Bag representation for composite degrees of freedom in theories with fermions

Carlotta Marchis Christof Gattringer

Lattice 2018

Introduction and motivation

- Rewriting theories in terms of new degrees of freedom is a powerful tool
- For abelian bosonic theories dual representations in terms of worldlines and worldsheets solve the complex action problem
- Monte Carlo simulations in terms of worldlines and worldsheets become possible
- We discuss worldline/worldsheet representation for non-abelian symmetries and theories with fermions
- We explore resummation of worldline contributions in terms of bags (space-time domains for composite d.o.f.s)

ACC and ACF dualization methods

- Key for the dualization of non-abelian systems is the decomposition of the action into its minimal units
- Example:

$$e^{\sum_{a,b} \overline{\psi}_{x}^{a} U_{x,\mu}^{ab} \psi_{x+\hat{\mu}}^{b}} = \prod_{a,b} e^{\overline{\psi}_{x}^{a} U_{x,\mu}^{ab} \psi_{x+\hat{\mu}}^{b}} = \prod_{a,b} \sum_{\substack{k,b \\ k,\mu} = 0}^{1} (\overline{\psi}_{x}^{a} \psi_{x+\hat{\mu}}^{b})^{k_{x,\mu}^{ab}} (U_{x,\mu}^{ab})^{k_{x,\mu}^{ab}}$$

- Grassmann bilinears, called Abelian Color Fluxes, for fermions
- complex numbers, called Abelian Color Cycle, for gauge theories
- This decomposition of the action allows to proceed as in the abelian case
 - ⇒ reordering of terms
 - ⇒ integrate out the original fields

3

ACC and ACF dualization methods

- Dual partition function sums over admissible configurations of the dual variables
- The configurations contributing to the long range physics are:
 - worldlines for matter degrees of freedom
 - worldsheets for gauge degrees of freedom

$$Z = \sum_{L,S} C[L,S]W[L,S] sign[L,S]$$

Dualization methods for non-abelian lattice field theories

- SU(2) principal chiral model with chemical potentials
 - ⇒ ACF completely solves the sign problem

Gattringer, Göschl, Marchis, Phys. Lett. B778 (2018)

- gauge theories with fermions
 - ⇒ worldlines and worldsheet representation of QC₂D and QCD in closed form

Gattringer, Marchis, Nucl. Phys. B916 (2017), Phys. Rev. D97 (2018)

ACC and ACF dualization methods

Characteristic features of dual form of QCD:

- Exact rewriting of the partition sum in terms of wordlines and worldsheets
- The partition sum is a strong coupling expansion where all terms are known in closed form
- ullet Sign factors for fermionic nature \Rightarrow resummation strategies need to be found!

Observations:

- At strong coupling the worldline elements for joint propagation of 3 quarks behave like free fermion worldlines
- Try to reformulate in terms of effective fermion bags

Chandrasekharan, PRD 82 (2010), PRL 108 (2012), EPJ A 49 (2013), ...

• These "Baryon bags" implement a resummation of contributions

Idea: direct construction of baryon bag representation without dualization

Gattringer, PRD 97 (2018)

Strong coupling QCD with one flavor of staggered fermions

$$Z = \int D[U]D[\psi,\overline{\psi}] e^{S_F[\psi,\overline{\psi},U]}$$

Staggered action

$$S_{F}[U,\psi,\overline{\psi}] = \sum_{x} \left(2m\overline{\psi}_{x}\psi_{x} + \sum_{\nu} \gamma_{x,\nu} \left[\overline{\psi}_{x}U_{x,\nu}\psi_{x+\hat{\nu}} - \overline{\psi}_{x+\hat{\nu}}U_{x,\nu}^{\dagger}\psi_{x} \right] \right)$$

Factorization of the Boltzmann weight

$$e^{S_F[U,\psi,\overline{\psi}]} = \prod_x e^{2m\,\overline{\psi}_X\psi_X} \prod_{x,\nu} e^{\gamma_{x,\nu}\,\overline{\psi}_XU_{x,\nu}\,\psi_{x+\hat{\nu}}} \ e^{-\gamma_{x,\nu}\,\overline{\psi}_{x+\hat{\nu}}\,U_{x,\nu}^\dagger\,\psi_X}$$

Taylor expansion of the hopping terms

$$\begin{split} e^{\gamma\overline{\psi}U\psi} &= 1 + \gamma \left(\overline{\psi}U\psi\right) + \frac{1}{2!}(\overline{\psi}U\psi)^2 + \frac{\gamma}{3!}(\overline{\psi}U\psi)^3 \\ &= \left[1 + \frac{\gamma}{3!}(\overline{\psi}U\psi)^3\right] \left[1 + \gamma \left(\overline{\psi}U\psi\right) + \frac{1}{2!}(\overline{\psi}U\psi)^2\right] \\ &= e^{\frac{\gamma}{3!}(\overline{\psi}U\psi)^3} \sum_{k=0}^2 \frac{(\gamma\overline{\psi}U\psi)^k}{k!} \end{split}$$

Cubic term is independent of gauge fields: $(\overline{\psi}U\psi)^3 = 3!\overline{\psi}_3\overline{\psi}_2\overline{\psi}_1\psi_1\psi_2\psi_3 = 3!\overline{B}B$

Baryon fields
$$B=\psi_1\psi_2\psi_3,\ \overline{B}=\overline{\psi}_3\overline{\psi}_2\overline{\psi}_1$$

nilpotent, anti-commuting

Factorization of the baryon contributions

$$e^{S_F[U,\psi,\overline{\psi}]} = e^{S_B[\overline{B},B]} W_{QD}[\overline{\psi},\psi,U]$$

7

Baryons propagate as free fermions

$$S_{B}[B,\overline{B}] = \sum_{x} \left(2M \, \overline{B}_{x} B_{x} + \sum_{\nu} \gamma_{x,\nu} \Big[\overline{B}_{x} B_{x+\hat{\nu}} \, - \overline{B}_{x+\hat{\nu}} B_{x} \Big] \right)$$

Lattice factorizes into disjoint dynamically determined space-time regions

• baryon bags \mathcal{B}_i , $\mathcal{B} = \bigcup \mathcal{B}_i$

$$Z_{\mathcal{B}_i} = \int \!\! D_{\mathcal{B}_i}[\overline{\psi},\psi] \,\, \mathrm{e}^{\sum_{\mathrm{x},y} \overline{B}_{\mathrm{x}} D_{\mathrm{x},y}^{(i)} B_y} = \det D^{(i)}$$

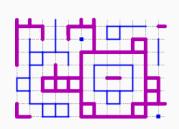
• complementary domain $\overline{\mathcal{B}} = \mathcal{B}/\Lambda$

$$Z_{\overline{\mathcal{B}}} = \int \!\! D[U] \, D_{\overline{\mathcal{B}}}[\overline{\psi}, \psi] \, W_{QD}[\overline{\psi}, \psi, U]$$

3

Partition sum

$$Z = \sum_{\{\mathcal{B}\}} \prod_i \det D^{(i)} \times Z_{\overline{\mathcal{B}}}$$



- sum over configurations of baryon bags
- ullet baryon bag contributions $\mathcal{B}_i \Rightarrow$ dynamics described by free fermions for baryons
- ullet complementary domain $\overline{\mathcal{B}} \Rightarrow$ monomers and dimers for quarks and diquarks

Can we find a description in terms of effective bags for composite degrees of freedom also for other theories?

- Strong coupling QC₂D
 - only bosonic bound states (mesons and baryons made of 2 quarks)
 - effective boson bags?

- Strong coupling QCD with flavors
 - different types of composite strong coupling baryons
 - work in preparation

Composite boson bags in QC2D

Taylor expansion of the hopping terms

$$\begin{split} e^{\,\gamma\overline{\psi}\,U\psi} &= 1 + \gamma\,(\overline{\psi}\,U\psi) + \frac{1}{2!}(\overline{\psi}\,U\psi)^2 \\ &= e^{\frac{1}{2!}(\overline{\psi}\,U\psi)^2} \sum_{k=0}^1 \frac{(\gamma\overline{\psi}\,U\psi)^k}{k!} \end{split}$$

Quadratic term is independent of gauge fields: $(\overline{\psi}U\psi)^2=2!\overline{\psi}_2\overline{\psi}_1\psi_1\psi_2=2!\overline{B}B$

• Inside the bags \mathcal{B}_i the dynamical degrees of freedom are composite bosons:

$$B_{\rm x}=\psi_{\rm x}^{\bf 1}\psi_{\rm x}^{\bf 2}\,,\quad \overline{B}_{\rm x}=\overline{\psi}_{\rm x}^{\bf 2}\overline{\psi}_{\rm x}^{\bf 1}$$
 nilpotent but commuting

Composite boson bag contributions as permanents

$$Z_{\mathcal{B}_i} = \int \!\! D_{\mathcal{B}_i}[\overline{\psi},\psi] \; \mathrm{e}^{\sum_{x,y} \overline{B}_x D_{x,y}^{(i)} B_y} = \mathrm{perm} D^{(i)}$$

Partition sum

$$Z = \sum_{\{\mathcal{B}\}} \prod_i \mathsf{perm} D^{(i)} imes Z_{\overline{\mathcal{B}}}$$

Bags for theories with 2 flavors

2 flavors strong coupling $\mathbb{Z}_3\text{-QCD}$

- simpler gauge integrals
- triality constraints same as QCD

Work in progress...

 \Rightarrow we expect richer dynamics in the complementary domain due to the existance of propagating mesons (not only dimers)

Summary

Bag reformulation of theories with fermions

- Goal: resum terms in worldline representation
- At strong coupling the partition sum factorizes into disjoint dynamically determined regions: bags \mathcal{B}_i and complementary domain $\overline{\mathcal{B}}$
- Inside the bags the dynamics is described by free propagating composite degrees of freedom
- Inside the complementary domain monomer and dimer system

Outlook

- Extend the baryon bag approach to strong coupling QCD with 2 flavors
- Find a systematic approach to include gauge corrections

Thank you for your attention!