Results for the mass difference between the long- and short-lived K mesons for physical quark masses

Bigeng Wang RBC-UKQCD Collaborations

Department of Physics Columbia University in the City of New York

Lattice 2018

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>UC Boulder</u>

Oliver Witzel

<u>Columbia University</u>

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn O'haigan Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

<u>MIT</u>

David Murphy Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

Physics:

- $\Delta m_{\rm K} = m_{{\rm K}_{\rm L}} m_{{\rm K}_{\rm S}}$ is generated by K meson mixing through weak interaction
- $\Delta m_{K,exp} = m_{K_L} m_{K_S} = 3.483(6) \times 10^{-12} MeV$ A discrepancy between the Standard Model prediction for this quantity and its experimental value will imply the existence of new physics
- Calculation:
 - This highly non-perturbative quantity is suitable for using Lattice QCD
 - $\Delta m_{\mathcal{K}}$ is one of RBC-UKQCD collaboration's calculations of long-distance contributions in kaon physics. Therefore, it is closely related to other kaon physics calculations like $\epsilon_{\mathcal{K}}$ and rare kaon decays

From Integrated Correlator to Δm_K^{lat}

• Δm_K is given by:

$$\Delta m_{K} \equiv m_{K_{L}} - m_{K_{S}}$$

$$= 2\mathcal{P}\sum_{n} \frac{\langle K^{0} | H_{W} | n \rangle \langle n | H_{W} | \bar{K}^{0} \rangle}{m_{K} - E_{n}}$$
(1)

• The integrated correlator is defined as:

$$\mathcal{A} = \frac{1}{2} \sum_{t_2=t_a}^{t_b} \sum_{t_1=t_a}^{t_b} \langle 0 | T\{\bar{K}^0(t_f) H_W(t_2) H_W(t_1) K^0(t_i)\} | 0 \rangle \quad (2)$$

Bigeng Wang (Columbia Univeirsity)

From Integrated Correlator to Δm_K^{lat}

• If we insert a complete set of intermediate states, we find:

$$\mathcal{A} = N_{K}^{2} e^{-m_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle K^{0} | H_{W} | n \rangle \langle n | H_{W} | \bar{K}^{0} \rangle}{m_{K} - E_{n}} \{ -T + \frac{e^{(m_{K} - E_{n})T} - 1}{m_{K} - E_{n}} \}$$
(3)

with $T \equiv t_b - t_a + 1$.

- For $|n\rangle$ (in our case $|0\rangle$, $|\pi\pi\rangle$, $|\eta\rangle$, $|\pi\rangle$) with $E_n < m_K$ or $E_n \sim m_K$: the exponential terms will be significant. We can:
 - use the freedom of adding $c_s \bar{s}d$, $c_p \bar{s}\gamma^5 d$ operators to the weak Hamiltonian to remove two of the contributions. Here we choose:

$$\langle 0|H_W - c_p \bar{s}\gamma_5 d|K^0 \rangle = 0, \langle \eta|H_W - c_s \bar{s}d|K^0 \rangle = 0$$

• subtract contributions from other states($|\pi
angle$, $|\pi\pi
angle$) explicitly

• Therefore, by fitting the coefficient of T from integrated correlators we can obtain:

$$\Delta m_{K}^{lat} \equiv 2 \sum_{n} \frac{\langle K^{0} | H_{W} | n \rangle \langle n | H_{W} | \bar{K}^{0} \rangle}{m_{K} - E_{n}}$$
(4)

Bigeng Wang (Columbia University)

Results for $K_I - K_S$ mass difference

Calculation of Δm_K^{lat}

• The $\Delta S = 1$ effective Weak Hamiltonian:

$$H_W = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{qd} V_{q's}^* (C_1 Q_1^{qq'} + C_2 Q_2^{qq'})$$
(5)

where the $Q_i^{qq'}{}_{i=1,2}$ are current-current opeartors, defined as:

$$egin{aligned} Q_1^{qq'} &= (ar{s}_i \gamma^\mu (1-\gamma^5) d_i) (ar{q}_j \gamma^\mu (1-\gamma^5) q'_j) \ Q_2^{qq'} &= (ar{s}_i \gamma^\mu (1-\gamma^5) d_j) (ar{q}_j \gamma^\mu (1-\gamma^5) q'_i) \end{aligned}$$

• There are four states need to subtracted: $|0\rangle$, $|\pi\pi\rangle$, $|\eta\rangle$, $|\pi\rangle$. We add $c_s \bar{s}d$, $c_p \bar{s}\gamma^5 d$ operators to weak operators to make:

$$\langle 0|Q_i - c_{pi}\bar{s}\gamma_5 d|K^0
angle = 0, \langle \eta|Q_i - c_{si}\bar{s}d|K^0
angle = 0$$
 (6)

$$Q'_i = Q_i - c_{pi}\bar{s}\gamma_5 d - c_{si}\bar{s}d \tag{7}$$

Calculation of Δm_K^{lat}

• For contractions among Q_i , there are four types of diagrams to be evaluated.

• In addition, there are "mixed" diagrams from the contractions between the $c_s \bar{s} d c_p \bar{s} \gamma^5 d$ operators and Q_i operators.

To get Δm_k from Δm_K^{lat} , we need to consider:

- Ultraviolet divergences as the two H_W approach each other:
 GIM mechanism removes both quadratic and logarithmic divergences
- Renormalization of Lattice operator $Q_{1,2}$ in 3 steps:
 - Non-perturbative Renormalization: from lattice to RI-SMOM
 - Perturbation theory: from RI-SMOM to \overline{MS}

C. Lehner, C. Sturm, Phys. Rev. D 84(2011), 014001

• Use Wilson coefficients in the \overline{MS} scheme

G. Buchalla, A.J. Buras and M.E. Lautenbacher, arXiv:hep-ph/9512380

Status of RBC-UKQCD calculations of Δm_k

• "Long-distance contribution of the $K_L - K_S$ mass difference", N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508 Development of techniques and exploratory calculation on a $16^3 \times 32$ lattice with unphysical masses($m_{\pi} = 421 MeV$) including only connected diagrams

"K_L - K_S mass difference from Lattice QCD"
 Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003 All diagrams included on a $24^3 \times 64$ lattice with unphysical masses

• "Neutral Kaon Mixing from Lattice QCD"

Z. Bai, Ph.D. thesis(2017),

Presented by C. T. Sachrajda in Lattice 2017

All diagrams included on a $64^3 \times 128$ lattice with **physical mass** on 59 configurations: $\Delta m_k = (5.5 \pm 1.7) \times 10^{-12} MeV$

• Here I present an update of the methods used and results extending Z. Bai's calculation from 59 to 129 configurations.

Details of the Calculation

• The calculation was performed on a $64^3\times128\times12$ lattice with Möbius DWF and the Iwasaki gauge action with physical pion mass (136 MeV)

Input parameters are listed below:

a^{-1}/GeV	β	am _l	am _h	$\alpha = \mathbf{b} + \mathbf{c}$	Ls		
2.36	2.25	0.0006203	0.02539	2.0	12		
Ne used $2m \sim 0.31$							

We used $am_c \simeq 0.31$.

- Data and Data Analysis:
 - Sampling AMA Correction and Super-jackknife Method
 - Disconnected Type4 diagrams: save left- and right-pieces separately and use multiple source-sink separation for fitting

Sampling AMA Correction

• We use Sampling All Mode Averaging (AMA) to reduce the computational cost.

T. Blum, T. Izubuchi, and E. Shintani, Phys. Rev. D88(9), 094503 (2013)

data type	CG stop residual
sloppy	1e-4
exact	1e-8

The difference between the "exact" and the "sloppy" result for a same quantity(e.g. a strange propagator) is used as a correction.

- Usually AMA correction is performed on each configuration, among different time slices
- Our Sampling AMA correction is applied among configurations
- We do only "sloppy" measurements on most configurations and do both "sloppy" and "exact" measurements on some other configurations to serve as corrections.

Super-jackknife Method

- The super-jackknife method is used to estimate the error when we have more than one set of measurement and would like to combine the data for fitting.
- For example, we have:

In our case of sampling AMA,

 Y_i 's are "sloppy" correlators from most configurations with only "sloppy" measurements, while

 Z_i 's are corrections of correlators from configurations with both

"sloppy" and "exact" measurements.

Number of Measurements

- In Lattice 2017, Prof. C. T. Sachrajda presented Z. Bai's preliminary results based on an analysis of 59 configurations:
 - type3 & 4 diagrams on 52 sloppy, and 7 correction configurations
 - type1 & 2 diagrams on 11 exact configurations

•
$$\sigma_{total} \sim \sqrt{\sigma_{tp12}^2 + \sigma_{tp34}^2}$$

• Since August 2017, following the same routine, we finished more measurements to reduce statistical errors from both type12 and type34 contributions.

Data Set	# of Sloppy	# of Correction	# of Type12	
Lattice 17	52	7	11	
Since Aug. 2017	61	9	6	
Total	113	16	17	

Compare the errors from "sloppy" measurements

- Keep 7 AMA corrections and 11 Type 12 contribution averaged
- Compare fitting results of 2-point and 3-point functions:

Num	m_{π}	m _K	$\langle \pi \pi_{I=0} Q_1 K^0 \rangle$	$\langle \pi \pi_{I=0} Q_2 K^0 \rangle$
113	0.05733(9)	0.21041(14)	-7.9(13)×10 ⁻⁵	$0.90(15) imes 10^{-4}$
52	0.05757(12)	0.21051(21)	-7.1(20)×10 ⁻⁵	0.90(20) ×10 ⁻⁴
61	0.05713(12)	0.21033(20)	-9.2(26)×10 ⁻⁵	$0.91(18) \times 10^{-4}$

 $\bullet\,$ The errors for these fitting results are reduced to $\frac{1}{\sqrt{113/52}}\sim 0.67$

Compare the errors from type1 & 2 diagrams, uncorrelated, preliminary

• type1&2 diagrams with fitting range 10:20 17 configurations $\Delta m_{K,tp12} = 7.82(79)$ 11 configurations $\Delta m_{K,tp12} = 7.29(116)$

• Error from type12 is also reduced to $\frac{1}{\sqrt{17/11}} \sim 0.80$

Compare the Integrate Correlator Fittings: All diagrams, uncorrelated, preliminary

(a) All diagrams fitting: 129 configurations

(b) All diagrams fitting: 59 configurations

- Fitting range: 10:20
- χ^2 get reduced from ~ 0.1 to ~ 0.01

Data Set Info	tp12/ 10^{-12} MeV	$tp34/10^{-12}MeV$	$\Delta m_k/10^{-12}{ m MeV}$
113s+16c+17tp12	7.8(8)	-0.4(14)	7.3(<mark>17</mark>)
52s+7c+11tp12	7.3(12)	-1.1(<mark>12</mark>)	5.8(18)
61s+9c+6tp12	8.8(9)	0.2(<mark>20</mark>)	9.4(22)

- Error from the new type34 fitting is large, making the total error not reduced even with larger statistics.
- Possible reasons? Large error comes from type4 diagrams?

Update of the results preliminary

error from η

- We set $\langle \eta | Q_i c_{si} \bar{s} d | K^0 \rangle = 0$ because $\langle \eta | Q_i | K^0 \rangle$ is noisy. However, the uncertainty of these $c_{si} = \frac{\langle \eta | Q_i | K^0 \rangle}{\langle \eta | \bar{s} d | K^0 \rangle}$'s still contribute to fitting results via "mixed" diagrams.
- Significant reduction of error from type34 when using central values of c_{s1} and c_{s2}
- For sloppy part only: 25% reduction of error

Data Set Info	tp3(xeta)	tp4(xeta)	tp34(xeta)	$\Delta M_K/10^{-12}$ MeV
61s	2.03(61)	-2.50(113)	-0.95(<mark>163</mark>)	5.8(<mark>16</mark>)
61s*	1.91(41)	-2.49(107)	-0.67(117)	6.3(<mark>12</mark>)

• For adding corrections and type12: 38% reduction of error

	Data Se	σ_{slp}	$\sigma_{\it corr}$	σ_{tp12}	σ_{total}			
	61s+9e+6tp12		1.59	1.25	0.88	2.2		
	61s+9e+	6tp12*	1.27	0.70	0.88	<i>∎</i> 1.4 ≡		
Bigeng Wang (Columbia University) Result		Results for	or $K_l - K_s$	mass differe	nce	L	attice 2018	

17 / 19

Systematic Errors

• Finite-volume corrections: small compared to statistical errors "Effects of finite volume on the $K_L - K_S$ mass difference"

N.H. Christ, X. Feng, G. Martinelli and C.T. Sachrajda, arXiv:1504.01170 Previous result gives: $\Delta m_{\mathcal{K}}(FV) = 0.27(18) \times 10^{-12} MeV$

• Discretization effects are the largest source of systematic error: $\sim (m_c a)^2$ gives 25%

Our preliminary estimate based on dispersion relation $c^2 = \frac{E^2 - m^2}{p^2}$ is $\leq 10\%$

Conclusion and Outlook

- By increasing number of total configurations from 59 to 129:
 - $\,\circ\,$ Errors from 2- and 3-point functions, reduced by $\sim 33\%$ as expected
 - Error from type 1&2 diagrams is reduced by \sim 20% as expected
 - Error from type 3&4 diagrams is only slightly reduced, probably due to large error contributions from η amplitudes. (Still in progress, σ_{Δmκ} ~ 1.3 × 10⁻¹² MeV, if c_{si}'s are used)
- Our preliminary result based on 129 configurations is

$$\Delta m_{\rm K}=7.0(17)_{stat}\times 10^{-12}\,{\rm MeV}$$

to be compared to the physical value

$$(\Delta m_{K})^{phys} = 3.483(6) \times 10^{-12} MeV$$

Outlook

- Expect to finish measurements on 160 configurations, aiming to reduce the statistical error to $\sim 1.0\times 10^{-12} MeV$
- Continue the calculation of Δm_K on finer lattice on Summit
- Include other elements of our kaon physics program