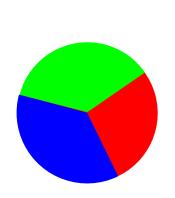
Large N_c Thermodynamics with Dynamical Fermions

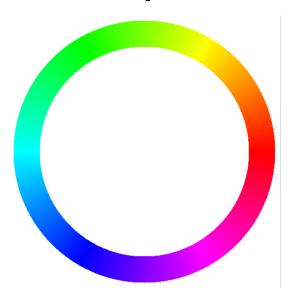
Presented by Daniel Hackett
Thursday, July 25
Lattice 2018

Daniel Hackett [University of Colorado Boulder]

Tom DeGrand [University of Colorado Boulder]

Ethan Neil [University of Colorado Boulder; RIKEN-BNL Research Center]





Overview

What is large N_c ? What does it have to say about thermo?

Numerical tests of large N_c

Previous work, in general: mostly quenched, recently some dynamical

[Review by Lucini, Panero 1210.4997]

Previous thermodynamics work: quenched

This talk: dynamical Wilson fermions [Throughout, $N_f=2$ a.k.a. "QCD"]

Automation

Early physics results

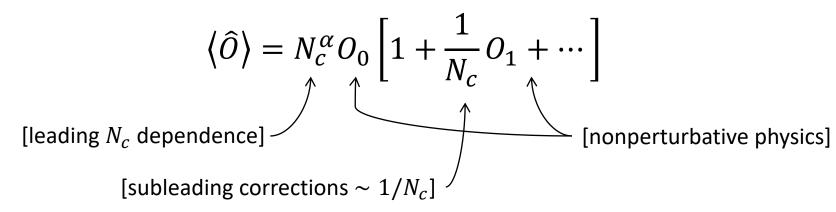
Phase diagram collapse, fermion independence(?), order of transition(?)

[Disclaimers: Currently in "proof of concept" phase; not intended to ever be a high-precision study]

What is large N_c ?

Consider "QCD": $SU(N_c)$ with some fermion content, vary N_c holding everything else fixed

Basic assertion: Power series in $1/N_c$ exists for any observable



't Hooft limit:
$$N_c \to \infty \Rightarrow \langle \hat{O} \rangle \to N_c^{\alpha} O_0$$

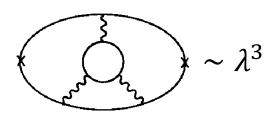
Theory simplifies in limit of infinite number of colors

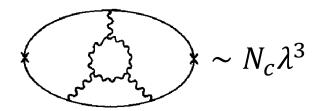
e.g. Mesons become infinitely narrow, quark model & OZI rule become exact

Holography duals typically apply to this limit

Lattice: Test that large N_c works

Thermodynamics at large N_c





Fermion loops suppressed by $1/N_c$ vs equivalent diagrams with gluon loops

- \Rightarrow Fermions "quenched out" at large N_c
- \Rightarrow Theories with fermions act like pure gauge theory as $N_c \rightarrow \infty$

Quenched large- N_c studies assume this works

Test this assumption with dynamical fermions

Previous work: T=0 spectroscopy [DeGrand & Liu 1606.01277]

This study: Finite T – do large N_c predictions hold?

Numerical details

Variant of MILC for arbitrary N_c [DeGrand]

Unimproved Wilson gauge action

 $N_F=2$ flavors of clover-improved Wilson fermions ($c_{SW}=1$) nHYP smeared fat links for fermions

This talk: explored $12^3 \times 6$ phase diagrams for $N_c = 3,4,5$

Moving forward: Want to vary N_t , N_s/N_t , ...

N_c	N_F	N_s	N_t	# ensembles	# trajecs
3	2	12	6	137	82339
4	2	12	6	135	148030
5	2	12	6	49	28230

 $\{N_c\} \times \{N_s\} \times \{N_t\} \times \cdots \rightarrow \text{Need to explore many Wilson phase diagrams}$

Logistically intractable without automation

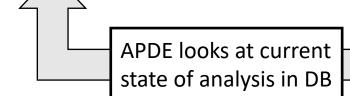
Automation

APDE specifies new simulations, feeds them to workflow manager

Automated Phase Diagram Explorer (APDE)

Simple criteria to decide where to explore:

- Are ensembles interesting (cut on m_q , phase)?
- Are ensembles explorable (nearby somewhere with equilibrated data)?



Workflow Manager

- Manages ongoing HMC runs
- Runs spectroscopy, flow on gauge configurations as they're generated
- [Minimal, naïve] automatic parameter tuning/failure recovery github.com/dchackett/taxi

Automatically load all raw data into a relational (SQL) database

SQL Database & Bulk Analysis

- DB enforces conventions, structure
- \sim nightly analysis scripts process data into useful observables: m_q , phase diagnostics, etc.

[See <u>DH poster</u> from earlier this week]

Flowed Polyakov loops

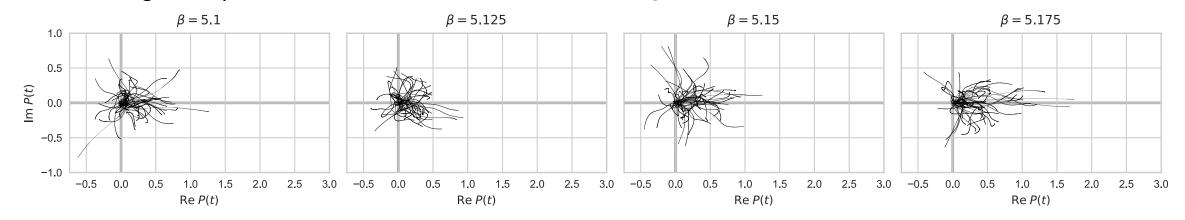
Many options for phase diagnostics, but flowed Polyakov loops are convenient for automation

Apply flow to configs while measuring Polyakov loop P(t) in flow time

Confined: P(t) wander randomly

Deconfined: P(t) rapidly order to $+N_c$

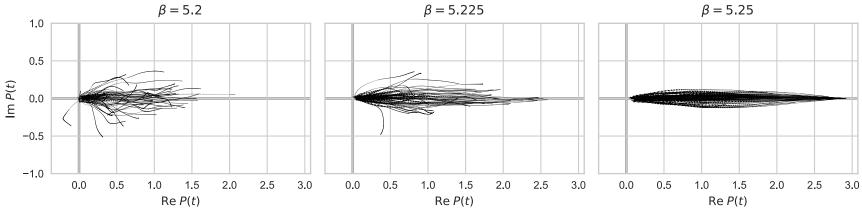
[Behavior shifts gradually between confined-like and deconfined-like]



Paths of P(t) in complex plane Each trajectory is one config being flowed

SU(3)
$$N_F = 2 \text{ on } 12^3 \times 6$$

 $\kappa = 0.128$



Phase diagnostics with flowed Polyakov loops

Can use flowed Polyakov loops as a diagnostic of confinement

[Ayyar, DH, Jay, Neil <u>1710.03257</u>]

Flow enhances signal in Polyakov loop

[Datta, Gupta, Lytle <u>1612.07985</u>] [Schaich, Hasenfratz, Rinaldi <u>1506.08791</u>]

At long t/a^2 , P is (roughly) independent of (β, κ)

Make (arbitrary but intuitive) definitions:

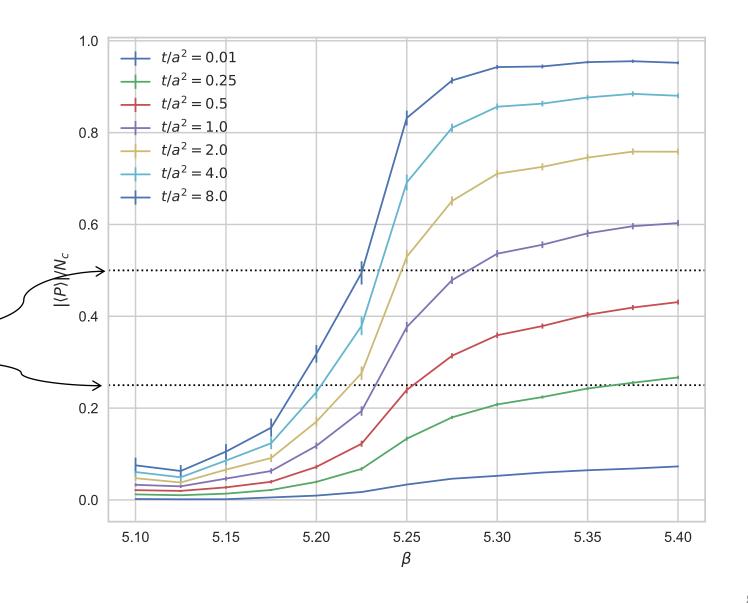
Deconfined: $|\langle P(t)\rangle|/N_c > 0.5$

Confined: $|\langle P(t)\rangle|/N_c < 0.25$

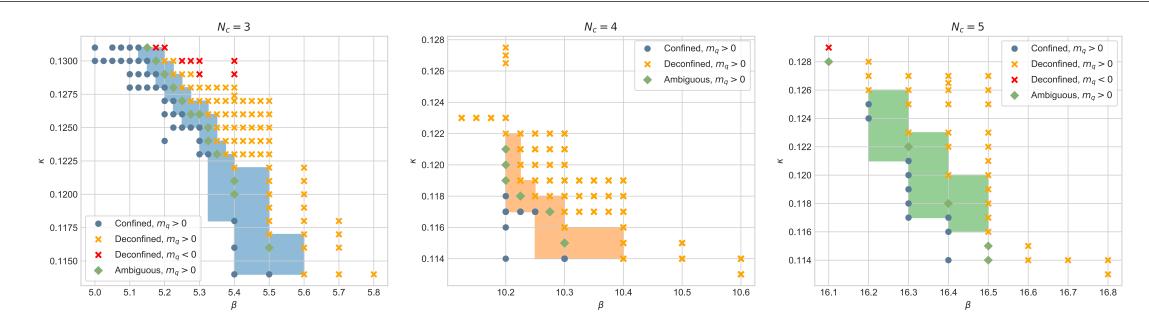
...at $t/a^2 = 2$

At right: SU(3) $N_F = 2$ on $12^3 \times 6$

 $\kappa = 0.128$ at various different flow times t/a^2



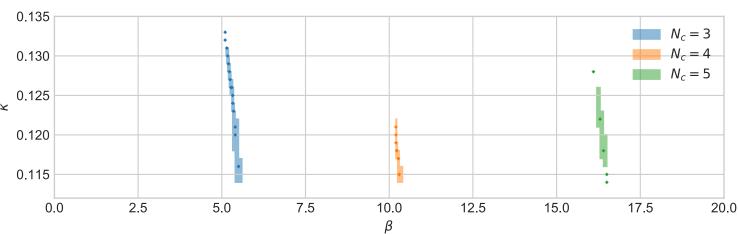
Wilson phase diagrams varying N_c



Phases defined using flowed Polyakov loops

Plotted together:

Phase-ambiguous regions [colored bands] and ambiguously-phased points



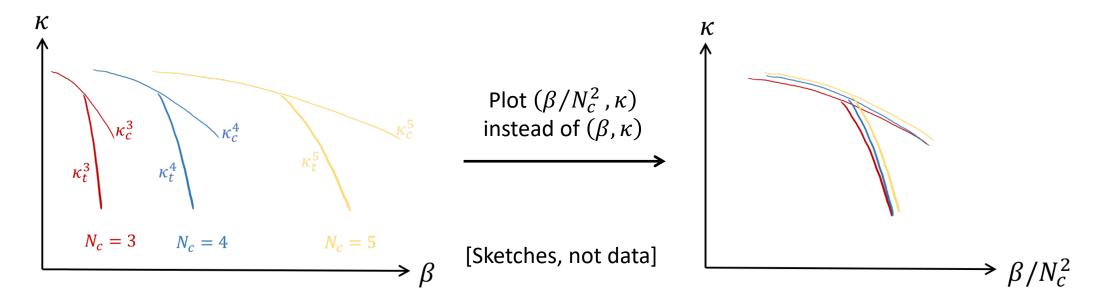
Prediction: phase diagram collapse

't Hooft limit: LO physics constant at constant $\lambda = g^2 N_c$

$$\beta = \frac{2N_c}{g_0^2} = \frac{2N_c^2}{\lambda_0} \Rightarrow \frac{\beta}{N_c^2} = \frac{2}{\lambda_0} = \text{(constant)}$$

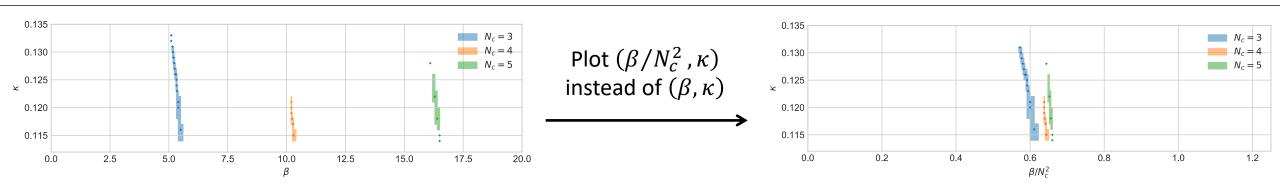
No LO N_c dependence for m_a [and thus κ]

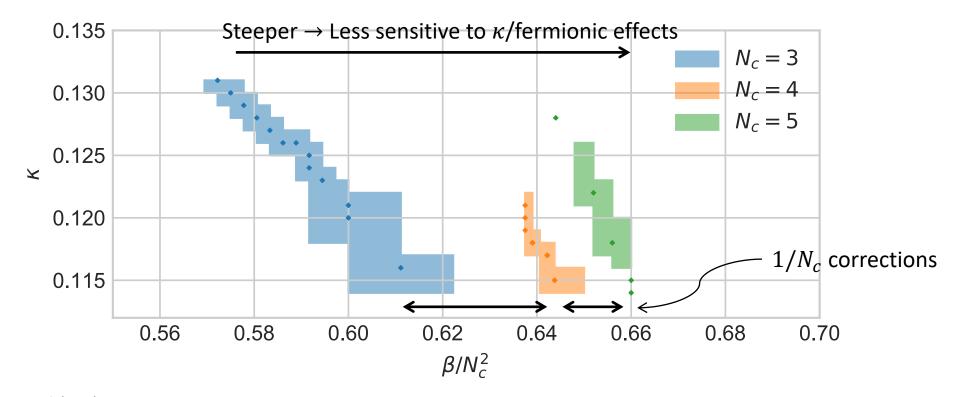
 \Rightarrow Constant physics at constant $(\beta/N_c^2, \kappa)$ [up to $1/N_c$ corrections]



Lattice 2018 – Thursday, July 25 – Daniel Hackett

Result: phase diagram collapse



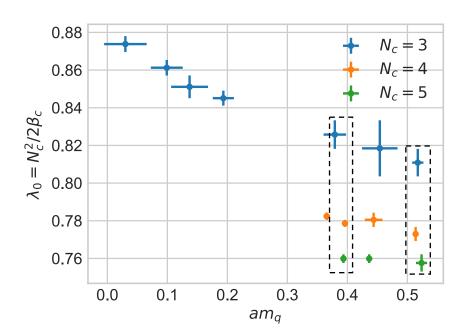


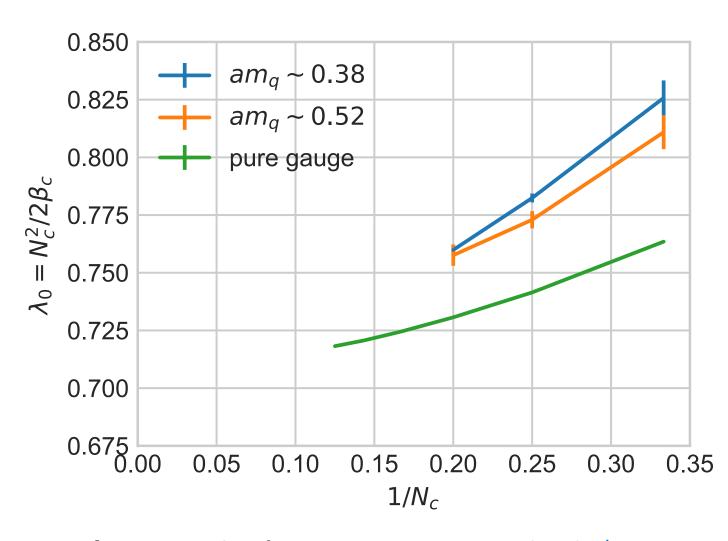
Fermion independence(?)

As $N_c \to \infty$, any observable should converge to its pure-gauge value independent of m_q

Plots: Uncertainties due to uncertainty in location of transition, wash out statistical errors

 am_q from finite-T ensembles; empirically, small error vs properly calculating with T=0 data





[Pure gauge data from Lucini, Teper, Wenger hep-lat/0307017; Lucini, Rago, Rinaldi 1202.6684]

Lattice 2018 – Thursday, July 25 – Daniel Hackett

Disappearance of pure-gauge transition(?)

Deconfinement/chiral transition

 $m_q = \infty$: First-order for $N_c > 2$

 m_q finite, easily simulated: Crossover

 \Rightarrow 3 some $m_q^{PG}(N_c)$ where transition changes order

Fermionic effects suppressed as N_c increases

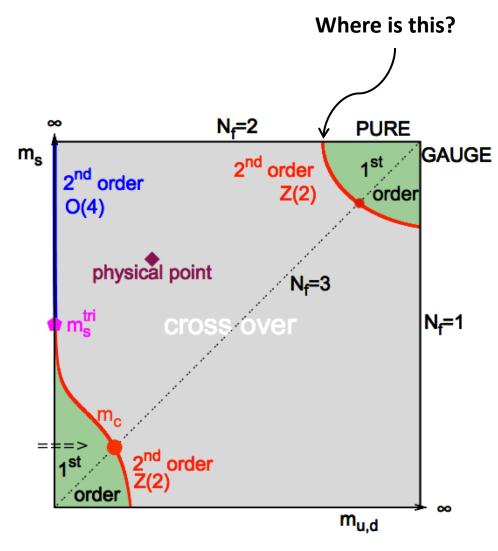
 \Rightarrow Expect $m_q^{PG} \rightarrow 0$ as $N_c \rightarrow \infty$

"Result": At present, no obvious first-orderness in data

- All observables continuous at transition
- No observed metastability near transition
- Polyakov loop doesn't become binary under flow

[Ayyar, DH, Jay, Neil 1710.03257]

$$\Rightarrow am_q^{PG} \gtrsim 0.5$$



[Image from de Forcrand 2017]

Conclusions & Future Directions

Proof-of-concept works: fully automated phase diagram exploration, \sim ready for production Initial physics results look promising

Explore $N_t > 6$ [$N_t = 8$ in progress]

- \rightarrow Get control over a dependence
- → Get away from bulk transitions

More ensembles, statistics near transitions

 \rightarrow Find β_c , lines of constant m_a more precisely via interpolation, reweighting?

Explore $N_s/N_t > 2$

- → Get control over finite volume artifacts
- → Volume scaling analysis to determine order of transition

Matching T = 0 data

 \rightarrow Scales to get e.g. T_c , m_q in physical units

Bulk transitions are an issue, block access to small m_q for $N_c>3$

→ Try improved actions?