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Motive

Consider of a collection of harmonic ocsillators with common mass
but varying spring constants. H =

∑N
i=1

p2i
2M + 1

2kix
2
i

I All of the modes evolve with the same time step and the same
velocity.

I Modes with small ki evolve with a smaller time step than
needed. Modes with large ki evolve with more steps than
needed.

I Critical slowing down would be removed if different masses
Mj ∝ kj are used for each mode.



Motive

I With lattice size a→ 0, gauge field enters the action
quadratically.

S =
β

3

∑
n,µ<ν

Retr [1− Pµν ] (1)

U=e iaA⇒ (∂µAν − ∂νAµ)(∂µAν − ∂νAµ) (2)

I Fourier acceleration can be applied.

H =
∑
k

tr(Pµ(−k)Dµν(k)Pν(k)) + S [U] (3)

I Gauge field modes will be mixed by gauge symmetry. To
identify different modes, some sort of phsyical gauge fixing is
required.



Gauge-Fixing Action

I We introduce a gauge-fixing term into the action.

SGF1[U] = −βM2
∑
x ,µ

Re tr [Uµ(x)] (4)

I Landau gauge is the maximum of Re tr [Uµ(x)]. When doing
path integral with this new gauge-fixing action, gauge field
configurations that obey Landau gauge is favored.

I Gauge-fixing action contains a parameter M. By tuning this
parameter, we can control how strongly the gauge fixing
condition is imposed.



Gauge-Fixing Action

〈O〉 =

∫
dUe−S[U]O[U] (5)

=

∫
dU

∫
dg ′e−SGF1[U

g′ ]e−S[U]O[U]∫
dge−SGF1[Ug ]

(6)

=

∫
dU

∫
dg ′e−SGF1[U

g′ ]e−S[U
g′ ]O[Ug ′

]∫
dge−SGF1[Ug ]

(7)

=

∫
dUe−S[U]−SGF1[U]− ln

∫
dge−SGF1[U

g ]
O[U] (8)

I Using gauge invariance we could add another term into action
to compensate gauge-fixing action SGF1, such that the
physical observable values are unchanged [C. Parrinello and G.
Jona-Lasinio, 1990].



Gauge-Fixing Action

H =
∑
k

tr(Pµ(−k)Dµν(k)Pν(k)) + Swilson[U] + SGF [U] (9)

SGF [U] = SGF1[U] + SGF2[U] (10)

SGF1[U] = −βM2
∑
x ,µ

Re tr [Uµ(x)] (11)

SGF2[U] = ln

∫
dg e−SGF1[U

g ] (12)

I The addition of the logarithm poses computational
chanllenges. ”Inner Monte Carlo” is needed to calculated both
force and difference in Harmiltonian between the beginning
and the end of a trajectory.



Gauge-Fixing Action

I Calculate force.

∂SGF2
∂U

=

∫
dg e−SGF1[U

g ] ∂SGF1[U
g ]

∂U∫
dg e−SGF1[Ug ]

≈ 1

N

N∑
n=1

∂SGF1[Ugn
]

∂U

(13)

I Calculate ∆H. SGF2 cannot be calculated directly. But the
difference in SGF2 is calculable.

SGF2[U ′]− SGF2[U] = ln

∫
dg e−SGF1[U

′g ]∫
dg e−SGF1[Ug ]

(14)

= ln

∫
dg e−SGF1[U

g ]eSGF1[U
g ]−SGF1[U

′g ]∫
dg e−SGF1[Ug ]

(15)

≈ ln
1

N

N∑
n=1

eSGF1[U
gn ]−SGF1[U

′gn ] (16)



Gauge Fixing action

I Soft guage fixing is achieved by introducing gauge-fixing
action SGF1 together with compensating term SGF2.

I Soft gauge fixing offers great computational challenges.

I Inner Monte Carlo makes evolution more computationally
demanding.

I Force and ∆H are calculated statistically, introducing
stochastic noise into results.



Fourier Acceleration

I Fourier acceleration can be achieved by choosing the
coefficients of conjugate momenta to be the inverse of the
coefficients of gauge fields.

Hp =
∑
k

tr(Pµ(−k)Dµν(k)Pν(k)) (17)

I In continuum limit, this inverse is the following propagator up
to the first order[S. Fachin, 1993].

Dµν(k) =
1

k2
PT
µν +

1

M2
PL
µν (18)

PT
µν(k) = δµν −

kµkν

k2
(19)

PL
µν(k) =

kµkν

k2
(20)



The Choice of Dµν: Lattice version

I How about lattice version?

Ãµ(k) =
∫

d4x
(2π)2

e−ikxA(x). For continuum case, ∂µ → kµ.

For discrete case, forward and backward derivatives:

∂+µ Aν(x) = Aν(x + δ)− Aν(x) (21)

∂−µ Aν(x) = Aν(x1)− Aν(x − δ) (22)

So on lattice we have ∂±µ → 2ie±iπkµ/L sin(πkµ/L). And projection
operator becomes:

(PL)µν =
∂−µ ∂

+
ν∑

ρ ∂
−
ρ ∂

+
ρ

(23)

→ e−iπkµ/L sin(πkµ/L)e+iπkν/L sin(πkν/L)∑
ρ sin2(πkρ/L)

(24)



Fourier Acceleration

I By examining the action carefully, we propose the following
kinetic energy term.

Hp =
∑
k

tr(Pµ(−k)Dµν(k)Pν(k)) (25)

Dµν(k) =
1

sin(k2 )2 + ε2
PT
µν(k) +

1

M2
PL
µν(k) (26)

PT
µν(k) = δµν −

e−i
kµ
2 sin(

kµ
2 )e i

kν
2 sin(kν2 )

sin(k2 )2
(27)

PL
µν(k) =

e−i
kµ
2 sin(

kµ
2 )e i

kν
2 sin(kν2 )

sin(k2 )2
(28)



Summary

I Fourier acceleration + Soft gauge fixing → reduce critical
slowing down.

I Gauge fixing action introduces inner Monte Carlo which is
computationally expensive. Hopefully it is relatively cheaper
compared to dynamical fermions.

I This method affects only the gauge evolution, and thus will
work equally well for any fermion formulation.

I Numerical tests are requried to determine appropriate
parameters.

I Code has been written and is being tested.
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