Progress on the study of electromagnetic corrections to $K \rightarrow \pi \pi$ decay

Norman H. Christ \& Xu Feng *
(RBC and UKQCD collaborations)

Lattice 2018 @ East Lansing, July 23-28, 2018

Including electromagnetism in $K \rightarrow \pi \pi$ decay calculations

The $35^{\text {th }}$ International Symposium on Lattice Field Theory

June 21, 2017

N.H. Christ* and X. Feng

EPJ Web Conf. 175 (2018) 13016

The RBC \& UKOCD collaborations

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Mattia Bruno
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni
UC Boulder
Oliver Witzel
Columbia University
Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
Masaaki Tomii
Jiqun Tu
Bigeng Wang

Tianle Wang
Evan Wickenden
Yidi Zhao
University of Connecticut
Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu
Edinburgh University
Peter Boyle
Guido Cossu
Luigi Del Debbio
Tadeusz Janowski
Richard Kenway
Julia Kettle
Fionn O'haigan
Brian Pendleton
Antonin Portelli
Tobias Tsang
Azusa Yamaguchi
KEK
Julien Frison

University of Liverpool
Nicolas Garron
MIT
David Murphy
Peking University
Xu Feng
University of Southampton
Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner James Richings
Chris Sachrajda
Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)
York University (Toronto)
Renwick Hudspith

Motivation to study EM corrections to $K \rightarrow \pi \pi$

This morning's session is about the studies of $K \rightarrow \pi \pi$ decay and ϵ^{\prime}

- Progresses reported by R. Mawhinney, T. Wang, C. Kelly, F. Romero-Lopez

Direct CP violation in $K \rightarrow \pi \pi$

$$
\epsilon^{\prime}=\frac{1}{3}\left(\eta_{+-}-\eta_{00}\right)=\frac{i e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2}} \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}\left(\frac{\operatorname{lm} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)
$$

- Turn on EM interaction, $A_{I} \rightarrow A_{l}^{\gamma}, \delta_{I} \rightarrow \delta_{l}^{\gamma}, I=0,2$

Though $A_{2}^{\gamma}-A_{2}$ is an $O\left(\alpha_{e}\right)$ effect, its size could be enhanced by a factor of 22 due to the mixing with A_{0} and $\Delta I=1 / 2$ rule

- ChPT+Large- N_{c} : Cirigliano et al, hep-ph/0008290, hep-ph/0310351
-"the isospin violating correction for ϵ^{\prime} is below 15% "
- Lellouch-Lüscher's formalism relies on a short-range interaction \Rightarrow long-range EM requires the change in the FV formalism Main topic of this talk
- EM interaction mixes $I=0$ and $I=2 \pi \pi$ scattering $\Rightarrow \quad K \rightarrow \pi \pi$ decay becomes a coupled-channel problem See Lat17 proceeding: EPJ Web Conf. 175 (2018) 13016
- Possible photon radiation
$\Rightarrow \quad$ coupled channels further mixed with 3 -particle channel $(\pi \pi \gamma)$
Under investigation

Include EM interaction in the Coulomb gauge

$$
\mathcal{L}_{\text {int }}=\underbrace{\sum_{q=u, d, s} e_{q} \vec{A}(x) \cdot \vec{q} \vec{\gamma} q(x)}_{\text {Transverse radiation }} \underbrace{-\sum_{q, q^{\prime}=u, d, s} \int \frac{d^{3} \vec{x}^{\prime}}{4 \pi} \frac{\rho_{q}\left(\vec{x}^{\prime}, t\right) \rho_{q^{\prime}}(\vec{x}, t)}{\left|\vec{x}^{\prime}-\vec{x}\right|}}_{\text {Coulomb potential }}
$$

- Adding transverse photon to $\pi \pi \Rightarrow$ three-particle problem
- At current stage, focus on Coulomb potential only

Photon propagator in the Coulomb gauge

$$
\underbrace{G_{00}(p)=\frac{1}{\vec{p}^{2}}}_{V(r)=\frac{1}{4 \pi r}}, \quad G_{i j}(p)=\frac{1}{p^{2}}\left(\delta_{i j}-\frac{p_{i} p_{j}}{\vec{p}^{2}}\right), \quad G_{i 0}(p)=G_{0 i}(p)=0
$$

Coulomb potential in the finite volume

Encode long-range EM interaction in the finite box - QED L_{L} [helpful discussion with Luchang Jin]

- Coulomb potential in periodic box $V_{L}(\mathbf{r})=\sum_{n} V(\mathbf{r}+\mathbf{n} L)$
- $\forall \mathbf{n}, V(\mathbf{r}+\mathbf{n} L)$ has impact on $\mathbf{r} \approx \mathbf{0}$ region and \sum_{n} causes divergence
- Modify $V_{L}(\mathbf{r}) \rightarrow \hat{V}_{L}(\mathbf{r})=V_{L}(\mathbf{r})-\frac{1}{L^{3}} \int d^{3} \mathbf{r} V(\mathbf{r})$ to remove the divergence
- This is equivalent to remove zero mode: $\hat{V}_{L}(\mathbf{r})=\frac{4 \pi \alpha_{e}}{L^{3}} \sum_{\mathbf{p} \neq \mathbf{0}} \frac{e^{\text {ip.r }}}{p^{2}}$
- However, \hat{V}_{L} introduces $O(1 / L) \mathrm{FV}$ effects
$\delta V(\mathbf{r}) \equiv \hat{V}_{L}(\mathbf{r})-V(\mathbf{r})=\left(\frac{1}{L^{3}} \sum_{\mathbf{p} \neq 0}-\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}\right) \frac{4 \pi \alpha_{e}}{p^{2}} e^{i \mathbf{p} \cdot \mathbf{r}}, \quad \lim _{\mathbf{r} \rightarrow 0} \delta V(\mathbf{r})=-\kappa \frac{\alpha_{e}}{L} \approx-2.8 \frac{\alpha_{e}}{L}$
Similar situation happens for massive photon and C^{*} boundary condition

Adopt Lüscher's method

In the peridoic "exterior region" where strong interaction vanishes

- Without QED
- $\psi(\mathbf{r})$ can be constructed by partial wave scattering amplitude

$$
\psi(\mathbf{r})=\sum_{\ell m} b_{\ell m} Y_{\ell m}\left(\Omega_{\mathbf{r}}\right)\left\{\cos \delta_{\ell} j_{\ell}(k r)+\sin \delta_{\ell} n_{\ell}(k r)\right\}
$$

where $j_{\ell}(k r), n_{\ell}(k r)$ are regular and irregular Bessel function

- $\psi(\mathbf{r})$ is related to singular periodic solution of Helmholtz Eq.

$$
\psi(\mathbf{r})=\sum_{\ell m} v_{\ell m} G_{\ell m}^{(0)}\left(\mathbf{r}, k^{2}\right)
$$

- This leads to quantization condition $\phi(k)+\delta(k)=n \pi$
- With QED
- $j_{\ell}, n_{\ell} \quad \rightarrow \quad F_{\ell}, G_{\ell}$

$$
\psi_{C}(\mathbf{r})=\sum_{\ell m} b_{\ell m} Y_{\ell m}\left(\Omega_{\mathbf{r}}\right)\left\{\cos \delta_{\ell} F_{\ell}(k r)+\sin \delta_{\ell} G_{\ell}(k r)\right\}+O\left(\frac{\alpha_{e}}{L}\right)
$$

However, $V_{L}(r)$ is not of type $\frac{1}{r} \quad \rightarrow \quad O\left(\frac{\alpha_{e}}{L}\right)$ effect

- Solution of (Coulomb) Helmholtz Eq. can be perturbatively expanded

$$
\psi_{C}(\mathbf{r})=\sum v_{\ell m} G_{C, \ell m}\left(\mathbf{r}, k^{2}\right), \quad G_{C, \ell m}=G_{\ell m}^{(0)}+G_{\ell m}^{(1)}+O\left(\alpha_{e}^{2}\right)
$$

- Wave function can be written in two forms

$$
\begin{gathered}
\psi_{C}(\mathbf{r})=\sum_{\ell m} b_{\ell m} Y_{\ell m}\left(\Omega_{\mathbf{r}}\right)\left\{\cos \delta_{\ell} F_{\ell}(k r)+\sin \delta_{\ell} G_{\ell}(k r)\right\}+O\left(\frac{\alpha_{e}}{L}\right) \\
\psi_{C}(\mathbf{r})=\sum_{\ell m} v_{\ell m} G_{C, \ell m}\left(\mathbf{r}, k^{2}\right), \quad G_{C, \ell m}=G_{\ell m}^{(0)}+G_{\ell m}^{(1)}+O\left(\alpha_{e}^{2}\right)
\end{gathered}
$$

- Equating two expressions yields quantization condition $\phi_{c}(k)+\delta(k)=n \pi$

$$
\cot \phi_{c}(k)=(1+\pi \eta) \frac{1}{\pi} \frac{1}{k L} \sum_{\mathbf{n}} \frac{1}{-\mathbf{n}^{2}+\left(\frac{k L}{2 \pi}\right)^{2}}
$$

$$
+\lim _{r \rightarrow 0} 8 \pi \eta\left\{\sum_{\mathbf{n} \neq \mathbf{m}} \frac{e^{i \mathbf{n} \cdot \mathbf{r} \frac{2 \pi}{L}}}{\pi(2 \pi)^{4}} \frac{1}{\mathbf{n}^{2}-\left(\frac{k L}{2 \pi}\right)^{2}} \frac{1}{(\mathbf{n}-\mathbf{m})^{2}} \frac{1}{\mathbf{m}^{2}-\left(\frac{k L}{2 \pi}\right)^{2}}-\frac{1}{4 \pi} \ln (1 / k r)+\frac{1}{4 \pi}\right\}
$$

with $\eta=\frac{\alpha_{e} \mu}{k}$ the Sommerfeld parameter
(See also formula for scattering length [Bean \& Savage, 1407.4846])

Kim, Sachrajda and Sharpe's method

Finite volume effects arise from 2-particle propagators

$$
\left(\int \frac{d p_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{p}}-\int \frac{d^{4} p}{(2 \pi)^{4}}\right) f(p) \underbrace{\frac{1}{p^{2}-m^{2}+i \epsilon} \frac{1}{(P-p)^{2}-m^{2}+i \epsilon}}_{s_{2}(P, p)} g(p)
$$

Integrating p_{0} leaves two terms

$$
\underbrace{\frac{1}{2 \omega_{p}\left(\left(E-\omega_{p}\right)^{2}-\omega_{p}^{2}\right)}}_{\text {power-law FV effects }}, \quad \underbrace{\frac{1}{2 \omega_{p}\left(\left(E+\omega_{p}\right)^{2}-\omega_{p}^{2}\right)}}_{\text {exponential FV effects }}, \quad \text { with } \omega_{p}=\sqrt{m^{2}+\vec{p}^{2}}
$$

on-shell amplitude
off-shell quantity
Include photon exchange

$$
\rightarrow\left(\vec{q}=\vec{p}_{1}-\vec{p}_{2}\right)
$$

$\left(\int \frac{d p_{10}}{2 \pi} \int \frac{d p_{20}}{2 \pi} \sum_{\vec{p}_{1} \neq \vec{p}_{2}}-\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \int \frac{d^{4} p_{2}}{(2 \pi)^{4}}\right) f\left(p_{1}\right) S_{2}\left(P, p_{1}\right) \frac{1}{\vec{q}^{2}} S_{2}\left(P, p_{2}\right) g\left(p_{2}\right)$
$\vec{q}=\vec{p}_{1}-\vec{p}_{2} \neq \overrightarrow{0} \Rightarrow$ Off-shell quantity also contributes $O\left(1 / L^{n}\right)$ FV effects

Coulomb potential with truncated range $R_{T} \leq L / 2$

Truncate the Coulomb potential with a range R_{T}

$$
V^{(T)}(\mathbf{r})=\left\{\begin{aligned}
\alpha_{e} / r, & \text { for } r<R_{T} \\
0, & \text { for } r>R_{T}
\end{aligned}\right.
$$

Build periodic potential

$$
V_{L}^{(T)}(\mathbf{r})=\sum_{\mathbf{n}} V^{(T)}(\mathbf{r}+\mathbf{n} L)
$$

Lüscher's quantization condition holds for $V_{s}(r)+V^{(T)}(r)$

$$
\phi(q)+\delta_{T}(k)=n \pi, \quad q=\frac{k L}{2 \pi}
$$

So does Lellouch-Lüscher formula
Both Lüscher's method in potential theory and KSS method in QFT work well
Remaining issue is to relate truncated δ_{T} and A_{T} to the physical ones

Truncation effects in scattering amplitude

$$
\text { N } V^{(C)}
$$

The relation for scattering amplitude

$$
S_{C}=S_{T}-i 2 \pi \delta\left(E-E^{\prime}\right)\langle E,-, T| \Delta V|E,+, T\rangle
$$

- $\Delta V(r)$ is non-zero only for $r>R_{T}$
- For $\psi_{T}^{(\pm)}(r)=\langle r \mid E, \pm, T\rangle$, the functional form is known for $r>R_{T}$

$$
\psi_{T}^{(\pm)}(r)=\sqrt{\frac{\mu}{\pi k}} \frac{\sin \left(k r+\delta_{T}\right)}{r} e^{ \pm i \delta_{T}}, \quad \text { for S-wave }
$$

- Correction to scattering amplitude can be evaluated

$$
\langle E,-, T| \Delta V|E,+, T\rangle=\int_{R_{T}}^{R_{\infty}} d^{3} \mathbf{r} \psi_{T}^{(-) *}(r) \frac{\alpha_{e}}{r} \psi_{T}^{(+)}(r)
$$

Truncation effects in decay amplitude

$\sigma \rightarrow \pi \pi$ decay amplitude

Truncation effects can be determined

$$
A_{C}-A_{T}=\int_{R_{T}}^{R_{\infty}} d^{3} \mathbf{r} \psi_{T}^{(-) *}(r) \frac{\alpha_{e}}{r} \psi_{0}(r) A_{T}
$$

ψ_{0} is the free wave function: $\psi_{0}(r)=-\frac{1}{2} \sqrt{\frac{\mu}{\pi k}} \frac{e^{i k r}}{r}$

Examine in the quantum field theory

For scattering amplitude

$$
\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \int \frac{d^{4} p_{2}}{(2 \pi)^{4}} f\left(p_{1}\right) S_{2}\left(P, p_{1}\right) \Delta V(\vec{q}) S_{2}\left(P, p_{2}\right) g\left(p_{2}\right), \quad \vec{q}=\vec{p}_{1}-\vec{p}_{2}
$$

- $\Delta V(\vec{q})$ can be written as

$$
\Delta V(\vec{q})=\int_{r>R_{T}} d^{3} \vec{r} \frac{\alpha_{e}}{r} e^{-i \vec{q} \cdot \vec{r}}
$$

- Integrating over p_{10} leaves two terms

$$
\underbrace{\int \frac{d^{3} \vec{p}_{1}}{(2 \pi)^{3}} f\left(p_{1}\right) \frac{e^{-i \vec{p}_{1} \cdot \vec{r}}}{2 \omega_{p}\left(\left(E-\omega_{p}\right)^{2}-\omega_{p}^{2}\right)}}_{\text {on-shell scattering wave function }}, \underbrace{\int \frac{d^{3} \vec{p}_{1}}{(2 \pi)^{3}} f\left(p_{1}\right) \frac{e^{-i \vec{p}_{1} \cdot \vec{r}}}{2 \omega_{p}\left(\left(E+\omega_{p}\right)^{2}-\omega_{p}^{2}\right)}}_{\text {suppressed by } e^{-\Lambda_{\mathrm{QCD}} R_{T}}}
$$

For decay amplitude

One obtains the same structure in QFT as that in potential theory

Check the singularity for the on-shell amplitude

$\int \frac{d q_{0}}{2 \pi} \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{1}{\left(\frac{E}{2}-q_{0}\right)^{2}-(\vec{k}-\vec{q})^{2}-m^{2}+i \varepsilon} \frac{1}{\left(\frac{E}{2}-q_{0}\right)^{2}-\left(\vec{k}^{\prime}-\vec{q}\right)^{2}-m^{2}+i \varepsilon} \frac{1}{\vec{q}^{2}}$
Integrate over q_{0}

$$
\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{1}{(\vec{k}-\vec{q})^{2}-\left(\vec{k}^{\prime}-\vec{q}\right)^{2}} \frac{1}{\vec{q}^{2}}+\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{1}{\left(\vec{k}^{\prime}-\vec{q}\right)^{2}-(\vec{k}-\vec{q})^{2}} \frac{1}{\vec{q}^{2}}
$$

Two residues cancels \Rightarrow No worry about truncation effects here
Situation changes when the transverse radiation part is included: $\frac{1}{\bar{q}^{2}} \rightarrow \frac{1}{q^{2}}$

- It can be foreseen that ϵ^{\prime} will reach the precision of $\mathrm{O}(10 \%)$
- Important to include the EM corrections, as enhanced by $\Delta I=1 / 2$ rule
- To determine the EM correction, we try to solve three problems
- Encode EM into Lüscher and Lellouch-Lüscher formalism $\Rightarrow \quad$ Introduce truncated Coulomb potential
- Solve the issue for the mixing between $I=0$ and 2 channel \Rightarrow Coupled channel problem simplified due to α_{e}-expansion
- Remaining issue: Include the transverse radiation
- Pave the way for the realistic calculation of EM corrections $K \rightarrow \pi \pi$

Backup slides

Truncation effects in decay amplitude

$\sigma \rightarrow \pi \pi$ decay amplitude

The relation for decay amplitude

$$
A_{C}-A_{T}=\langle E,-, T| \Delta V G_{T S}^{(+)}|\sigma\rangle=\langle E,-, T| \Delta V G_{0}^{(+)}\left(1+V_{T S} G_{T S}^{(+)}\right)|\sigma\rangle
$$

- ΔV is non-zero at $r>R_{T} ; V_{T S}=V_{s}+V^{(T)}$ is non-zero at $r<R_{T}$
- The free Green function $\langle\mathbf{r}| G_{0}^{(+)}\left|\mathbf{r}^{\prime}\right\rangle$ for $r>R_{T}$ and $r^{\prime}<R_{T}$ is given by

$$
\langle\mathbf{r}| G_{0}^{(+)}\left|\mathbf{r}^{\prime}\right\rangle=\int \frac{d E^{\prime}}{2 \pi}\left\langle\mathbf{r} \mid E^{\prime}\right\rangle \frac{1}{E-E^{\prime}+i \varepsilon}\left\langle E^{\prime} \mid \mathbf{r}^{\prime}\right\rangle \quad \xrightarrow{r>r^{\prime}} \quad-\frac{1}{2} \sqrt{\frac{\mu}{\pi k}} \frac{e^{i k r}}{r}\left\langle E \mid \mathbf{r}^{\prime}\right\rangle
$$

Truncation effects can be determined

$$
A_{C}-A_{T}=\int d^{3} \mathbf{r} \psi_{T}^{(-) *}(r) \frac{\alpha}{r}\left(-\frac{1}{2} \sqrt{\frac{\mu}{\pi k}} \frac{e^{i k r}}{r}\right) A_{T}
$$

Mixing of isospin states

Focus on Coulomb potential, no $\pi \pi \gamma$ state

However, $I=2$ and $I=0 \pi \pi$ states still mix with each other

- No EM: relation between charged $c=+-, 00$ and isopsin $s=0,2 \pi \pi$ states

$$
\left|(\pi \pi)_{c}\right\rangle^{\text {out }}=\sum_{s=0,2} \Omega_{c s}\left|(\pi \pi)_{s}\right\rangle^{\text {out }}, \quad \Omega_{c s}=\left(\begin{array}{cc}
\sqrt{2} / \sqrt{3} & 1 / \sqrt{3} \\
-1 / \sqrt{3} & \sqrt{2} / \sqrt{3}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

- With EM:

$$
\left|(\pi \pi)_{c}^{\gamma}\right\rangle^{\text {out }}=\sum_{s=0,2} \Omega_{c s}^{\gamma}\left|(\pi \pi)_{s}^{\gamma}\right\rangle^{\text {out }}, \quad \Omega_{c s}^{\gamma}=\left(\begin{array}{cc}
\cos \theta^{\gamma} & \sin \theta^{\gamma} \\
-\sin \theta^{\gamma} & \cos \theta^{\gamma}
\end{array}\right)
$$

Define ${ }^{\text {out }}\left\langle(\pi \pi)_{s}^{\gamma}\right| H_{w}\left|K^{0}\right\rangle=e^{i \delta_{s}^{\gamma}} A_{s}^{\gamma}$

$$
\epsilon^{\prime}=\frac{1}{3}\left(\eta_{+-}-\eta_{00}\right)=\frac{\sin 2 \theta}{\sin 2 \theta^{\gamma}} \frac{i e^{i\left(\delta_{2}^{\gamma}-\delta_{0}^{\gamma}\right)}}{\sqrt{2}} \frac{\operatorname{Re} A_{2}^{\gamma}}{\operatorname{Re} A_{0}^{\gamma}}\left(\frac{\operatorname{Im} A_{2}^{\gamma}}{\operatorname{Re} A_{2}^{\gamma}}-\frac{\operatorname{Im} A_{0}^{\gamma}}{\operatorname{Re} A_{0}^{\gamma}}\right)
$$

$$
\frac{\sin 2 \theta}{\sin 2 \theta^{\gamma}} \text { is a small correction } \Rightarrow \text { focus on } A_{s}^{\gamma} \text { and } \delta_{s}^{\gamma}
$$

Determination of A_{s}^{γ} and δ_{s}^{γ} from lattice QCD

Turn off EM and calculate correlators with $I=0,2$ operators

$$
\begin{aligned}
C_{I \prime \prime}(t) & =\left\langle\phi_{\pi \pi, l}(t) \phi_{\pi \pi, l^{\prime}}^{\dagger}(0)\right\rangle \\
& \left.=\sum_{s=0,2}\langle 0| \phi_{\pi \pi, I} \mid(\pi \pi)_{s}\right) e^{-E_{s} t}\left\langle(\pi \pi)_{s}\right| \phi_{\pi \pi, l^{\prime}}^{\dagger}|0\rangle \delta_{s, l} \delta_{s, l^{\prime}} \\
& =\left(U M U^{\dagger}\right)_{I I^{\prime}}
\end{aligned}
$$

where

$$
U=\left(\begin{array}{cc}
\langle 0| \phi_{\pi \pi, 0}\left|(\pi \pi)_{0}\right\rangle & 0 \\
0 & \langle 0| \phi_{\pi \pi, 2}\left|(\pi \pi)_{2}\right\rangle
\end{array}\right), \quad M=\left(\begin{array}{cc}
e^{-E_{0} t} & \\
& e^{-E_{2} t}
\end{array}\right)
$$

Turn on EM and calculate correlators with the same operators

$$
\begin{aligned}
C_{I I^{\prime}}^{\gamma}(t) & =\left\langle\phi_{\pi \pi, I}(t) \phi_{\pi \pi, I^{\prime}}^{\dagger}(0)\right\rangle^{\gamma} \\
& =\sum_{s=0,2}{ }^{\gamma}\langle 0| \phi_{\pi \pi, l}\left|(\pi \pi)_{s}^{\gamma}\right\rangle e^{-E_{s}^{\gamma}}\left\langle(\pi \pi)_{s}^{\gamma}\right| \phi_{\pi \pi, I^{\prime}}^{\dagger}|0\rangle^{\gamma} \\
& =\left(U^{\gamma} M^{\gamma} U^{\gamma \dagger}\right)_{I I^{\prime}}
\end{aligned}
$$

where

$$
U^{\gamma}=\left(\begin{array}{ll}
\gamma\langle 0| \phi_{\pi \pi, 0}\left|(\pi \pi)_{0}^{\gamma}\right\rangle & \gamma\langle 0| \phi_{\pi \pi, 0}\left|(\pi \pi)_{2}^{\gamma}\right\rangle \\
\gamma\langle 0| \phi_{\pi \pi, 2}\left|(\pi \pi)_{0}^{\gamma}\right\rangle & \gamma\langle 0| \phi_{\pi \pi, 2}\left|(\pi \pi)_{2}\right\rangle
\end{array}\right), \quad M^{\gamma}=\left(\begin{array}{cc}
e^{-E_{0}^{\gamma} t} & \\
& e^{-E_{2}^{\gamma} t}
\end{array}\right)
$$

Determination of A_{s}^{γ} and δ_{s}^{γ} from lattice QCD

- Use the coefficient matrix to construct a ratio $U^{-1} U^{\gamma}=1+\left(\begin{array}{ll}N_{00}^{(1)} & N_{0}^{(1)} \\ N_{20}^{(1)} & N_{22}^{(1)}\end{array}\right)$
- Build a ratio for the 2×2 correlation matrix: $R(t)=C^{-\frac{1}{2}}(t) C^{\gamma}(t) C^{-\frac{1}{2}}(t)$
- Time dependence of $R(t)$ yields

$$
R(t)=\left(\begin{array}{cc}
1+2 N_{00}^{(1)}+E_{1}^{(1)} t & N_{20}^{(1)} e^{\left(E_{2}-E_{0}\right) t / 2}+N_{02}^{(1)} e^{\left(E_{0}-E_{2}\right) t / 2} \\
N_{20}^{(1)} e^{\left(E_{2}-E_{0}\right) t / 2}+N_{02}^{(1)} e^{\left(E_{0}-E_{2}\right) t / 2} & 1+2 N_{22}^{(1)}+E_{2}^{(1)} t
\end{array}\right)
$$

- $E_{s}^{(1)}=E_{s}^{\gamma}-E_{s}$ can be used to determine $\delta_{s}^{\gamma}, s=0,2$
- $N_{I \prime \prime}^{(1)}$ can be used to construct U^{γ} and compute $A_{s}^{\gamma}=\left\langle(\pi \pi)_{s}^{\gamma}\right| H_{W}\left|K^{0}\right\rangle$

Need to modify Lüscher quantization condition and Lellouch-Lüscher relation to include EM effects

