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How finely tuned is the emergence of nuclear 
structure in nature?

Interpretation of intensity-frontier experiments

Scalar matrix elements in A=131 
XENON1T dark matter direct detection search

Axial form factors of Argon A=40 
DUNE long-baseline neutrino expt.

Double-beta decay rates of Calcium A=48

Motivation: ML for LQCD

Need exponentially  
improved algorithms

Exponentially harder  
problems

First-principles nuclear physics beyond A=4



Machine learning for LQCD

APPROACH 
Machine learning as ancillary tool for 

lattice QCD

Accelerate gauge-field  
generation

Optimise extraction of physics  
from gauge field ensemble

ONLY apply where quantum field theory can be 
rigorously preserved

} Will need to 
accelerate all stages 

of lattice QCD 
workflow to achieve 

physics goals



Updates diffusive

QCD gauge field configurations sampled via 

Hamiltonian dynamics + Markov Chain Monte Carlo

Lattice spacing 0

Number of 
updates to change 

fixed physical 
length scale

∞

“Critical slowing-down”  
of generation of uncorrelated samples

Accelerating HMC: action matching



New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
project
(see Poster by Mike Endres)

refine

Given coarsening and refinement procedures…

coarsen

Endres et al., PRD 92, 114516 (2015)

Multi-scale HMC updates
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coarsen

Perform HMC updates at coarse level

Endres et al., PRD 92, 114516 (2015)

HMC  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Multiple layers of 
coarsening

Significantly cheaper 
approach to 

continuum limit

…

Fine ensemble  
rethermalise  

 with fine action  
to make exact

Multi-scale HMC updates
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Perform HMC updates at coarse level

MUST KNOW 
parameters of coarse 

QCD action that 
reproduce ALL physics 

parameters of fine 
simulation

Map a subset of physics parameters 
in the coarse space and match to 
coarsened ensemble  

Solve regression problem directly: 
“Given a coarse ensemble, what 
parameters generated it?”

OR

encode same 
long-distance 

physics
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Multi-scale HMC updates



Machine learning LQCD
Neural networks excel on problems where

Basic data unit 
has little meaning

ImagePixel 

Combination of units  
is meaningful

Image recognition

“Colliding  
black holes”

Neural  
network

Label



Machine learning LQCD
Neural networks excel on problems where

Basic data unit 
has little meaning

Combination of units  
is meaningful

Parameter identification

Parameters  
of action

Label
Element of a colour 
matrix at one discrete 
space-time point

0 638 5
2 4

7
16

Ensemble of lattice QCD 
gauge field configurations
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Neural  
network



Ensemble of lattice QCD 
gauge fields

643 x128 x 4 x Nc2 x 2  
≃109 numbers

~1000 samples
Ensemble of gauge fields has 
meaning
Long-distance correlations 
are important
Gauge and translation-
invariant with periodic 
boundaries

CIFAR benchmark image set 
for machine learning

32 x 32 pixels x 3 cols  
≃3000 numbers

60000 samples

Each image has meaning

Local structures are 
important

Translation-invariance 
within frame

Machine learning LQCD



Regression by neural network

Lattice QCD  
gauge field 
 
~107-109 real  
numbers

Parameters of  
lattice action

Few real  
numbers

NEURAL NETWORK

Complete: not restricted to affordable subset of physics parameters
Instant: once trained over a parameter range



Train simple neural network 
on regression task

Fully-connected structure

Far more degrees of 
freedom than number of 
training samples available

Naive neural network

Simplest approach                Ignore physics symmetries

Recipe for 
overfitting!

“Inverted data 
hierarchy”

(state-of-the-art ~109)



Naive neural network
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Parameter related  
to lattice spacing

Training and validation 
datasets

Parameters of training and 
validation datasets

O(10,000) independent 
configurations 
generated at each point

Validation 
configurations 
randomly selected from 
generated streams

Spacing in evolution stream >> 
correlation time of physics 
observables



Naive neural network
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Parameter related to lattice spacing

Neural net predictions 
on validation data sets SUCCESS? 

No sign of overfitting 
Training and validation loss equal
Accurate predictions for 
validation data

BUT fails to generalise to
Ensembles at other parameters
New streams at same 
parameters

NOT POSSIBLE IF CONFIGS  
ARE UNCORRELATEDTrue parameter values

Confidence interval from ensemble of gauge fields



Naive neural network
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…

Stream of generated gauge fields at given parameters

Training/validation data selected from configurations 
spaced to be decorrelated (by physics observables)

Network succeeds for validation configs 
from same stream as training configs
Network fails for configs from new 
stream at same parameters

Network has identified 
feature with a longer 
correlation length than any 
known physics observable



Naive neural network that does not respect symmetries fails at 
parameter regression task

BUT 
Identifies unknown feature of gauge fields with a longer correlation 
length than any known physics observable

Naive neural network
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FIG. 2: Diagrammatic representation of the construction of planar Wilson loops Wk⇥l(x), with indices k

and l denoting the dimensions of the loop (with orientation label suppressed), from gauge links Uµ(x).

where ⌧ is the trajectory di↵erence in the autocorrelation. This function decays exponentially as
⇢(⌧) ⇠ exp[�⌧/⌧exp] at large Monte-Carlo times ⌧ . The decay constant ⌧exp defines an autocor-
relation time. Calculations of the autocorrelation time using this definition can su↵er from large
uncertainties, especially when ⌧exp is small. Another definition of the autocorrelation time is [3, 47]

⌧int =
1

2
+ lim

⌧max!1

1

⇢(0)

⌧maxX

⌧=0

⇢(⌧), (6)

which approaches a constant as ⌧max ! 1. The autocorrelation functions and integrated autocor-
relation times ⌧int for the Wilson loops, and those for the zero-momentum projected pion and rho
two point correlation functions, C⇡(⇢) (defined in Appendix B 1), are shown in Fig. 3. In all cases,
the integrated autocorrelation time is / 10 trajectories, validating the choice to take trajectories
spaced by this distance as an uncorrelated set to form an ensemble. Other observables may have
di↵erent autocorrelation times, but the observables considered here are relatively representative4.

B. Ensemble discrimination using principle component analysis

To guide the application of ML methods to parametric regression of gauge fields in the space
defined by the sample ensembles, the di↵erentiability of the ensembles was assessed using a principle
component analysis (PCA) [48–50]. Since Wilson loops are the simplest gauge-invariant objects,
the basis for the PCA was generated by calculating a set of square planar loops of sizes up to
L/2 ⇥ L/2, as well as 1 ⇥ n for n up to L, averaged over all possible planar orientations and
space-time locations. Averaged loops are denoted Wj⇥l =

P
O(j⇥l)

P
x Wj⇥l(x), where the sum

over O(j ⇥ l) is over all hypercubic transformations of the indicated loop. The averaged loop data
are su�ciently small in dimension that it is possible to display them for a representative set of
ensembles. Fig. 4 shows contour plots of ln |Wn⇥m| from evaluations on each ensemble in the two
L/a = 12 grids (Grids A and B). Figs. 20, 22, and 24 (in Appendix B 2) show histograms for a
subset of the loops for each ensemble in each of Grid A, B, and C, respectively. Clearly, some of the
loops are statistically well determined, and subsets of the ensembles can be clearly distinguished.
Ensembles in Grid C have loop distributions that are more sharply defined than those in Grids A
and B as their larger spacetime volume enables more statistical averaging. For large loop sizes, all
ensembles become hard to distinguish.

4 The topological charge of the gauge field typically has a long autocorrelation time, but at the relatively coarse
lattice spacings used here, it will be comparable to that of the observables that are investigated.
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FIG. 12: Autocorrelation function in Monte-Carlo time (left, defined in Eq. (10)) and autocorrelation time
(right, defined in Eq. (6)) of the feature distinguishing two streams at the same set of parameters, trained on
sequences of gauge field configurations. The autocorrelation function was generated by averaging over many
di↵erent results (trained using all di↵erent pairs of the 10 streams, F1,...,10, at the same parameters), and
was found to be robust under changes of the network structure used to generate it. The dashed horizontal
line on the right figure shows the maximum autocorrelation time of various physics observables (see Fig. 3).

spatially-varying physical quantities such as topological charge density and action density. While
the long–correlation-time feature could not be identified in this study, it provides an interesting
topic for further study. In particular, it will be informative to investigate how this scale changes
with parameter range, particularly in regions of parameter space where topological charge freezing
becomes a di�cult problem for simulations.

B. Custom symmetry enforcing network structure

As described in the previous section, experiments with simple fully-connected neural networks
were not successful at parametric regression of lattice QCD gauge fields for the training data sets
used in this study. This is not unexpected; learning the symmetries of gauge field configurations
stochastically is certain to be a challenging task. Symmetries of lattice QCD, however, act to
reduce the e↵ective degrees of freedom of the problem, and can be incorporated into the structure
and training of neural networks in several ways. First, the stochastic learning of symmetries
can be accelerated through data augmentation (i.e., randomly performing a gauge transformation
and/or translation/lattice rotation on a configuration). This is analogous to typical uses of data
augmentation [74] in, for example, image recognition [75, 76], to introduce symmetries such as
rotational symmetry8. In practice, this was found to be untenable for the case studied here as
a result of the large number of symmetries that must be learned, their complex nature, and the
requirement that they be strictly observed. Secondly, custom network layers can be designed
(or equivalently, data can be pre-processed) to only allow gauge invariant and lattice-symmetry
invariant outputs of the network. This approach is found to be successful.

To incorporate the symmetries of lattice QCD gauge fields into neural network structures,
several custom networks were designed, featuring an initial pre-processing layer that forms only
quantities that respect the invariances of the problem, followed by fully-connected layers operating
on these quantities. The possible gauge and translation-invariant degrees of freedom that are
allowed by the first layer are specified by hand; in principle this choice could be part of the

8 The incorporation of symmetries into various neural network structures has been studied in Refs. [77–80].

Max physics observable 
autocorrelation time

Network-identified feature 
autocorrelation time

Autocorrelation in evolution 
time using identification of 
parameters of configurations 
at the end of a training stream

Network feature autocorrelation



Regression by neural network

Lattice QCD  
gauge field 
 
~107-109 real  
numbers

Parameters of  
lattice action

Few real  
numbers

NEURAL NETWORK

Complete: not restricted to affordable subset of physics parameters
Instant: once trained over a parameter range



Regression by neural network

NEURAL NETWORK

Complete: not restricted to affordable subset of physics parameters
Instant: once trained over a parameter range

Custom network structures

Respects gauge-invariance, 
translation-invariance, boundary 
conditions
Emphasises QCD-scale physics
Range of neural network 
structures find same minimum

Lattice QCD  
gauge field 
 
~107-109 real  
numbers

Parameters of  
lattice action

Few real  
numbers



Symmetry-preserving network

Network based on symmetry-invariant features

Loops 
Correlated products 
of loops at various 
length scales
Volume-averaged and 
rotation-averaged

Uµ(x)

x

y

W3⇥2(y)

µ̂

⌫̂

x+ µ̂

Closed Wilson loops 
(gauge-invariant)



Fully-connected 
network structure

First layer samples 
from set of 
possible 
symmetry-
invariant features  

Network based on symmetry-invariant features

Number of degrees of freedom of network 
comparable to size of training dataset

Symmetry-preserving network



Gauge field parameter regression
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Parameter related  
to lattice spacing

Neural net predictions 
on validation data sets

True parameter values

Confidence interval from  
ensemble of gauge fields

Predictions on  
new datasets
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Gauge field parameter regression
Q

ua
rk

 m
as

s 
pa

ra
m

et
er

Parameter related  
to lattice spacing

Neural net predictions 
on validation data sets

True parameter values

Confidence interval from  
ensemble of gauge fields

Predictions on  
new datasets
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SUCCESS!  
Accurate parameter regression 
and successful generalisation



PROOF OF PRINCIPLE 
Step towards fine lattice generation  

at reduced cost

Gauge field parameter regression

Generate one fine configuration
Find matching coarse action
HMC updates in coarse space
Refine and rethermalise 

1.    
2.
3.    
4.  

Guarantees  
correctness

Accurate matching 
minimises cost of 

updates in fine space

Shanahan, Trewartha, Detmold, PRD (2018) [1801.05784]





How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters

Tests of network success

Much closer spacing 
than separation of 
training ensembles

Set B

Set A

Sets along lines of constant 
1x1 Wilson loop (most 
precise feature allowed by 
network)



How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters:   not distinguishable to principal component analysis 
in loop space

Tests of network success

◦◦
◦◦
◦◦
◦◦ ◦◦ ◦◦ ◦◦ ◦◦

◦◦ ◦◦ ◦◦ ◦◦ ◦◦ ◦◦ ◦◦ ◦◦ ◦◦

0 5 10 15
-1

0

1

2

3

-2.00 -1.95 -1.90 -1.85
0

50

100

150

1.50 1.55 1.60 1.65
0

50

100

150

1.18 1.20 1.22 1.24 1.26
0

50

100

150

0.10 0.11 0.12 0.13 0.14
0

50

100

150

Set BSet A

Histograms of dominant eigenvectorsEigenvalues



◦◦

◦◦
◦◦

◦◦
◦◦
◦◦
◦◦
◦◦

◦◦

◦◦

1.80 1.82 1.84 1.86 1.88

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters:   distinguishable to trained neural network

Correct ordering of 
central values

Accurate regression 
differences even at very 
fine resolution

Tests of network success


