The large-mass regime of confining but nearly conformal gauge theories

Maarten Golterman and Yigal Shamir

arXiv:1805.00198

Lattice 2018

Claims:

- Even if the fermion mass of a near-conformal theory is large compared to the chiral-symmetry breaking/confinement scale, it can be described systematically by an EFT
- In this large-mass regime, it is very hard to distinguish such a theory from a mass-perturbed theory which is conformal in the infrared
- In the case of the SU(3), $N_f = 8$ theory, either much smaller fermion masses or a much higher precision will be needed in current simulations

A light flavor-singlet scalar: SU(3) $N_f = 8$ spectrum

LSD collaboration, PRD 93 (2016) 114514

The EFT for dilatons and pions

Assumptions:

- Scale invariance gets restored as we take the theory closer to the conformal window. For N_f fundamental flavors in an $SU(N_c)$ theory this happens when N_f crosses into the conformal region. Technically, $n_f \equiv N_f/N_c \uparrow n_f^*$ in the limit N_f , $N_c \to \infty$.
- The theory contains pions associated with chiral symmetry breaking, and a dilaton associated with breaking of scale symmetry, which becomes massless for $n_f \to n_f^*$ (and $m \to 0$).
- The dilaton potential has a zero, as a function of the dilaton field au .

The EFT for dilatons and pions

Leading-order Lagrangian:

$$\mathcal{L} = \frac{\hat{f}_{\pi}^{2}}{4} e^{2\tau} \operatorname{tr}(\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma) + \frac{\hat{f}_{\tau}^{2}}{2} e^{2\tau} (\partial_{\mu} \tau)^{2}$$
$$- \frac{\hat{f}_{\pi}^{2} \hat{B}_{\pi} m}{2} e^{(3-\gamma_{*})\tau} \operatorname{tr}(\Sigma + \Sigma^{\dagger})$$
$$+ \hat{f}_{\tau}^{2} \hat{B}_{\tau} e^{4\tau} c_{1}(\tau - 1/4)$$

- ullet m is the fermion mass, $\,\gamma_*$ is its anom. dim. at $n_f=n_f^*$, at the IRFP
- The parameters $\,c_1 \propto n_f n_f^*\,$ and m are assumed small
- $v \equiv \langle \tau \rangle$ vanishes (at tree level) for m=0

Lowest-order predictions:

At nonzero mass: $\frac{m}{c_1\hat{\mathcal{M}}}=v\,e^{(1+\gamma_*)v}$ $\hat{\mathcal{M}}=\frac{4\hat{f}_\tau^2\hat{B}_\tau}{\hat{f}_\pi^2\hat{B}_\pi N_f(3-\gamma_*)}$

This is an O(1) relation – both m and c_1 are small

If the LHS is much larger than 1 we find $\ e^v pprox \left(\frac{m}{c_1 \hat{\mathcal{M}}} \right)^{1/(1+\gamma_*)}$

while all masses and decay constants scale as $M_\pi \propto F_\pi \propto \cdots \propto m^{1/(1+\gamma_*)}$

⇒ Hyperscaling as in mass-perturbed conformal theory! "Large-mass regime" In more detail:

$$F_{\pi} = \hat{f}_{\pi} e^{v} \propto \hat{f}_{\pi} \left(\frac{m}{c_{1}}\right)^{1/(1+\gamma_{*})}$$

$$M_{\pi}^{2} = 2\hat{B}_{\pi} m e^{(1-\gamma_{*})v} \propto 2\hat{B}_{\pi} m^{2/(1+\gamma_{*})}$$

$$M_{\text{nucleon}} = M_{0} e^{v} \propto M_{0} \left(\frac{m}{c_{1}}\right)^{1/(1+\gamma_{*})}$$

etc.

Hence the loop-expansion parameter

$$\frac{M_{\pi}^2}{(4\pi F_{\pi})^2} = \frac{2c_1 \hat{\mathcal{M}} \hat{B}_{\pi}}{(4\pi \hat{f}_{\pi})^2} v$$

is small as long as $c_1 \log m \ll 1$ is small, where we used $v \sim \log m$.

Numerical results for ratios (SU(3), $N_f = 8$):

$$\frac{M_{\pi}^2}{(4\pi F_{\pi})^2} \approx 0.1$$

still, possibly sizeable NLO corrections

LSD collaboration, PRD 93 (2016) 114514

Numerical estimates (SU(3), $N_f = 8$)

- From $M_\pi^2 F_\pi^{-1+\gamma_*}=2\hat{B}_\pi \hat{f}_\pi^{-1+\gamma_*} m$ estimate that $\gamma_*\approx 1$ (Appelquist et~al.)
- Then, using nucleon mass values from LSD, we find at the lightest fermion mass

$$am = 0.00125 \quad \Rightarrow \quad \frac{m}{c_1 \hat{\mathcal{M}}} \sim 100$$

This implies that, to unambiguously determine whether this theory is conformal or chiral-symmetry breaking, we need either *much* smaller masses, or enough precision to disentangle subleading effects to the large-mass behavior.

• Also find $\hat{B}_{\pi}/\hat{f}_{\pi} \sim 10^3$: condensate enhancement?

Conclusions

- In near-conformal theories, there exists a `large-mass' regime, defined by $\frac{m}{c_1\hat{\mathcal{M}}}\gg 1$; region of EFT applicability is $c_1\log m\ll 1$.
- Current simulations in the SU(3) $N_f=8$ theory are in the large-mass regime, $m/(c_1\hat{\mathcal{M}}) \geq \sim 100$.
- In this theory, need either much smaller fermion mass or enough precision to disentangle subleading effects.
- Explanation why it is so hard to distinguish a conformal theory from a chiral-symmetry breaking theory near the conformal sill?