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Introduction



Baryons at finite temperature

Although mesons have been thoroughly studied at finite
temperatures, baryons have not been given nearly the same
attention

• They have definite parity: P±OB(x) = OB(x)

• Experimentally accessible results

• Important for model builders
• Quark models, e.g. hadron resonance gas
• Verification of thermodynamic models
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More broken symmetries...

In nature baryon parity is a broken symmetry

m{uud}1/2+ ≡ mN = 0.939 GeV

m{uud}1/2− ≡ mN∗ = 1.535 GeV

Similar to other broken symmetries, what happens to this one
as we increase temperature and enter the deconfined phase?

Previous studies by FASTSUM:

1502.03603, 1703.09246, 1710.00566, ...
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Open questions

• Does parity restoration happen at Tc?

• How does hadron content effect parity restoration?

• Is there a flavour hierarchy in the deconfinement
transition?

• How does mπ affect parity restoration?
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Method



Lattice setup - Gen2l ensembles

Results produced with the FASTSUM ”Gen2l” ensembles
(lattice parameters by the HadSpec collaboration)

• Nf = 2+ 1 dynamical quarks, Wilson-Clover action
• Anisotropic action: as = 0.1227(8) fm, as/at = 3.5
• mπ = 236 MeV, ms = physical

Nt 256 48 40 36 32 28 24 20 16

T/Tc 0.12 0.63 0.76 0.84 0.95 1.09 1.27 1.52 1.90

Ncfg 750 500 500 500 500 1000 1000 1000 1000

Have to be checked, numbers from Gen2 ensembles
By the HadSpec collaborationStill generating
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Lattice setup - baryon correlation functions

Use the following baryon interpolation functions:

χN,γ = ϵabcuaγ(ubα(Cγ5)αβdcβ)
χ∆+,γ,µ = ϵabc

(
2uaγ(ubα(Cγµ)αβdcβ) + daγ(ubα(Cγµ)αβucβ)

)
χ∆++,γ,µ = ϵabcuaγ(ubα(Cγµ)αβucβ)

for all baryons that can be constructed with from them having
flavour content using {u,d, s, c}

• N, ∆s/c, Σs/c, Σ∗
s/c, Ξs/c, Ωs/c

Sinks and sources smeared with Gaussian smearing to extract
ground states
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Results



Parity and correlation functions

Due to charge conjugation symmetry (at µ = 0)

G±(τ,p) = −G∓(1/T− τ,p)

Thus the correlation function is a sum of forward moving
parity+ states and backwards moving parity− states
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Correlation functions
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Parity channels - nucleon
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Parity channels - ∆+ particle
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Parity channels - Ω particle
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Parity channels - Ωc particle
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Symmetry restoration parameter - the R parameter

R(τ) = G+(τ)− G+(1/T− τ)

G+(τ) + G+(1/T− τ)

• R(τ) ̸= 0 ⇔ no parity doubling
• R(τ) = 0 ⇔ parity doubling

The summed ratio is a quasi-order parameter (as we will see)

R =

∑
n R(τn)/σ2(τn)∑

n 1/σ2(τn)
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The R-factor - S = 0
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The R-factor - S = −1
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The R-factor - S = −2
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The R-factor - S = −3
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The R-factor - Ωc particle
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The R-factor - comparison with previous ensemble
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Future work



Still a lot more to be done

Study just getting started

• More thorough look at the masses and correlators
• Spectral reconstruction analysis
• Susceptibility calculations

Planned future ensembles

• Generation 2P

(physical quark masses)

• Generation 3

(higher anisotropy)
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openQCD-FASTSUM



openQCD-FASTSUM

Two major features

• Anisotropic lattice actions
• Stout link smearing

+ AVX512 optimisations courtesy of the SA2C

Future development plans

• Library/back-end interface
• Unit testing and CI

https://fastsum.gitlab.io
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Questions?
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