Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

Kaon Distribution Amplitude from Lattice QCD

> Rui Zhang LP³ Collaboration

> > ITP,CAS

Michigan State University

The 36th Annual International Symposium on Lattice Field Theory East Lansing, MI, USA 07/22-28, 2018

[Chen et al., 2017]20

Overview

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

1 Parton Distribution Amplitude

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

3 Bare Results

2 Lattice Set Up

4 Improved Results

Meson DA in exclusive processes

Lattice 2018, East Lansing Rui Zhang LP^3 Collaboration

Parton Distribution Amplitude

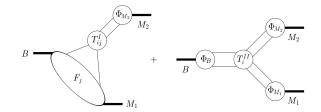
Lattice Set Up

Bare Results

Improved Results

Summary

Meson lightcone distribution amplitudes are important inputs in exclusive processes, such as $B \rightarrow \pi K$, at large momentum transfer $Q^2 >> \Lambda_{QCD}$, where the scattering amplitude can be factorized into hard parts and soft parts:



 $<\pi K|Q_i|B>=F_0^{B\to\pi}T_{K,i}^I*f_K\Phi_K+F_0^{B\to K}T_{\pi,i}^I*f_\pi\Phi_\pi+T_i^{II}*f_B\Phi_B*f_K\Phi_K*f_\pi\Phi_\pi$

quasi-DA

ζ

Lattice 2018, East Lansing Rui Zhang LP^3 Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

Instead of calculating the PDA directly, we are actually calculating the quasi-DA in LaMET [Ji,2013]

$$\tilde{\phi}_{M}(x,\mu_{R},P_{z}) = \frac{i}{f_{M}} \int \frac{dz}{2\pi} e^{-i(x-1)P_{z}z} \langle M(P)|\bar{\psi}(0)\gamma^{z}\gamma_{5}\Gamma(0,z)\lambda^{a}\psi(z)|0\rangle$$

after a matching procedure [Ji et al., 2015]

$$ilde{\phi}_{\mathcal{M}}(x,\mu_{\mathcal{R}},\mathcal{P}_{z}) = \int_{0}^{1} dy \, Z_{\phi}(x,y,\mu,\mu_{\mathcal{R}},\mathcal{P}_{z}) \phi_{\mathcal{M}}(y,\mu) + \mathcal{O}\left(rac{\Lambda_{\mathsf{QCD}}^{2}}{\mathcal{P}_{z}^{2}},rac{m_{\mathcal{M}}^{2}}{\mathcal{P}_{z}^{2}}
ight),$$

where the matching kernel Z_{ϕ} can be expanded to one-loop level as:

$$Z_{\phi}(x,y) = \delta(x-y) + \frac{\alpha_s}{2\pi} (Z_{\phi}^{(1)}(x,y) - \delta(x-y) \int_{-\infty}^{\infty} dx' Z_{\phi}^{(1)}(x',y)) + O(\alpha_s^2)$$

quasi-DA

Lattice 2018, East Lansing Rui Zhang LP^3 Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

The observable we compute on lattice is the correlator

$$\tilde{\mathcal{C}}(z, \mathcal{P}_z, \tau) = \left\langle \int d^3 x \, e^{i \vec{P} \cdot x} \, \bar{\psi}(\vec{x}, \tau) \gamma^z \gamma_5 \Gamma(\vec{x}, \vec{x} + z) \lambda^{a\dagger} \psi(\vec{x} + z, \tau) \, \bar{\psi}^S(0, 0) \gamma_5 \lambda^a \psi^S(0, 0) \right\rangle,$$

where we use the gauge invariant Gaussian smeared source $\psi^{S}(x) = \int d^{3}y \, e^{-\frac{|x-y|^{2}}{2\sigma^{2}} - i\vec{k}\cdot(\vec{x}-\vec{y})} U(x,y)\psi(y),$

which can be related to the matrix element

$$ilde{h}_{M}(z,P_{z})=\langle M(P)|ar{\psi}(0)\gamma^{z}\gamma_{5}\lambda^{a}\Gamma(0,z)\psi(z)|0
angle$$

by extracting the ground-state coefficient of the correlator

$$\tilde{C}(z, P_z, \tau) = \frac{Z_{\text{src}}\tilde{h}_M(z, P_z)}{2E_0}e^{-E_0\tau} + \sum_{i>0}B_i(z, P_z)e^{-E_i\tau}$$

5/20

Parameters

Lattice 2018, East Lansing

Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

The two-point correlators are obtained by running the chroma program with following parameters:

- Lattice spacing a = 0.12 fm
- $24^3 \times 64$ lattice with 2+1+1 flavors of HISQ
- Pion mass 310MeV
- Smeared sources and sinks with smearing mom $k = 0.73P_z$
- Meson momentum $P_z = (4\pi/6\pi/8\pi)/L = (0.77/1.15/1.53) GeV$
- 4 source locations
- 967 hypercubic smearing configurations

Matrix Elements

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

We fit the resulting correlators to the sum of first two terms $\tilde{C}(z, P_z, \tau) = A(z, P_z)e^{-E_0\tau} + B(z, P_z)e^{-E_1\tau}$ Average $\chi^2 = 1.3$. Normalize the coefficient to obtain

$$h_M(zP_z, P_z) = \frac{\tilde{h}_M(z, P_z)}{P_z f_M} = \frac{A(z, P_z)}{A(0, P_z)}$$

so that $h(0, P_z) = 1$.

We also checked the 3-term fit results. They're consistent with our 2-term fit, thus we can safely exclude the excited-state effect here.

Dispersion Relation

Lattice 2018, East Lansing Rui Zhang LP^3 Collaboration

Parton Distribution Amplitude

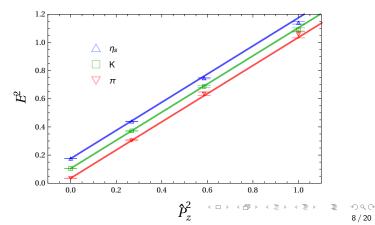
Lattice Set Up

Bare Results

Improved Results

Summary

The dispersion relations for π , K and η_s (with the connected diagram contribution only). The lines are $E^2(P_z) = m^2 + \hat{P}_z^2$, with $\hat{P}_z = 2/a \sin(P_z a/2)$, which are satisfied within two sigmas of the statistical uncertainties.



Bare quasi-DA ME

Lattice 2018, East Lansing Rui Zhang

Collaboration

Parton Distribution Amplitude

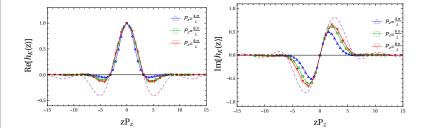
Lattice Set U

Bare Results

Improved Results

Summary

The kaon bare quasi-DA matrix elements. The dashed lines are the asymptotic forms. The bare results for pion and η_s are quite similar to the kaon's.



<ロ > < 部 > < 注 > < 注 > < 注 > 注 の < C 9/20

Renormalization

Lattice 2018, East Lansing Rui Zhang LP³

Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

The gauge-invariant quark Wilson line operator contributes to power divergences. It can be renormalized multiplicatively in the coordinate space:

$$ilde{O}_{\Gamma}(z) = ar{\psi}(z) \Gamma W(z,0) \psi(0) = Z_{\psi,Z} \mathrm{e}^{-\delta m|z|} (ar{\psi}(z) \Gamma W(z,0) \psi(0))^R$$

[Ji et al., 2017; Green et al., 2017; Ishikawa et al., 2017] where δm captures the linear power divergence, and Z is a logarithmic renormalization constant. The power divergence has to be nonperturbatively renormalized.

δm counterterm

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

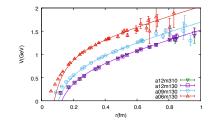
Lattice Set Up

Bare Results

Improved Results

Summary

The δm can be determined by computing the $q - \bar{q}$ static potential $V(r) = \frac{c_{-1}}{r} + c_0 + c_1 r$



where $c_0 = \frac{c_{0,1}}{a} + c_{0,2}$, $\delta m = -\frac{c_{0,1}}{2a} = 0.154(2)/a = 225(3)MeV$. The improved quasi-DA is [Zhang et al., 2017]

$$\tilde{\phi}_M^{\rm imp}(x,P_z) = \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{-i(x-1)zP_z + \delta m|z|} P_z h_M(z,P_z).$$

11 / 20

Matching and mass corrections

Lattice 2018, East Lansing Rui Zhang LP^3 Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

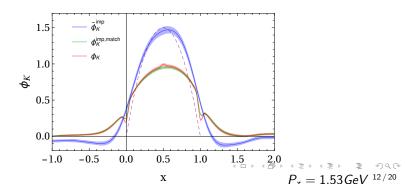
Improved Results

Summary

Final DAs are obtained by applying the one-loop matching kernel

$$\phi_{M}^{\text{imp,match}}(x, P_{z}) \simeq \tilde{\phi}_{M}^{\text{imp}}(x, P_{z}) - \frac{\alpha_{s}}{2\pi} \int_{-\infty}^{\infty} dy \left[Z_{\phi}^{(1)}(x, y) \, \tilde{\phi}_{M}^{\text{imp}}(y, P_{z}) - Z_{\phi}^{(1)}(y, x) \, \tilde{\phi}_{M}^{\text{imp}}(x, P_{z}) \right]$$

and then the mass corrections to the improved DAs. The dashed line is the asymptotic form, the green band is DA without mass correction.



Improved kaon DA

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

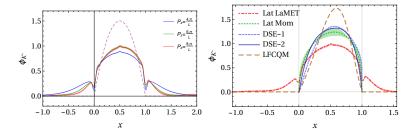
Lattice Set U

Bare Results

Improved Results

Summary

We then obtain the kaon distribution amplitudes for $P_z = (0.77/1.15/1.53) GeV$, with statistical errors only. The purple dashed line is the asymptotic form.



Improved pion DA

Lattice 2018, East Lansing Rui Zhang LP^3 Collaboration

Parton Distribution Amplitude

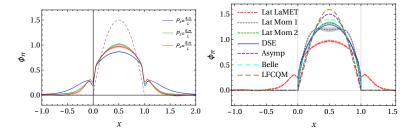
Lattice Set U

Bare Results

Improved Results

Summary

the pion distribution amplitudes for $P_z = (0.77/1.15/1.53) GeV$, with statistical errors only. The purple dashed line is the asymptotic form. The η_s result is similar, with smaller errors.



SU(3) relations

Lattice 2018, East Lansing Rui Zhang LP^3 Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

It was shown in ChPT that the DAs satisfied the SU(3) relation

$$\phi_{K^+}(x,\mu) - \phi_{K^-}(x,\mu) = \phi_{K^0}(x,\mu) - \phi_{\bar{K}^0}(x,\mu) \propto m_s - m_{u/d},$$

$$\phi_{\pi}(x,\mu) + 3\phi_{\eta}(x,\mu) - 2\phi_{K^+}(x,\mu) - 2\phi_{K^-}(x,\mu) = \mathcal{O}(m_q^2),$$

[Chen and Stewart, 2004] where the ϕ_η can be obtained by

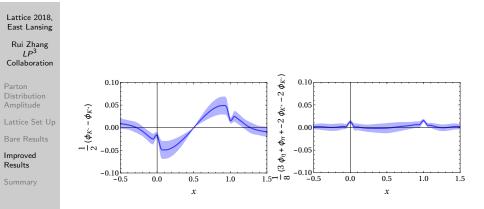
$$\phi_\eta = (2\phi_{\eta_s} + \phi_\pi)/3.$$

Thus we can compare the two magnitudes

$$\delta_{SU(3),1} = (\phi_{K^-} - \phi_{K^+})/2 = \mathcal{O}(m_q),$$

 $\delta_{SU(3),2} = (\phi_{\pi} + \phi_{\eta_s} - \phi_{K^+} - \phi_{K^-})/4 = \mathcal{O}(m_q^2).$

SU(3) relations



Summary

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

- We compute the quasi-DA of pion, kaon and η_s on lattice;
- Applied the δm counterterm renormalization, one loop matching kernel and mass corrections;
- Supported the SU(3) relation predicted by ChPT.
- Future study: smaller lattice spacing, larger volume, physical pion mass.

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

The End

renormalon ambiguity

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

- In an OPE the leading order Wilson coefficient has an ambiguity from perturbation which requires higher order power corrections to cancel it.
- Our renormalization is done non-perturbatively, so there is no renormalon ambiguity.
- The perturbative matching could have renormalon ambiguity, but its size is the same order as the (twist-4) power correction.

disconnected diagrams for η_s

Lattice 2018, East Lansing Rui Zhang *LP*³ Collaboration

Parton Distribution Amplitude

Lattice Set Up

Bare Results

Improved Results

Summary

- The disconnected diagram is $O((m_s \bar{m})^2)$ suppressed because there are two fermion loops.
- The error caused by the different values of ground-state energy E_0 is reduced when P_z increases, and is negligible at our momentum.
- The η_0 contribution is suppressed by a mixing factor $sin\theta \sim 0.08$ times a factor of $(m_s \bar{m})$