Progress on the study of electromagnetic corrections to $K \rightarrow \pi\pi$ decay

Norman H. Christ & Xu Feng *

(RBC and UKQCD collaborations)

Lattice 2018 @ East Lansing, July 23-28, 2018

Subsequent report of Norman's talk @ Lattice 2017

Including electromagnetism in $K \rightarrow \pi \pi$ decay calculations

The 35th International Symposium on Lattice Field Theory

June 21, 2017

N.H. Christ* and X. Feng

EPJ Web Conf. 175 (2018) 13016

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>UC Boulder</u>

Oliver Witzel

Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn O'haigan Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

<u>MIT</u>

David Murphy Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

Motivation to study EM corrections to $K \rightarrow \pi\pi$

This morning's session is about the studies of $K \rightarrow \pi\pi$ decay and ϵ'

• Progresses reported by R. Mawhinney, T. Wang, C. Kelly, F. Romero-Lopez

Direct CP violation in $K \rightarrow \pi \pi$

$$\epsilon' = \frac{1}{3} (\eta_{+-} - \eta_{00}) = \frac{ie^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \frac{\text{Re } A_2}{\text{Re } A_0} \left(\frac{\text{Im } A_2}{\text{Re } A_2} - \frac{\text{Im } A_0}{\text{Re } A_0} \right)$$

• Turn on EM interaction, $A_I \rightarrow A_I^{\gamma}$, $\delta_I \rightarrow \delta_I^{\gamma}$, I = 0, 2

Though $A_2^{\gamma} - A_2$ is an $O(\alpha_e)$ effect, its size could be enhanced by a factor of 22 due to the mixing with A_0 and $\Delta I = 1/2$ rule

ChPT+Large-N_c: Cirigliano et al, hep-ph/0008290, hep-ph/0310351

 - "the isospin violating correction for ε' is below 15%"

Technical issues on including electromagnetism

 Lellouch-Lüscher's formalism relies on a short-range interaction
 ⇒ long-range EM requires the change in the FV formalism Main topic of this talk

• EM interaction mixes I = 0 and $I = 2 \pi \pi$ scattering $\Rightarrow K \rightarrow \pi \pi$ decay becomes a coupled-channel problem See Lat17 proceeding: EPJ Web Conf. 175 (2018) 13016

Possible photon radiation

⇒ coupled channels further mixed with 3-particle channel $(\pi\pi\gamma)$ Under investigation

Include EM interaction in the Coulomb gauge

$$\mathcal{L}_{\text{int}} = \underbrace{\sum_{q=u,d,s} e_q \vec{A}(x) \cdot \bar{q} \vec{\gamma} q(x)}_{\text{Transverse radiation}} - \underbrace{\sum_{q,q'=u,d,s} \int \frac{d^3 \vec{x}'}{4\pi} \frac{\rho_q(\vec{x}',t)\rho_{q'}(\vec{x},t)}{|\vec{x}' - \vec{x}|}}_{\text{Coulomb potential}}$$

- Adding transverse photon to $\pi\pi \Rightarrow$ three-particle problem
- At current stage, focus on Coulomb potential only

Photon propagator in the Coulomb gauge

$$\underbrace{G_{00}(p) = \frac{1}{\vec{p}^2}}_{V(r) = \frac{1}{4\pi r}}, \quad G_{ij}(p) = \frac{1}{p^2} \left(\delta_{ij} - \frac{p_i p_j}{\vec{p}^2} \right), \quad G_{i0}(p) = G_{0i}(p) = 0$$

Coulomb potential in the finite volume

Encode long-range EM interaction in the finite box – **QED**_{*L*} [helpful discussion with Luchang Jin]

- Coulomb potential in periodic box $V_L(\mathbf{r}) = \sum_n V(\mathbf{r} + \mathbf{n}L)$
 - $\forall \mathbf{n}, V(\mathbf{r} + \mathbf{n}L)$ has impact on $\mathbf{r} \approx \mathbf{0}$ region and \sum_{n} causes divergence
- Modify $V_L(\mathbf{r}) \rightarrow \hat{V}_L(\mathbf{r}) = V_L(\mathbf{r}) \frac{1}{L^3} \int d^3 \mathbf{r} V(\mathbf{r})$ to remove the divergence

• This is equivalent to remove zero mode: $\hat{V}_L(\mathbf{r}) = \frac{4\pi\alpha_e}{L^3} \sum_{\mathbf{p}\neq 0} \frac{e^{i\mathbf{p}\cdot\mathbf{r}}}{p^2}$

• However, \hat{V}_L introduces O(1/L) FV effects

$$\delta V(\mathbf{r}) \equiv \hat{V}_{L}(\mathbf{r}) - V(\mathbf{r}) = \left(\frac{1}{L^{3}}\sum_{\mathbf{p}\neq\mathbf{0}} -\int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}}\right) \frac{4\pi\alpha_{e}}{p^{2}} e^{i\mathbf{p}\cdot\mathbf{r}}, \quad \lim_{\mathbf{r}\to\mathbf{0}} \delta V(\mathbf{r}) = -\kappa \frac{\alpha_{e}}{L} \approx -2.8 \frac{\alpha_{e}}{L}$$

Similar situation happens for massive photon and C^* boundary condition

Adopt Lüscher's method

In the peridoic "exterior region" where strong interaction vanishes

- Without QED
 - + $\psi(\mathbf{r})$ can be constructed by partial wave scattering amplitude

$$\psi(\mathbf{r}) = \sum_{\ell m} b_{\ell m} Y_{\ell m}(\Omega_{\mathbf{r}}) \left\{ \cos \delta_{\ell} j_{\ell}(kr) + \sin \delta_{\ell} n_{\ell}(kr) \right\}$$

where $j_{\ell}(kr)$, $n_{\ell}(kr)$ are regular and irregular Bessel function • $\psi(\mathbf{r})$ is related to singular periodic solution of Helmholtz Eq.

$$\psi(\mathbf{r}) = \sum_{\ell m} v_{\ell m} G_{\ell m}^{(0)}(\mathbf{r}, k^2)$$

• This leads to quantization condition $\phi(k) + \delta(k) = n\pi$

With QED

$$\flat j_{\ell}, n_{\ell} \rightarrow F_{\ell}, G_{\ell}$$

 $\psi_{C}(\mathbf{r}) = \sum_{\ell m} b_{\ell m} Y_{\ell m}(\Omega_{\mathbf{r}}) \left\{ \cos \delta_{\ell} F_{\ell}(kr) + \sin \delta_{\ell} G_{\ell}(kr) \right\} + O(\frac{\alpha_{e}}{L})$

However, $V_L(r)$ is not of type $\frac{1}{r} \rightarrow O(\frac{\alpha_e}{L})$ effect

► Solution of (Coulomb) Helmholtz Eq. can be perturbatively expanded $\psi_{C}(\mathbf{r}) = \sum v_{\ell m} G_{C,\ell m}(\mathbf{r},k^{2}), \quad G_{C,\ell m} = G_{\ell m}^{(0)} + G_{\ell m}^{(1)} + O(\alpha_{e}^{2})$ ^{8/16} Wave function can be written in two forms

 $\psi_{\mathcal{C}}(\mathbf{r}) = \sum_{\ell m} b_{\ell m} Y_{\ell m}(\Omega_{\mathbf{r}}) \left\{ \cos \delta_{\ell} F_{\ell}(kr) + \sin \delta_{\ell} G_{\ell}(kr) \right\} + O(\frac{\alpha_{\mathbf{e}}}{L})$

$$\psi_{C}(\mathbf{r}) = \sum_{\ell m} v_{\ell m} G_{C,\ell m}(\mathbf{r},k^{2}), \quad G_{C,\ell m} = G_{\ell m}^{(0)} + G_{\ell m}^{(1)} + O(\alpha_{e}^{2})$$

• Equating two expressions yields quantization condition $\phi_c(k) + \delta(k) = n\pi$

$$\cot \phi_{c}(k) = (1 + \pi \eta) \frac{1}{\pi} \frac{1}{kL} \sum_{\mathbf{n}} \frac{1}{-\mathbf{n}^{2} + (\frac{kL}{2\pi})^{2}} \\ + \lim_{r \to 0} 8\pi \eta \left\{ \sum_{\mathbf{n} \neq \mathbf{m}} \frac{e^{\mathbf{i}\mathbf{n} \cdot \mathbf{r}\frac{2\pi}{L}}}{\pi (2\pi)^{4}} \frac{1}{\mathbf{n}^{2} - (\frac{kL}{2\pi})^{2}} \frac{1}{(\mathbf{n} - \mathbf{m})^{2}} \frac{1}{\mathbf{m}^{2} - (\frac{kL}{2\pi})^{2}} - \frac{1}{4\pi} \ln(1/kr) + \frac{1}{4\pi} \right\}$$

with $\eta = \frac{\alpha_e \mu}{k}$ the Sommerfeld parameter

(See also formula for scattering length [Bean & Savage, 1407.4846])

Kim, Sachrajda and Sharpe's method

Finite volume effects arise from 2-particle propagators

$$\left(\int \frac{dp_0}{2\pi} \frac{1}{L^3} \sum_{\vec{p}} - \int \frac{d^4p}{(2\pi)^4} \right) f(p) \underbrace{\frac{1}{p^2 - m^2 + i\epsilon} \frac{1}{(P-p)^2 - m^2 + i\epsilon}}_{S_2(P,p)} g(p)$$

Integrating p_0 leaves two terms

Coulomb potential with truncated range $R_T \leq L/2$

Truncate the Coulomb potential with a range R_T

$$V^{(T)}(\mathbf{r}) = \begin{cases} \alpha_e/r, & \text{for } r < R_T \\ 0, & \text{for } r > R_T \end{cases}$$

Build periodic potential

$$V_{L}^{(T)}(\mathbf{r}) = \sum_{\mathbf{n}} V^{(T)}(\mathbf{r} + \mathbf{n}L)$$

Lüscher's quantization condition holds for $V_s(\mathbf{r}) + V^{(T)}(\mathbf{r})$

$$\phi(q) + \delta_T(k) = n\pi, \quad q = \frac{kL}{2\pi}$$

So does Lellouch-Lüscher formula

Both Lüscher's method in potential theory and KSS method in QFT work well

Remaining issue is to relate truncated δ_T and A_T to the physical ones

Truncation effects in scattering amplitude

The relation for scattering amplitude

$$S_C = S_T - i 2\pi \delta(E - E') \langle E, -, T | \Delta V | E, +, T \rangle$$

•
$$\Delta V(r)$$
 is non-zero only for $r > R_T$

• For $\psi_T^{(\pm)}(r) = \langle r | E, \pm, T \rangle$, the functional form is known for $r > R_T$

$$\psi_T^{(\pm)}(r) = \sqrt{\frac{\mu}{\pi k}} \frac{\sin(kr + \delta_T)}{r} e^{\pm i\delta_T}$$
, for S-wave

Correction to scattering amplitude can be evaluated

$$\langle E, -, T | \Delta V | E, +, T \rangle = \int_{R_T}^{R_\infty} d^3 \mathbf{r} \, \psi_T^{(-)*}(r) \frac{\alpha_e}{r} \psi_T^{(+)}(r)$$

12 / 16

$\sigma \rightarrow \pi \pi$ decay amplitude

Truncation effects can be determined

$$A_{C} - A_{T} = \int_{R_{T}}^{R_{\infty}} d^{3}\mathbf{r} \psi_{T}^{(-)*}(r) \frac{\alpha_{e}}{r} \psi_{0}(r) A_{T}$$

 ψ_0 is the free wave function: $\psi_0(r) = -\frac{1}{2}\sqrt{\frac{\mu}{\pi k}}\frac{e^{ikr}}{r}$

Examine in the quantum field theory

For scattering amplitude

$$\int \frac{d^4 p_1}{(2\pi)^4} \int \frac{d^4 p_2}{(2\pi)^4} f(p_1) S_2(P, p_1) \Delta V(\vec{q}) S_2(P, p_2) g(p_2), \quad \vec{q} = \vec{p}_1 - \vec{p}_2$$

• $\Delta V(\vec{q})$ can be written as

$$\Delta V(\vec{q}) = \int_{r>R_{\tau}} d^3 \vec{r} \, \frac{\alpha_e}{r} e^{-i\vec{q}\cdot\vec{r}}$$

Integrating over p₁₀ leaves two terms

When photon crosses the bubble

Check the singularity for the on-shell amplitude

$$\int \frac{dq_0}{2\pi} \int \frac{d^3\vec{q}}{(2\pi)^3} \frac{1}{\left(\frac{E}{2} - q_0\right)^2 - (\vec{k} - \vec{q})^2 - m^2 + i\varepsilon} \frac{1}{\left(\frac{E}{2} - q_0\right)^2 - (\vec{k}' - \vec{q})^2 - m^2 + i\varepsilon} \frac{1}{\vec{q}^2}$$

$$\int \frac{d^3\vec{q}}{(2\pi)^3} \frac{1}{(\vec{k}-\vec{q})^2 - (\vec{k}'-\vec{q})^2} \frac{1}{\vec{q}^2} + \int \frac{d^3\vec{q}}{(2\pi)^3} \frac{1}{(\vec{k}'-\vec{q})^2 - (\vec{k}-\vec{q})^2} \frac{1}{\vec{q}^2}$$

Two residues cancels \Rightarrow No worry about truncation effects here

Situation changes when the transverse radiation part is included: $\frac{1}{d^2} \rightarrow \frac{1}{a^2}$

- It can be foreseen that ϵ' will reach the precision of O(10%)
- Important to include the EM corrections, as enhanced by $\Delta I = 1/2$ rule
- To determine the EM correction, we try to solve three problems
 - ► Encode EM into Lüscher and Lellouch-Lüscher formalism
 ⇒ Introduce truncated Coulomb potential
 - ▶ Solve the issue for the mixing between I = 0 and 2 channel ⇒ Coupled channel problem simplified due to α_e -expansion
 - Remaining issue: Include the transverse radiation
- Pave the way for the realistic calculation of EM corrections $K \rightarrow \pi \pi$

Backup slides

$\sigma \rightarrow \pi \pi$ decay amplitude

The relation for decay amplitude

$$A_{C} - A_{T} = \langle E, -, T | \Delta V G_{TS}^{(+)} | \sigma \rangle = \langle E, -, T | \Delta V G_{0}^{(+)} \left(1 + V_{TS} G_{TS}^{(+)} \right) | \sigma \rangle$$

- ΔV is non-zero at $r > R_T$; $V_{TS} = V_s + V^{(T)}$ is non-zero at $r < R_T$
- The free Green function $\langle \mathbf{r} | G_0^{(+)} | \mathbf{r}' \rangle$ for $r > R_T$ and $r' < R_T$ is given by

$$\langle \mathbf{r} | G_0^{(+)} | \mathbf{r}' \rangle = \int \frac{dE'}{2\pi} \langle \mathbf{r} | E' \rangle \frac{1}{E - E' + i\varepsilon} \langle E' | \mathbf{r}' \rangle \xrightarrow{r > r'} -\frac{1}{2} \sqrt{\frac{\mu}{\pi k}} \frac{e^{ikr}}{r} \langle E | \mathbf{r}' \rangle$$

Truncation effects can be determined

$$\boldsymbol{A_{C}} - \boldsymbol{A_{T}} = \int d^{3}\mathbf{r} \, \psi_{T}^{(-)*}(r) \frac{\alpha}{r} \left(-\frac{1}{2} \sqrt{\frac{\mu}{\pi k}} \frac{e^{ikr}}{r} \right) \boldsymbol{A_{T}}$$

Mixing of isospin states

Focus on Coulomb potential, no $\pi\pi\gamma$ state

However, I = 2 and I = 0 $\pi\pi$ states still mix with each other

• No EM: relation between charged c = +-,00 and isopsin $s = 0,2 \pi\pi$ states

$$|(\pi\pi)_c\rangle^{\text{out}} = \sum_{s=0,2} \Omega_{cs} |(\pi\pi)_s\rangle^{\text{out}}, \quad \Omega_{cs} = \begin{pmatrix} \sqrt{2}/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{3} & \sqrt{2}/\sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

• With EM:

$$|(\pi\pi)_{c}^{\gamma}\rangle^{\text{out}} = \sum_{s=0,2} \Omega_{cs}^{\gamma} |(\pi\pi)_{s}^{\gamma}\rangle^{\text{out}}, \quad \Omega_{cs}^{\gamma} = \begin{pmatrix} \cos\theta^{\gamma} & \sin\theta^{\gamma} \\ -\sin\theta^{\gamma} & \cos\theta^{\gamma} \end{pmatrix}$$

Define $^{\rm out}((\pi\pi)^{\gamma}_{s}|H_{W}|K^{0}) = e^{i\delta^{\gamma}_{s}}A^{\gamma}_{s}$

$$\epsilon' = \frac{1}{3} \left(\eta_{+-} - \eta_{00} \right) = \frac{\sin 2\theta}{\sin 2\theta^{\gamma}} \frac{i e^{i \left(\delta_2^{\gamma} - \delta_0^{\gamma} \right)}}{\sqrt{2}} \frac{\operatorname{Re} A_2^{\gamma}}{\operatorname{Re} A_0^{\gamma}} \left(\frac{\operatorname{Im} A_2^{\gamma}}{\operatorname{Re} A_2^{\gamma}} - \frac{\operatorname{Im} A_0^{\gamma}}{\operatorname{Re} A_0^{\gamma}} \right)$$

 $\frac{\sin 2\theta}{\sin 2\theta^{\gamma}}$ is a small correction \Rightarrow focus on A_s^{γ} and δ_s^{γ}

Determination of A_s^{γ} and δ_s^{γ} from lattice QCD

Turn off EM and calculate correlators with I = 0, 2 operators

$$C_{II'}(t) = \langle \phi_{\pi\pi,I}(t)\phi_{\pi\pi,I'}^{\dagger}(0) \rangle$$

=
$$\sum_{s=0,2} \langle 0|\phi_{\pi\pi,I}|(\pi\pi)_s \rangle e^{-E_s t} \langle (\pi\pi)_s |\phi_{\pi\pi,I'}^{\dagger}|0\rangle \delta_{s,I} \delta_{s,I'}$$

=
$$(UMU^{\dagger})_{II'}$$

where

$$U = \begin{pmatrix} \langle 0 | \phi_{\pi\pi,0} | (\pi\pi)_0 \rangle & 0 \\ 0 & \langle 0 | \phi_{\pi\pi,2} | (\pi\pi)_2 \rangle \end{pmatrix}, \quad M = \begin{pmatrix} e^{-E_0 t} & e^{-E_2 t} \end{pmatrix}$$

Turn on EM and calculate correlators with the same operators

$$C_{II'}^{\gamma}(t) = \langle \phi_{\pi\pi,I}(t)\phi_{\pi\pi,I'}^{\dagger}(0)\rangle^{\gamma}$$

=
$$\sum_{s=0,2}^{\gamma} \langle 0|\phi_{\pi\pi,I}|(\pi\pi)_{s}^{\gamma}\rangle e^{-E_{s}^{\gamma}t} \langle (\pi\pi)_{s}^{\gamma}|\phi_{\pi\pi,I'}^{\dagger}|0\rangle^{\gamma}$$

=
$$(U^{\gamma}M^{\gamma}U^{\gamma\dagger})_{II'}$$

where

$$U^{\gamma} = \begin{pmatrix} \gamma \langle 0 | \phi_{\pi\pi,0} | (\pi\pi)_{0}^{\gamma} \rangle & \gamma \langle 0 | \phi_{\pi\pi,0} | (\pi\pi)_{2}^{\gamma} \rangle \\ \gamma \langle 0 | \phi_{\pi\pi,2} | (\pi\pi)_{0}^{\gamma} \rangle & \gamma \langle 0 | \phi_{\pi\pi,2} | (\pi\pi)_{2} \rangle \end{pmatrix}, \qquad M^{\gamma} = \begin{pmatrix} e^{-E_{0}^{\gamma}t} & e^{-E_{2}^{\gamma}t} \end{pmatrix}$$

Determination of A_s^{γ} and δ_s^{γ} from lattice QCD

• Use the coefficient matrix to construct a ratio $U^{-1}U^{\gamma} = 1 + \begin{pmatrix} N_{00}^{(1)} & N_{02}^{(1)} \\ N_{20}^{(1)} & N_{22}^{(1)} \end{pmatrix}$

- Build a ratio for the 2 × 2 correlation matrix: $R(t) = C^{-\frac{1}{2}}(t)C^{\gamma}(t)C^{-\frac{1}{2}}(t)$
- Time dependence of R(t) yields

$$R(t) = \begin{pmatrix} 1 + 2N_{00}^{(1)} + E_0^{(1)}t & N_{20}^{(1)}e^{(E_2 - E_0)t/2} + N_{02}^{(1)}e^{(E_0 - E_2)t/2} \\ N_{20}^{(1)}e^{(E_2 - E_0)t/2} + N_{02}^{(1)}e^{(E_0 - E_2)t/2} & 1 + 2N_{22}^{(1)} + E_2^{(1)}t \end{pmatrix}$$

• $E_s^{(1)} = E_s^{\gamma} - E_s$ can be used to determine δ_s^{γ} , s = 0, 2

• $N_{II'}^{(1)}$ can be used to construct U^{γ} and compute $A_s^{\gamma} = \langle (\pi \pi)_s^{\gamma} | H_W | K^0 \rangle$

Need to modify Lüscher quantization condition and Lellouch-Lüscher relation to include EM effects