The QCD equation of state at high temperatures

J. H. Weber¹ in collaboration with A. Bazavov¹ and P. Petreczky²

¹Michigan State University, CMSE ²Brookhaven National Lab

36th International Symposium on Lattice Field Theory, Michigan State University, East Lansing, USA, 07/26/2018 Phys. Rev. D97 (2018) no. 1, 014510

Outline

Introduction

2 Lattice QCD setup

Trace anomaly

Pressure

6 Higher T

6 Charm?

Conclusion

QCD phase diagram

- Asymptotic freedom suggests a weakly-interacting phase¹
- 2+1 flavor QCD equation of state at zero baryochemical potential has been calculated up to $T \approx 400$ MeV by HotQCD and BW collaborations
- 2+1+1 flavor QCD equation of state at zero baryochemical potential has been calculated up to $T \approx 1$ GeV

¹Collins, Perry (1975), Cabbibo, Parisi (1975)

QCD phase diagram

- Asymptotic freedom suggests a weakly-interacting phase¹
- 2+1 flavor QCD equation of state at zero baryochemical potential has been calculated up to $T \approx 400$ MeV by HotQCD and BW collaborations
- 2+1+1 flavor QCD equation of state at zero baryochemical potential has been calculated up to $T \approx 1$ GeV

For which temperatures is the weak-coupling picture appropriate?

¹Collins, Perry (1975), Cabbibo, Parisi (1975)

Recent results up to T = 400 MeV

- Comparison of the continuum limit for 2+1 flavors and HISQ² and stout³ actions for the trace anomaly, pressure and entropy density
- \bullet The pressure compared with (HTL)⁴ and Electrostatic QCD (EQCD)⁵ calculations @ NNNLO $(\mathcal{O}(g^6))$

²Bazavov et al. [HotQCD] (2014)

³Borsanyi et al. [WB] (2014)

⁴Hague et al. (2014)

⁵Laine and Schröder (2006)

Lattice QCD

- Switch from Minkowski to Euclidean space – imaginary time formalism
- Define the theory on discrete space-time grid $N_{\sigma}^{3}N_{\tau}$ with $N_{\sigma}=4N_{\tau}$
- Use (rooted) HISQ⁶ action for two light and a physical strange quark
- Use tree-level Symanzik-improved gauge action
- Temperature is set as $T = 1/(aN_{\tau})$
- Fix N_{τ} , dial the lattice spacing to cover a temperature range
- ullet The continuum limit is reached as $1/N_{ au}
 ightarrow 0$
- Discretization errors at fixed T scale as $1/N_{\tau}^2$ and $1/N_{\tau}^4$ for HISQ

⁶Follana et al. [HPQCD] (2007)

HISQ data sets

• Previous gauge ensembles $(HotQCD)^7$: $m_\pi \approx 160 \text{ MeV}$

$$m_{\ell} = m_s/20$$

 $N_{\tau} = 6, 8, 10, 12$
 $\beta = 5.9, \dots, 7.825$

⁷Bazavov et al. [HotQCD] (2014)

⁸Bazavov et al. [TUMQCD] (2018)

HISQ data sets

• Previous gauge ensembles (HotQCD)⁷: $m_{\pi} \approx 160 \text{ MeV}$

$$m_{\ell} = m_s/20$$

 $N_{\tau} = 6, 8, 10, 12$
 $\beta = 5.9, \dots, 7.825$

 \bullet Additional gauge ensembles (TUMQCD)**: $m_\pi \approx 320~{\rm MeV}$

$$m_{\ell} = m_s/5$$

 $N_{\tau} = 4, 6, 8, 10, 12$
 $\beta = (7.03, 7.825,) 8, 8.2, 8.4$

⁷Bazavov et al. [HotQCD] (2014)

⁸Bazavov et al. [TUMQCD] (2018)

HISQ data sets

 \bullet Previous gauge ensembles (HotQCD)^7: $m_\pi \approx 160~{\rm MeV}$

$$m_{\ell} = m_s/20$$

 $N_{\tau} = 6, 8, 10, 12$
 $\beta = 5.9, \dots, 7.825$

 \bullet Additional gauge ensembles (TUMQCD)8: $m_\pi \approx 320~{\rm MeV}$

$$m_{\ell} = m_s/5$$

 $N_{\tau} = 4, 6, 8, 10, 12$
 $\beta = (7.03, 7.825,) 8, 8.2, 8.4$

- What about quark mass effects in the combined data set?
- What about frozen topology on the finest lattices?

⁷Bazavov et al. [HotQCD] (2014)

⁸Bazavov et al. [TUMQCD] (2018)

ce anomaly

• The QCD partition function

$$Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f$$

• The pressure is obtained from the trace anomaly via integral method

$$\Theta^{\mu\mu} \equiv \varepsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^T dT' \frac{\varepsilon - 3p}{T'^5}$$

Trace anomaly

• The QCD partition function

$$Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f$$

• The pressure is obtained from the trace anomaly via integral method

$$\Theta^{\mu\mu} \equiv \varepsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^T dT' \frac{\varepsilon - 3p}{T'^5}$$

 Subtraction of UV divergences (subtract divergent vacuum contribution evaluated at the same values of the gauge coupling):

$$\frac{\varepsilon - 3p}{T^4} = R_{\beta} [\langle S_G \rangle_0 - \langle S_G \rangle_T]
- R_{\beta} R_m [2m_{\ell} (\langle \bar{\ell}\ell \rangle_0 - \langle \bar{\ell}\ell \rangle_T) + m_s (\langle \bar{s}s \rangle_0 - \langle \bar{s}s \rangle_T)]
R_{\beta}(\beta) = -a \frac{d\beta}{da}, \quad R_m(\beta) = \frac{1}{m} \frac{dm}{d\beta}, \quad \beta = \frac{10}{g^2}$$

Trace anomaly at different quark masses

- $\varepsilon 3p$ with HISQ action for $m_\ell = m_s/20$ or $m_\ell = m_s/5$ at T > 400 MeV
- Difference: 10%, 4%, 3% and 1% for T = 300, 400, 500 and 600 MeV
- $\varepsilon 3p$ with p4 action and $m_{\ell} = m_s/10$ is consistent for T > 500 MeV

⁹Cheng et al. (2008)

Pressure at low temperature

- We have improved the low-temperature region by adding T=123 MeV at $N_{\tau}=10$ and T=133,140 MeV at $N_{\tau}=12^{10}$
- Bands are interpolations of the lattice data and the lines are Hadron Resonance Gas model results with the cutoff dependent spectrum
- Main origin of these cutoff effects is staggered taste-symmetry violation

¹⁰Bazavov et al. [TUMQCD] (2016)

utline Introduction Lattice QCD setup Trace anomaly **Pressure** Higher au Charm? Conclusion

Pressure at high temperatures

- At high temperatures (i.e. T > 400 MeV) the continuum limit is approached with the HISQ or p4 action from below resp. above
- The cutoff dependence of the pressure similar to the one in free theory
- $N_{\tau}=12$: large statistical uncertainties, systematics due to $m_{\ell}=m_s/5$?

• The cutoff dependence of the pressure with HISQ or p4 action is very similar to the cutoff dependence of quark number susceptibilities

$$\chi_{2n}^{q} = \frac{\partial^{2n} p(T, \mu_{q})}{\partial \mu_{q}^{2n}}, \ n = 1, 2, \ q = \ell, s$$

 $^{^{11} \}text{Note: } p^q, \ p^g \text{ are NOT directly related to } \Theta_F^{\mu\mu}, \ \Theta_G^{\mu\mu} \text{: for } m_q = 0 \rightarrow p^q > 0 \text{ while } \Theta_F^{\mu\mu} = 0.$

• The cutoff dependence of the pressure with HISQ or p4 action is very similar to the cutoff dependence of quark number susceptibilities

$$\chi_{2n}^{q} = \frac{\partial^{2n} p(T, \mu_{q})}{\partial \mu_{q}^{2n}}, \ n = 1, 2, \ q = \ell, s$$

• At high temperatures where the weak-coupling picture is expected to hold we can write the pressure as the sum of the quark and gluon pressures¹¹ $p(T) = p^q(T) + p^g(T)$

 $^{^{11}\}text{Note: }p^q,\ p^g\ \text{are NOT directly related to}\ \Theta_F^{\mu\mu},\ \Theta_G^{\mu\mu}\text{: for }m_q=0\rightarrow p^q>0\ \text{while }\Theta_F^{\mu\mu}=0.$

Pressure: cutoff dependence

 The cutoff dependence of the pressure with HISQ or p4 action is very similar to the cutoff dependence of quark number susceptibilities

$$\chi_{2n}^q = \frac{\partial^{2n} p(T, \mu_q)}{\partial \mu_q^{2n}}, \quad n = 1, 2, \quad q = \ell, s$$

- At high temperatures where the weak-coupling picture is expected to hold we can write the pressure as the sum of the quark and gluon pressures¹¹ $p(T) = p^q(T) + p^g(T)$
- The gluonic pressure is known to have negligible cutoff dependence for improved actions, thus we assume

$$p(T) = p(T, N_{\tau}) + corr(T, N_{\tau})$$

$$corr(T, N_{\tau}) = p^{q}(T) \left(1 - \frac{p^{q}(T, N_{\tau})}{p^{q}(T)}\right)$$

 $^{^{11} \}text{Note: } p^q, \ p^g \text{ are NOT directly related to } \Theta_F^{\mu\mu}, \ \Theta_G^{\mu\mu} \text{: for } m_q = 0 \rightarrow p^q > 0 \text{ while } \Theta_F^{\mu\mu} = 0.$

Pressure: correction of cutoff dependence

• We approximate the cutoff dependence of the quark pressure by the one of the second order susceptibilities χ_2^{112}

$$\frac{p^q(T,N_\tau)}{p^q(T)} \simeq \frac{\chi_2^l(T,N_\tau)}{\chi_2^l(T)}$$

Pressure: correction of cutoff dependence

• We approximate the cutoff dependence of the quark pressure by the one of the second order susceptibilities χ_2^{112}

$$\frac{p^q(T,N_\tau)}{p^q(T)} \simeq \frac{\chi_2^l(T,N_\tau)}{\chi_2^l(T)}$$

• The QCD pressure is below the ideal gas limit by about 15% at high temperatures \rightarrow we estimate $\rho_q(T)$ using the ideal quark pressure

¹²Calculated in Bazavov et al. (2013)

Higher T

• We approximate the cutoff dependence of the quark pressure by the one of the second order susceptibilities $\chi_2^{1/12}$

$$\frac{p^q(T,N_\tau)}{p^q(T)} \simeq \frac{\chi_2^l(T,N_\tau)}{\chi_2^l(T)}$$

- The QCD pressure is below the ideal gas limit by about 15% at high temperatures \rightarrow we estimate $\rho_q(T)$ using the ideal quark pressure
- The overall estimate of the additive correction

$$corr(T, N_{\tau}) \simeq p^{q, id-15\%}(T) \left(1 - \frac{\chi_2^l(T, N_{\tau})}{\chi_2^l(T)}\right)$$

¹²Calculated in Bazavov et al. (2013)

Pressure

Pressure: continuum limit

• At high temperatures the dominant cutoff dependence of $p(T, N_{\tau})$ is like the one of the ideal quark gas, thus $p(T, N_{\tau}) - p(T) \sim 1/N_{\tau}^4$

 $^{^{13} \}text{We}$ estimate systematic uncertainties from the difference to $1/N_{\tau}^2$ fit for $\mathcal{T} <$ 400 MeV

Pressure: continuum limit

- At high temperatures the dominant cutoff dependence of $p(T, N_{\tau})$ is like the one of the ideal quark gas, thus $p(T, N_{\tau}) p(T) \sim 1/N_{\tau}^4$
- At low temperatures the dominant cutoff effects are due to staggered taste-symmetry violations and scale like $p(T, N_{\tau}) p(T) \sim 1/N_{\tau}^2$

 $^{^{13}}$ We estimate systematic uncertainties from the difference to $1/N_{ au}^2$ fit for T < 400 MeV

Pressure: continuum limit

- At high temperatures the dominant cutoff dependence of $p(T, N_{\tau})$ is like the one of the ideal quark gas, thus $p(T, N_{\tau}) p(T) \sim 1/N_{\tau}^4$
- At low temperatures the dominant cutoff effects are due to staggered taste-symmetry violations and scale like $p(T, N_{\tau}) p(T) \sim 1/N_{\tau}^2$
- We use $1/N_T^4$ fit for T > 200 MeV and conservative systematic errors¹³

 $^{^{13}}$ We estimate systematic uncertainties from the difference to $1/N_{\tau}^2$ fit for T < 400 MeV

Pressure: continuum limit

- At high temperatures the dominant cutoff dependence of $p(T, N_{\tau})$ is like the one of the ideal quark gas, thus $p(T, N_{\tau}) p(T) \sim 1/N_{\tau}^4$
- At low temperatures the dominant cutoff effects are due to staggered taste-symmetry violations and scale like $p(T, N_{\tau}) p(T) \sim 1/N_{\tau}^2$
- We use $1/N_{\tau}^4$ fit for T > 200 MeV and conservative systematic errors¹³
- \bullet In 200 MeV < T<660 MeV we have four lattice spacings to perform continuum extrapolations, in 660 MeV < T<800 MeV three, and for T>800 MeV we can only provide a continuum estimate

 $^{^{13}}$ We estimate systematic uncertainties from the difference to $1/N_{\tau}^2$ fit for T < 400 MeV

Pressure: correction and continuum

• Corrected pressure at fixed cutoff (HISQ: bands & p4 action: lines) and the explicit continuum limit/estimate (black boxes) all coincide.

Higher T

- No statistically significant cutoff dependence in the trace anomaly for $N_{\tau} \geq 8$ and T > 300 MeV \rightarrow unsurprising in weak-coupling picture¹⁴
- Continuum estimate of $\epsilon 3p$ from a combined interpolation for $N_{\tau} = 8$, 10 and 12 in the interval 300 MeV < T < 1000 MeV

¹⁴Weak coupling suggests cutoff effects of the trace anomaly as $\sim \alpha_s^3 a^2 = \alpha_s^3/(N_\tau T)^2$

 $^{^{15} \}text{Cutoff}$ effects for $N_\tau=6$ tend to be larger than for $N_\tau=4$ due to compensating higher order terms, cf. e.g. static quark-antiquark free energies, Bazavov et al. [TUMQCD] (2018)

 $^{^{16}}$ We tacitly assume a mild ${\it T}$ dependence for cutoff effects at ${\it T}>1$ GeV

- No statistically significant cutoff dependence in the trace anomaly for $N_{\tau} \geq 8$ and T > 300 MeV \rightarrow unsurprising in weak-coupling picture¹⁴
- Continuum estimate of $\epsilon 3p$ from a combined interpolation for $N_{\tau} = 8$, 10 and 12 in the interval 300 MeV < T < 1000 MeV
- \bullet The $N_{\tau}=4$ and 6 results for $\epsilon-3p$ lie below this continuum estimate
- We rescale the $N_{\tau}=6$ and 4 results for the trace anomaly by factors 1.4 and 1.2, respectively¹⁵, to bring them in agreement with the continuum estimate for 800 MeV < T < 1000 MeV¹⁶

¹⁴Weak coupling suggests cutoff effects of the trace anomaly as $\sim \alpha_s^3 a^2 = \alpha_s^3/(N_\tau T)^2$

 $^{^{15} \}text{Cutoff}$ effects for $N_\tau=6$ tend to be larger than for $N_\tau=4$ due to compensating higher order terms, cf. e.g. static quark-antiquark free energies, Bazavov et al. [TUMQCD] (2018)

 $^{^{16}}$ We tacitly assume a mild T dependence for cutoff effects at T>1 GeV

utline Introduction Lattice QCD setup Trace anomaly Pressure **Higher au** Charm? Conclusion

- \bullet Generous uncertainties of 40% and 20% of rescaled $N_{\tau}=6$ and 4 data
- Then perform a spline interpolation of the combined $N_{\tau}=12,\ 10,\ 8,\ 6$ and 4 data in the temperature interval 400 MeV < T < 2000 MeV

- Generous uncertainties of 40% and 20% of rescaled $N_{\tau}=6$ and 4 data
- Then perform a spline interpolation of the combined $N_{\tau}=12,\ 10,\ 8,\ 6$ and 4 data in the temperature interval 400 MeV < T < 2000 MeV
- \bullet Integrate the trace anomaly from T=660 MeV to 2000 MeV to get the pressure and the entropy density

utline Introduction Lattice QCD setup Trace anomaly Pressure **Higher 7** Charm? Conclusio

Weak-coupling expansions

- Uncertainty of continuum estimate has been conservatively doubled to account for possible systematic errors at high temperatures
- \bullet Left: Comparison of the pressure obtained on the lattice with the $\rm HTL^{17}$ and EQCD 18 results
- Right: Comparison of the entropy density obtained on the lattice with the HTL and NLA¹⁹ results

¹⁷Haque et al. (2014)

¹⁸Laine and Schröder (2006)

¹⁹Rebhan (2003)

Comparison to 2+1+1 flavor QCD

- Considerably smaller errors than the previous HISQ result²⁰
- HISQ result at T=500 MeV is 1.5σ higher than stout result²¹
- Only about 3% lower at $T \approx 400$ MeV than 2+1+1 flavor stout result²²

²⁰Bazavov et al. [HotQCD] (2014)

²¹Borsanyi et al. [WB] (2014)

²²Borsanyi et al. [WB] (2016)

utline Introduction Lattice QCD setup Trace anomaly Pressure Higher au Charm? Conclusion

Weak-coupling results with 2+1 or 2+1+1 massless flavors

- Left: Comparison of the 2+1+1 flavor pressure obtained with stout action²³ with the 2+1+1 massless flavor HTL result²⁴
- Right: Comparison of the 2+1 flavor pressure obtained with HISQ action with the 2+1 massless flavor HTL²⁵ and EQCD²⁶ results
- \bullet Apparently charm quark mass effects are important for $\mathcal{T} \lesssim 1\,\text{GeV}$

²³Borsanyi et al. [WB] (2016)

²⁴Andersen et al. (2010)

²⁵Haque et al. (2014)

²⁶Laine and Schröder (2006)

Conclusion

- Significantly improved errors compared to previous results by the HotQCD collaboration for the 2+1 flavor QCD equation of state at zero baryochemical potential and extended to higher temperatures
- At temperatures above 400 MeV we use ensembles with $m_{\ell}=m_s/5$, the quark mass effects are covered within the statistical uncertainties
- \bullet Up to 660 MeV we perform the continuum limit with four N_{τ}
- At high temperatures cutoff effects in the pressure are similar to the those in quark number susceptibilities
- Three different methods to estimate the continuum pressure up to 1330 MeV
- \bullet In the interval 660 to 2000 MeV we provide a continuum estimate based on the rescaled $N_\tau=6$ and 4 results
- Reasonable agreement between the weak-coupling results and the lattice at high temperature

Staggered taste-symmetry violation

- \bullet Distortions and degeneracies for PS mesons with HISQ well studied
- Smaller distortions for HISQ spectrum of other hadrons
- Include a parametrization of the distortions in hadron resonance gas

$$\ln \mathcal{Z}^H(m_i, T, V) = \mp rac{V d_h}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp e^{-E_h/T})$$

Distorted HRG

- Lines correspond to undistorted HRG, only distorted PS mesons, only distorted ground states, and HRG with fully distorted spectrum
- Distortion of PS mesons dominant, systematic error from variation
- \bullet Larger hadron masses reduce the contribution to the pressure
- Larger mass states contribute more to $\varepsilon 3p \to \text{partial compensation}$

Quark mass dependence

Open symbols: $m_\ell = m_s/20$ – Filled symbols: $m_\ell = m_s/5$

Quark mass dependence

Open symbols: $m_\ell = m_s/20$ – Filled symbols: $m_\ell = m_s/5$

- After adjusting for the explicit m_{ℓ} dependence (i.e. using $m_s/20$ instead of $m_s/5$: the quark contribution $\Theta_F^{\mu\mu}$ is insensitive to m_{ℓ}
- Cutoff effects, quark mass effects and statistical errors of $\Theta_F^{\mu\mu}$ are tiny

Quark mass dependence

Open symbols: $m_\ell = m_s/20$ – Filled symbols: $m_\ell = m_s/5$

- After adjusting for the explicit m_{ℓ} dependence (i.e. using $m_s/20$ instead of $m_s/5$: the quark contribution $\Theta_F^{\mu\mu}$ is insensitive to m_{ℓ}
- ullet Cutoff effects, quark mass effects and statistical errors of $\Theta_F^{\mu\mu}$ are tiny
- \bullet The gluon contribution $\Theta_G^{\mu\mu}$ depends implicitly on m_ℓ through the sea
- \bullet Cutoff effects and quark mass effects of $\Theta_G^{\mu\mu}$ are significant

Slow topological tunneling

- Two streams of finest HotQCD lattices²⁷ ($\beta = 7.825, m_{\ell} = m_s/20$)
- Topological tunneling is slow, but still at acceptable rates

²⁷Bazavov et al. [HotQCD] (2014)

Frozen topology

β	plaq.	$\langle ar{\psi}\psi angle_\ell$	$\langle ar{\psi}\psi angle_{s}$	rect.	Q	stream
8.0	0.6641244(21)	0.0026400(66)	0.0117787(51)	0.4607658(29)	2	a
	0.6641256(15)	0.0026061(122)	0.0117719(76)	0.4607666(23)	1	b
	0.6641257(24)	0.0025923(87)	0.0117889(59)	0.4607666(35)	0	c
8.2	0.6738855(16)	0.00207849(52)	0.0095507(55)	0.4744956(24)	2	a
	0.6738854(12)	0.00199916(69)	0.0095271(60)	0.4744943(17)	0	b
	0.6738865(12)	0.00201003(95)	0.0095399(75)	0.4744971(18)	0	c
8.4	0.6830217(14)	0.00171386(47)	0.0078134(48)	0.4874515(22)	2	a
	0.6830200(17)	0.00158675(57)	0.0077629(71)	0.4874514(28)	0	b
	0.6830187(12)	0.00161808(63)	0.0077963(54)	0.4874474(18)	0	С

- Streams with frozen topology in different sectors are generated by hand
- Separate measurement of plaquette, rectangle, light and strange quark condensates at T=0 for different topological sectors $Q=0,\ 1,\ 2$
- Possibly systematic dependence on topology for light quark condensate
- Topology effects are not statistically relevant for full trace anomaly

Static energy at different quark masses

- Ratio of static energy for different quark masses at $\beta = 7.03$
- \bullet Increasing with distances, 0.1% (0.2%) deviation at $0.8\,r_1~(r_1)$
- r_1/a resp. (r_2/a) about 1% resp. (0.3%) smaller for $m_\ell=m_s/5$