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QCD phase diagram

Asymptotic freedom suggests a
weakly-interacting phase1

2+1 flavor QCD equation of state at
zero baryochemical potential has
been calculated up to T ≈ 400 MeV
by HotQCD and BW collaborations
2+1+1 flavor QCD equation of state
at zero baryochemical potential has
been calculated up to T ≈ 1 GeV

�� �For which temperatures is the weak-coupling picture appropriate?

1Collins, Perry (1975), Cabbibo, Parisi (1975)
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Recent results up to T = 400 MeV
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Comparison of the continuum limit for 2+1 flavors and HISQ2 and
stout3 actions for the trace anomaly, pressure and entropy density
The pressure compared with (HTL)4 and Electrostatic QCD (EQCD)5
calculations @ NNNLO (O(g6))

2Bazavov et al. [HotQCD] (2014)
3Borsanyi et al. [WB] (2014)
4Haque et al. (2014)
5Laine and Schröder (2006)
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Lattice QCD

Switch from Minkowski to Euclidean
space – imaginary time formalism
Define the theory on discrete
space-time grid N3

σNτ with Nσ = 4Nτ
Use (rooted) HISQ6 action for two
light and a physical strange quark
Use tree-level Symanzik-improved
gauge action

Temperature is set as T = 1/(aNτ )
Fix Nτ , dial the lattice spacing to cover a temperature range
The continuum limit is reached as 1/Nτ → 0
Discretization errors at fixed T scale as 1/N2

τ and 1/N4
τ for HISQ

6Follana et al. [HPQCD] (2007)
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HISQ data sets

Previous gauge ensembles (HotQCD)7: mπ ≈ 160 MeV

m` = ms/20
Nτ = 6, 8, 10, 12
β = 5.9, . . . , 7.825

Additional gauge ensembles (TUMQCD)8: mπ ≈ 320 MeV

m` = ms/5
Nτ = 4, 6, 8, 10, 12
β = (7.03, 7.825, ) 8, 8.2, 8.4

What about quark mass effects in the combined data set?
What about frozen topology on the finest lattices?

7Bazavov et al. [HotQCD] (2014)
8Bazavov et al. [TUMQCD] (2018)
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Trace anomaly

The QCD partition function

Z =
∫

DUDψ̄Dψ exp{−S}, S = Sg + Sf

The pressure is obtained from the trace anomaly via integral method

Θµµ ≡ ε− 3p = −T
V

d ln Z
d ln a ⇒ p

T 4 −
p0

T 4
0

=
∫ T

T0

dT ′ ε− 3p
T ′5

Subtraction of UV divergences (subtract divergent vacuum
contribution evaluated at the same values of the gauge coupling):

ε− 3p
T 4 = Rβ [〈SG〉0 − 〈SG〉T ]

− RβRm[2m`(〈 ¯̀̀ 〉0 − 〈 ¯̀̀ 〉T ) + ms(〈s̄s〉0 − 〈s̄s〉T )]

Rβ(β) = −a dβ
da , Rm(β) = 1

m
dm
dβ , β = 10

g2
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Trace anomaly at different quark masses
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ε− 3p with HISQ action for m` = ms/20 or m` = ms/5 at T > 400MeV
Difference: 10%, 4%, 3% and 1% for T = 300, 400, 500 and 600 MeV
ε− 3p with p4 action9 and m` = ms/10 is consistent for T > 500 MeV

9Cheng et al. (2008)
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Pressure at low temperature
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We have improved the low-temperature region by adding T = 123 MeV
at Nτ = 10 and T = 133, 140 MeV at Nτ = 1210

Bands are interpolations of the lattice data and the lines are Hadron
Resonance Gas model results with the cutoff dependent spectrum
Main origin of these cutoff effects is staggered taste-symmetry violation

10Bazavov et al. [TUMQCD] (2016)
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Pressure at high temperatures
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At high temperatures (i.e. T > 400 MeV) the continuum limit is
approached with the HISQ or p4 action from below resp. above
The cutoff dependence of the pressure similar to the one in free theory
Nτ = 12: large statistical uncertainties, systematics due to m` = ms/5?
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Pressure: cutoff dependence

The cutoff dependence of the pressure with HISQ or p4 action is very
similar to the cutoff dependence of quark number susceptibilities

χq
2n = ∂2np(T , µq)

∂µ2n
q

, n = 1, 2, q = `, s

At high temperatures where the weak-coupling picture is expected to
hold we can write the pressure as the sum of the quark and gluon
pressures11 p(T ) = pq(T ) + pg (T )
The gluonic pressure is known to have negligible cutoff dependence for
improved actions, thus we assume

p(T ) = p(T ,Nτ ) + corr(T ,Nτ )

corr(T ,Nτ ) = pq(T )
(

1− pq(T ,Nτ )
pq(T )

)

11Note: pq, pg are NOT directly related to ΘµµF , ΘµµG : for mq = 0→ pq > 0 while ΘµµF = 0.
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Pressure: correction of cutoff dependence

We approximate the cutoff dependence of the quark pressure by the
one of the second order susceptibilities χl

2
12

pq(T ,Nτ )
pq(T ) ' χl

2(T ,Nτ )
χl
2(T )

The QCD pressure is below the ideal gas limit by about 15% at high
temperatures → we estimate pq(T ) using the ideal quark pressure
The overall estimate of the additive correction

corr(T ,Nτ ) ' pq,id−15%(T )
(

1− χl
2(T ,Nτ )
χl
2(T )

)

12Calculated in Bazavov et al. (2013)
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Pressure: continuum limit

At high temperatures the dominant cutoff dependence of p(T ,Nτ ) is
like the one of the ideal quark gas, thus p(T ,Nτ )− p(T ) ∼ 1/N4

τ

At low temperatures the dominant cutoff effects are due to staggered
taste-symmetry violations and scale like p(T ,Nτ )− p(T ) ∼ 1/N2

τ

We use 1/N4
τ fit for T > 200 MeV and conservative systematic errors13

In 200 MeV < T < 660 MeV we have four lattice spacings to perform
continuum extrapolations, in 660 MeV < T < 800 MeV – three, and
forT > 800 MeV we can only provide a continuum estimate

13We estimate systematic uncertainties from the difference to 1/N2
τ fit for T < 400 MeV
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Pressure: correction and continuum
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Corrected pressure at fixed cutoff (HISQ: bands & p4 action: lines)
and the explicit continuum limit/estimate (black boxes) all coincide.
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Trace anomaly above 800 MeV

No statistically significant cutoff dependence in the trace anomaly for
Nτ ≥ 8 and T > 300 MeV → unsurprising in weak-coupling picture14

Continuum estimate of ε− 3p from a combined interpolation for
Nτ = 8, 10 and 12 in the interval 300 MeV < T < 1000 MeV

The Nτ = 4 and 6 results for ε− 3p lie below this continuum estimate
We rescale the Nτ = 6 and 4 results for the trace anomaly by factors
1.4 and 1.2, respectively15, to bring them in agreement with the
continuum estimate for 800 MeV < T < 1000 MeV16

14Weak coupling suggests cutoff effects of the trace anomaly as ∼ α3
s a2 = α3

s/(NτT )2
15Cutoff effects for Nτ = 6 tend to be larger than for Nτ = 4 due to compensating higher order

terms, cf. e.g. static quark-antiquark free energies, Bazavov et al. [TUMQCD] (2018)
16We tacitly assume a mild T dependence for cutoff effects at T > 1 GeV
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Trace anomaly above 800 MeV
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�� �Nτ = 6 and 4 data are rescaled by factors 1.4 and 1.2

Generous uncertainties of 40% and 20% of rescaled Nτ = 6 and 4 data
Then perform a spline interpolation of the combined Nτ = 12, 10, 8, 6
and 4 data in the temperature interval 400 MeV < T < 2000 MeV
Integrate the trace anomaly from T = 660 MeV to 2000 MeV to get the
pressure and the entropy density
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Weak-coupling expansions
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Uncertainty of continuum estimate has been conservatively doubled to
account for possible systematic errors at high temperatures
Left: Comparison of the pressure obtained on the lattice with the
HTL17 and EQCD18 results
Right: Comparison of the entropy density obtained on the lattice with
the HTL and NLA19 results

17Haque et al. (2014)
18Laine and Schröder (2006)
19Rebhan (2003)
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Comparison to 2+1+1 flavor QCD
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Considerably smaller errors than the previous HISQ result20

HISQ result at T = 500 MeV is 1.5σ higher than stout result21

Only about 3% lower at T ≈ 400 MeV than 2+1+1 flavor stout result22

20Bazavov et al. [HotQCD] (2014)
21Borsanyi et al. [WB] (2014)
22Borsanyi et al. [WB] (2016)
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Weak-coupling results with 2+1 or 2+1+1 massless flavors
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Left: Comparison of the 2+1+1 flavor pressure obtained with stout
action23 with the 2+1+1 massless flavor HTL result24

Right: Comparison of the 2+1 flavor pressure obtained with HISQ
action with the 2+1 massless flavor HTL25 and EQCD26 results
Apparently charm quark mass effects are important for T . 1GeV

23Borsanyi et al. [WB] (2016)
24Andersen et al. (2010)
25Haque et al. (2014)
26Laine and Schröder (2006)
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Conclusion

Significantly improved errors compared to previous results by the
HotQCD collaboration for the 2+1 flavor QCD equation of state at
zero baryochemical potential and extended to higher temperatures
At temperatures above 400 MeV we use ensembles with m` = ms/5, the
quark mass effects are covered within the statistical uncertainties
Up to 660 MeV we perform the continuum limit with four Nτ
At high temperatures cutoff effects in the pressure are similar to the
those in quark number susceptibilities
Three different methods to estimate the continuum pressure up to
1330 MeV
In the interval 660 to 2000 MeV we provide a continuum estimate
based on the rescaled Nτ = 6 and 4 results
Reasonable agreement between the weak-coupling results and the
lattice at high temperature
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Staggered taste-symmetry violation Quark mass dependence Topology freezing Lattice scale

Staggered taste-symmetry violation
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Distortions and degeneracies for PS mesons with HISQ – well studied
Smaller distortions for HISQ spectrum of other hadrons
Include a parametrization of the distortions in hadron resonance gas
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Distorted HRG
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Lines correspond to undistorted HRG, only distorted PS mesons, only
distorted ground states, and HRG with fully distorted spectrum
Distortion of PS mesons dominant, systematic error from variation
Larger hadron masses reduce the contribution to the pressure
Larger mass states contribute more to ε− 3p → partial compensation
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Quark mass dependence�� �Open symbols: m` = ms/20 – Filled symbols: m` = ms/5
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The gluon contribution ΘµµG depends implicitly on m` through the sea
Cutoff effects and quark mass effects of ΘµµG are significant
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Slow topological tunneling
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Two streams of finest HotQCD lattices27 (β = 7.825, m` = ms/20)
Topological tunneling is slow, but still at acceptable rates

27Bazavov et al. [HotQCD] (2014)
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Frozen topology

β plaq. 〈ψ̄ψ〉` 〈ψ̄ψ〉s rect. Q stream
0.6641244(21) 0.0026400(66) 0.0117787(51) 0.4607658(29) 2 a

8.0 0.6641256(15) 0.0026061(122) 0.0117719(76) 0.4607666(23) 1 b
0.6641257(24) 0.0025923(87) 0.0117889(59) 0.4607666(35) 0 c
0.6738855(16) 0.00207849(52) 0.0095507(55) 0.4744956(24) 2 a

8.2 0.6738854(12) 0.00199916(69) 0.0095271(60) 0.4744943(17) 0 b
0.6738865(12) 0.00201003(95) 0.0095399(75) 0.4744971(18) 0 c
0.6830217(14) 0.00171386(47) 0.0078134(48) 0.4874515(22) 2 a

8.4 0.6830200(17) 0.00158675(57) 0.0077629(71) 0.4874514(28) 0 b
0.6830187(12) 0.00161808(63) 0.0077963(54) 0.4874474(18) 0 c

Streams with frozen topology in different sectors are generated by hand
Separate measurement of plaquette, rectangle, light and strange quark
condensates at T = 0 for different topological sectors Q = 0, 1, 2
Possibly systematic dependence on topology for light quark condensate
Topology effects are not statistically relevant for full trace anomaly
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Static energy at different quark masses
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Ratio of static energy for different quark masses at β = 7.03
Increasing with distances, 0.1% (0.2%) deviation at 0.8 r1 (r1)
r1/a resp. (r2/a) about 1% resp. (0.3%) smaller for m` = ms/5
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