ANOMALOUS MAGNETIC MOMENT OF THE MUON WITH DYNAMICAL QCD+QED

James Zanotti
The University of Adelaide

QCDSF Collaboration
Lattice 2018, July 22 - July 28, 2018,
East Lansing, Michigan, USA

CSSM/QCDSF/UKQCD COLLABORATIONS

- W. Kamleh (Adelaide)
- R. Horsley (Edinburgh)
- Y. Nakamura (RIKEN, Kobe)
- H. Perlt (Leipzig)
- P. Rakow (Liverpool)
- G. Schierholz (DESY)
- A. Schiller (Leipzig)
- H. Stüben (Hamburg)
- A. Westin (Adelaide)
- R. Young (Adelaide)

INTRODUCTION TO $a_{\mu}^{\text {HVP }}$

See previous talks

This talk:

- Apply QCDSF's flavour-breaking procedure to a_{μ}^{HVP}
- Employing recent dynamical QCD+QED configurations

ACCESSING a_{μ}^{HVP}

> Traditional:

$$
a_{\mu}^{H V P}=4 \alpha^{2} \int_{0}^{\infty} d Q^{2} K\left(Q^{2} ; m_{\mu}^{2}\right) \hat{\Pi}\left(Q^{2}\right),
$$

- polarisation tensor:

ACCESSING a_{μ}^{HVP}

> Time-moment(um) representation:

$$
a_{\mu}^{H V P}=4 \alpha^{2} \int_{0}^{\infty} d t G(t) \tilde{K}\left(t ; m_{\mu}\right)
$$

$$
G(t)=\frac{1}{3} \sum_{i=1,2,3} \int d^{3} x\left\langle J_{i}(x) J_{i}(0)\right\rangle \quad \begin{gathered}
\text { Known kernel } \\
{[\text { Bernecker-Meyer (2011)] }}
\end{gathered}
$$

> Note:
> requires long-time integral $(\rightarrow \infty)$
> lattice data have finite t and suffer from large noise at large t

- lots of progress - see other talks

RECALL: QCDSF QUARK MASS TUNING (QCD

> $\mathrm{N}_{\mathrm{f}}=2+1 O(a)$-improved Clover ("SLiNC")
> Tree-level Symanzik gluon action

- Novel method for tuning the quark masses
> keep the singlet quark mass fixed

$$
\bar{m}^{R}=\frac{1}{3}\left(2 m_{l}^{R}+m_{s}^{R}\right)
$$

> at its physical value $\bar{m}^{R *}$
> Multiple V, a, m_{q}

FLAVOUR-BREAKING EXPANSIONS (QCD)

> Using properties of $\mathrm{SU}(3)$
> e.g. light octet vector mesons with flavour ($a \bar{b}$) [partially quenched]

$$
\begin{aligned}
M(a \bar{b})= & M_{0}+\alpha\left(\delta \mu_{a}+\delta \mu_{b}\right)+\frac{1}{2} c\left(\delta m_{u}+\delta m_{d}+\delta m_{s}\right)+\frac{1}{6} \beta_{0}\left(\delta m_{u}^{2}+\delta m_{d}^{2}+\delta m_{s}^{2}\right) \\
& +\beta_{1}\left(\delta \mu_{a}^{2}+\delta \mu_{b}^{2}\right)+\beta_{2}\left(\delta \mu_{a}^{2}-\delta \mu_{b}^{2}\right)
\end{aligned}
$$

$$
\left(\delta \mu_{q}, \delta m_{q}\right)=\left(\mu_{q}, m_{q}\right)-m_{0}=\frac{1}{2}\left(\frac{1}{\kappa_{q}}-\frac{1}{\kappa_{0}}\right)
$$

FLAVOUR-BREAKING EXPANSIONS (QCD)

> Using properties of $\mathrm{SU}(3)$
> e.g. light octet vector mesons with flavour ($a \bar{b}$) [partially quenched]

$$
\begin{aligned}
M(a \bar{b})= & M_{0}+\alpha\left(\delta \mu_{a}+\delta \mu_{b}\right)+\frac{1}{2}\left(\delta m_{u}+\delta m_{d}+\delta m_{s} s\right)+\frac{1}{6} \beta_{0}\left(\delta m_{u}^{2}+\delta m_{d}^{2}+\delta m_{s}^{2}\right) \\
& +\beta_{1}\left(\delta \mu_{a}^{2}+\delta \mu_{b}^{2}\right)+\beta_{2}\left(\delta \mu_{a}^{2}-\delta \mu_{b}^{2}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\delta m_{u}+\delta m_{d}+\delta m_{s}=0 \text { on our trajectory } \\
\left(\delta \mu_{q}, \delta m_{q}\right)=\left(\mu_{q}, m_{q}\right)-m_{0}=\frac{1}{2}\left(\frac{1}{\kappa_{q}}-\frac{1}{\kappa_{0}}\right)
\end{array}
$$

FLAVOUR-BREAKING EXPANSIONS (CCD)

[QCDSF (2011)]

> Using properties of $\mathrm{SU}(3)$
> e.g. light octet vector mesons with flavour ($a \bar{b}$) [partially quenched]

$$
\begin{aligned}
M(a \bar{b})= & M_{0}+\alpha\left(\delta \mu_{a}+\delta \mu_{b}\right)+\frac{1}{2}\left(\delta m_{u}+\delta m_{d}+\delta m_{s} s\right)+\frac{1}{6} \beta_{0}\left(\delta m_{u}^{2}+\delta m_{d}^{2}+\delta m_{s}^{2}\right) \\
& +\beta_{1}\left(\delta \mu_{a}^{2}+\delta \mu_{b}^{2}\right)+\beta_{2}\left(\delta \mu_{a}^{2}-\delta \mu_{b}^{2}\right)
\end{aligned}
$$

$$
\delta m_{u}+\delta m_{d}+\delta m_{s}=0 \text { on our trajectory }
$$

$$
\left(\delta \mu_{q}, \delta m_{q}\right)=\left(\mu_{q}, m_{q}\right)-m_{0}=\frac{1}{2}\left(\frac{1}{\kappa_{q}}-\frac{1}{\kappa_{0}}\right)
$$

> Flavour-diagonal (with $\bar{m}=$ constant) :

$$
M(a \bar{a})=M_{0}+2 \alpha \delta \mu_{a}+\beta_{0} \delta m_{l}^{2}+2 \beta_{1} \delta \mu_{a}^{2}
$$

LATIICE QCD+QED SET-UP

> Non-compact QED gauge-fixing of Uno \& Hayakawa (2008) - on valence quarks

- Gauge coupling corresponding to $\alpha_{Q E D}=0.1$
- $\mathrm{SU}(3)_{\mathrm{f}}$ symmetric point?
> QCD: trivial - input $a m_{u}=a m_{d}=a m_{s} \longrightarrow m_{u}^{R}=m_{d}^{R}=m_{s}^{R}$
$>+$ QED: with $\quad Q_{u}=+\frac{2}{3}, Q_{d}=Q_{s}=-\frac{1}{3}$

$$
a m_{u}=a m_{d}=a m_{s} \quad \longrightarrow \quad m_{u}^{R} \neq m_{d}^{R}=m_{s}^{R}
$$

- Define the "Dashen Scheme"
- Tune quark masses to $\operatorname{SU}(3)_{\text {sym }}$ point via $m_{\pi}^{u \bar{u}}=m_{\pi}^{d \bar{d}}=m_{\pi}^{s \bar{s}}$

$$
\begin{array}{ll}
>n: 0 & m_{\pi}^{n \bar{n}}=408(3) \mathrm{MeV} \\
>d:-1 / 3 & m_{\pi}^{d \bar{d}}=409(1) \mathrm{MeV} \\
>u:+2 / 3 & m_{\pi}^{u \bar{u}}=407(3) \mathrm{MeV}
\end{array} \quad V=32^{3} \times 64, a=0.068 \mathrm{fm}
$$

FLAVOUR-BREAKING EXPANSIONS (QCD+QED)

> Extend to include quark charges, e.g. flavour-diagonal (with $\bar{m}=$ constant)

$$
\begin{aligned}
M(a \bar{a})= & M_{0}+2 \alpha \delta \mu_{a}+\beta_{0} \delta m_{l}^{2}+2 \beta_{1} \delta \mu_{a}^{2}+\beta_{0}^{E M}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right)+2 \beta_{1}^{E M} e_{a}^{2} \\
& +\gamma_{0}^{E M}\left(e_{u}^{2} \delta m_{u}+e_{d}^{s} \delta m_{d}+e_{s}^{2} \delta m_{s}\right)+2 \gamma_{1}^{E M} e_{a}^{2} \delta \mu_{a} \\
& +2 \gamma_{4}^{E M}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right) \delta \mu_{a}+2 \gamma_{5}^{E M} e_{a}\left(e_{u} \delta m_{u}+e_{d} \delta m_{d}+e_{s} \delta m_{s}\right)
\end{aligned}
$$

Dashen scheme:
QCDSF, JHEP 1604, 093 (2016)

- absorb all EM effects of neutral PS mesons into q masses
- rescale the horizontal axis so that all meson masses depend on the "Dashen mass" in the same way

$\delta \mu_{q}^{D}=\left(1+K Q_{q}^{2} e^{2}\right) \delta \mu$

QCD+QED SPECTRUM

> Physical point determination. Constrain to experimental masses:

$$
\begin{aligned}
M_{\pi^{0}} & =134.977 \mathrm{MeV} \\
M_{K^{0}} & =497.614 \mathrm{MeV} \\
M_{K^{+}} & =493.677 \mathrm{MeV}
\end{aligned}
$$

Physical point, and lattice scale:

	$32^{3} \times 64$	$48^{3} \times 96$
$a \delta m_{u}^{\star}$	$-0.00834(8)$	$-0.00791(4)$
$a \delta m_{d}^{\star}$	$-0.00776(7)$	$-0.00740(4)$
$a \delta m_{s}^{\star}$	$0.01610(15)$	$0.01531(8)$
a^{-1} / GeV	$2.89(5)$	$2.91(3)$

- Prescription for switching Dashen $\rightarrow \overline{\mathrm{MS}}$

QCD+QED SPECTRUM

> Physical point determination. Constrain to experimental masses:

$$
\begin{aligned}
M_{\pi^{0}} & =134.977 \mathrm{MeV} \\
M_{K^{0}} & =497.614 \mathrm{MeV} \\
M_{K^{+}} & =493.677 \mathrm{MeV}
\end{aligned}
$$

Physical point, and lattice scale:

Sum =0 | | $32^{3} \times 64$ | $48^{3} \times 96$ |
| :---: | :---: | :---: |
| $\left.\begin{array}{c}a \delta m_{u}^{\star} \\ a \delta m_{d}^{\star} \\ a \delta m_{s}^{\star}\end{array}\right)$ | $-0.00834(8)$ | $-0.00791(4)$ |
| $a^{-1 \mathrm{GeV}}$ | $-0.00776(7)$ | $-0.00740(4)$ |

- Prescription for switching Dashen $\rightarrow \overline{\mathrm{MS}}$

G-2: LATICE QCD+QED SET-UP
 $a=0.068 \mathrm{fm}$
 $\alpha_{\mathrm{QED}}=\frac{e^{2}}{4 \pi} \simeq 0.1$

- Simulate with 5 ensembles

$\#$	(L, T)	N_{f}	$m_{u \bar{u}}$	$m_{d \bar{d}}$	$m_{s \bar{s}}$	$m_{q \bar{q}}^{m i n} L$	$m_{\pi^{+}}$	$m_{K^{+}}$
1	$(32,64)$	$2+1$	430	405	405	4.4	435	435
2	$(32,64)$	$2+1$	360	435	435	4.0	415	415
3	$(32,64)$	$1+1+1$	290	300	570	3.2	320	470
4	$(48,96)$	$2+1$	430	405	405	6.7	435	435
5	$(48,96)$	$2+1$	360	435	435	5.9	420	420

- partially-quenched with masses

$$
260 \leq m_{q \bar{q}} \leq 770 \mathrm{MeV}
$$

> and charges

$$
Q_{q} \in\left(0,-\frac{1}{3 \sqrt{13}},+\frac{2}{3 \sqrt{13}}, \pm \frac{1}{3}, \pm \frac{\sqrt{2}}{3}, \pm \frac{2}{3}\right) e
$$

ZV

> Z_{V} determined from nucleon 3pt functions at tuned symmetric point (uud, uun, nnd, ...)
> Z_{V} depends on the charge of the active quark 1706.05293]

$$
\begin{aligned}
& m_{\pi}^{n \bar{n}}=408(3) \mathrm{MeV} \\
& m_{\pi}^{d \bar{d}}=409(1) \mathrm{MeV} \\
& m_{\pi}^{u \bar{u}}=407(3) \mathrm{MeV}
\end{aligned}
$$

TIME-MOMENT CALCULATION

> Recall we need 2-point function at large times (noisy)

$$
a_{\mu}^{H V P}=4 \alpha^{2} \int_{0}^{\infty} d t G(t) \tilde{K}\left(t ; m_{\mu}\right) \quad G(t)=\frac{1}{3} \sum_{i=1,2,3} \int d^{3} x\left\langle J_{i}(x) J_{i}(0)\right\rangle
$$

- Instead only use 2-point function up to some $t_{\text {cut }}$
- Then use ground state vector meson mass in single exponential

$$
G(t)= \begin{cases}G(t) & t \leq t_{c u t} \\ A e^{-M_{v} t} & t>t_{c u t}\end{cases}
$$

remaining systematic error in description of correlator at large t using single state

TIME-MOMENT CALCULATION

($t_{\text {cut }}$ dependence)

TIME-MOMENT CALCULATION

($t_{\text {cut }}$ dependence)

TIME-MOMENT CALCULATION

($t_{\text {cut }}$ dependence)

TIME-MOMENT CALCULATION

($t_{\text {cut }}$ dependence)

TIME-MOMENT CALCULATION

($t_{\text {cut }}$ dependence)

TIME-MOMENT CALCULATION

($t_{\text {cut }}$ dependence)

TIME-MOMENT CALCULATION

($t_{\text {cut }}$ dependence)

BOUNDING METHOD

 [see e.g. A.Meyer(RBC/UKQCD) @ g-2, Mainz]$$
\begin{aligned}
& \tilde{C}\left(t ; t_{\text {cut }}, E\right)=\left\{\begin{array}{lll}
C(t) & t<t_{\text {cut }} & \text { upper bound : } E=E_{0} \\
C\left(t_{\text {max }}\right) e^{-E\left(t-t_{\text {cuu }}\right)} & t \geq t_{\text {cut }}
\end{array} \quad \text { lower bound : } E=\log \left[\frac{C\left(t_{\text {max }}\right)}{C\left(t_{\text {max }}+1\right)}\right]\right.
\end{aligned}
$$

FLAVOUR-BREAKING EXPANSIONS (QCD+QED)

> Recall flavour-diagonal vector meson (with $\bar{m}=$ constant)

$$
\begin{aligned}
M(a \bar{a})= & M_{0}+2 \alpha \delta \mu_{a}+\beta_{0} \delta m_{l}^{2}+2 \beta_{1} \delta \mu_{a}^{2}+\beta_{0}^{E M}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right)+2 \beta_{1}^{E M} e_{a}^{2} \\
& +\gamma_{0}^{E M}\left(e_{u}^{2} \delta m_{u}+e_{d}^{s} \delta m_{d}+e_{s}^{2} \delta m_{s}\right)+2 \gamma_{1}^{E M} e_{a}^{2} \delta \mu_{a} \\
& +2 \gamma_{4}^{E M}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right) \delta \mu_{a}+2 \gamma_{5}^{E M} e_{a}\left(e_{u} \delta m_{u}+e_{d} \delta m_{d}+e_{s} \delta m_{s}\right)
\end{aligned}
$$

> same expansion for a_{μ}

$$
\begin{aligned}
a_{\mu, a}= & a_{\mu, 0}+2 \alpha \delta \mu_{a}+\beta_{0} \delta m_{l}^{2}+2 \beta_{1} \delta \mu_{a}^{2}+\beta_{0}^{E M}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right)+2 \beta_{1}^{E M} e_{a}^{2} \\
& +\gamma_{0}^{E M}\left(e_{u}^{2} \delta m_{u}+e_{d}^{s} \delta m_{d}+e_{s}^{2} \delta m_{s}\right)+2 \gamma_{1}^{E M} e_{a}^{2} \delta \mu_{a} \\
& +2 \gamma_{4}^{E M}\left(e_{u}^{2}+e_{d}^{2}+e_{s}^{2}\right) \delta \mu_{a}+2 \gamma_{5}^{E M} e_{a}\left(e_{u} \delta m_{u}+e_{d} \delta m_{d}+e_{s} \delta m_{s}\right)
\end{aligned}
$$

FLAVOUR EXPANSION

- Apply simultaneous to all quark masses/charges on each volume

FLAVOUR EXPANSION

- Apply simultaneous to all quark masses/charges on each volume

FINITE VOLUME EFFECTS

> Aubin et al. (2016): $m_{\pi}=220 \mathrm{MeV}, \mathrm{L}=3.8 \mathrm{fm}, \mathrm{m}_{\pi} \mathrm{L}=4.2$
> Compare different irreducible representations

$$
\begin{aligned}
\text { [Aubin et al. Phys.Rev. D93 (2016)] } & \\
a_{\mu, A_{1}}^{\mathrm{HVP}}\left[0.1 \mathrm{GeV}^{2}\right] & =6.8(4) \times 10^{-8} \\
a_{\mu, A_{1}^{44}}^{\mathrm{HVP}}\left[0.1 \mathrm{GeV}^{2}\right] & =7.5(3) \times 10^{-8}
\end{aligned} \quad A_{1}: \sum \Pi_{i i}^{44}: \Pi_{44}
$$

$\longrightarrow 10-15 \%$ finite volume effects

FINITE VOLUME EFFECTS

$$
\begin{aligned}
& A_{1}: \sum \Pi_{i u} \\
& A_{1}^{44}: \Pi_{44}
\end{aligned}
$$

- Compare 4 different representations on our 2 volumes

FINITE VOLUME EFFECTS

$A_{1}: \sum \prod_{i u}$
$A_{1}^{44}: \Pi_{44}$

- Compare 4 different representations on our 2 volumes

$$
\alpha_{\mathrm{QED}}=\frac{e^{2}}{4 \pi} \simeq 0.1
$$

> Difficult to resolve electric charge effects from fit
> Try correlated ratios

$$
R=\frac{\Pi^{q}\left(Q^{2}\right)-\Pi^{n}\left(Q^{2}\right)}{\Pi^{n}\left(Q^{2}\right)}
$$

Without Z_{V}

$$
\alpha_{\mathrm{QED}}=\frac{e^{2}}{4 \pi} \simeq 0.1
$$

> Difficult to resolve electric charge effects from fit
> Try correlated ratios

$$
R=\frac{\Pi^{q}\left(Q^{2}\right)-\Pi^{n}\left(Q^{2}\right)}{\Pi^{n}\left(Q^{2}\right)}
$$

$$
\alpha_{\mathrm{QED}}=\frac{e^{2}}{4 \pi} \simeq 0.1
$$

> Difficult to resolve electric charge effects from fit
> Try correlated ratios

$$
R=\frac{\hat{\Pi}^{q}\left(Q^{2}\right)-\hat{\Pi}^{n}\left(Q^{2}\right)}{\hat{\Pi}^{n}\left(Q^{2}\right)} \quad \hat{\Pi}\left(Q^{2}\right)=\Pi\left(Q^{2}\right)-\Pi(0)
$$

$$
\alpha_{\mathrm{QED}}=\frac{e^{2}}{4 \pi} \simeq 0.1
$$

> Difficult to resolve electric charge effects from fit
> Try correlated ratios

$$
R=\frac{\hat{\Pi}^{q}\left(Q^{2}\right)-\hat{\Pi}^{n}\left(Q^{2}\right)}{\hat{\Pi}^{n}\left(Q^{2}\right)} \quad \hat{\Pi}\left(Q^{2}\right)=\Pi\left(Q^{2}\right)-\Pi(0)
$$

SUMMARY

> Constraints on QED effect on a_{μ} becoming possible [Miura,Wed.9:00]

- This work:

$$
\delta a_{\mu}^{Q E D} \lesssim 1 \%
$$

> Flavour-breaking expansion can be applied to a_{μ}
Separation of strong and EM IB effects in Dashen

- Much still to be done!

Backup

$$
a m_{q}=\frac{1}{2}\left(\frac{1}{\kappa}-\frac{1}{\kappa_{c}}\right)
$$

$$
\begin{aligned}
& \beta_{\mathrm{QCD}}=5.50 \\
& \beta_{\mathrm{QED}}=0.8
\end{aligned}
$$

$$
X_{\pi}=\sqrt{\frac{1}{3}\left(m_{K^{+}}^{2}+m_{K^{0}}^{2}+m_{\pi^{+}}^{2}\right)}=X_{\pi}^{p h y s}=411 \mathrm{MeV}
$$

$$
a m_{q}=\frac{1}{2}\left(\frac{1}{\kappa}-\frac{1}{\kappa_{c}}\right)
$$

$$
\begin{aligned}
& \beta_{\mathrm{QCD}}=5.50 \\
& \beta_{\mathrm{QED}}=0.8
\end{aligned}
$$

$$
X_{\pi}=\sqrt{\frac{1}{3}\left(m_{K^{+}}^{2}+m_{K^{0}}^{2}+m_{\pi^{+}}^{2}\right)}=X_{\pi}^{p h y s}=411 \mathrm{MeV}
$$

$$
a m_{q}=\frac{1}{2}\left(\frac{1}{\kappa}-\frac{1}{\kappa_{c}}\right)
$$

$$
\begin{aligned}
& \beta_{\mathrm{QCD}}=5.50 \\
& \beta_{\mathrm{QED}}=0.8
\end{aligned}
$$

Renormalisation of lattice spacing and m_{q} with QED
$X_{\pi}=\sqrt{\frac{1}{3}\left(m_{K^{+}}^{2}+m_{K^{0}}^{2}+m_{\pi^{+}}^{2}\right)}=X_{\pi}^{\text {phys }}=411 \mathrm{MeV}$

$$
a m_{q}=\frac{1}{2}\left(\frac{1}{\kappa}-\frac{1}{\kappa_{c}}\right)
$$

$$
\begin{aligned}
& \beta_{\mathrm{QCD}}=5.50 \\
& \beta_{\mathrm{QED}}=0.8
\end{aligned}
$$

Renormalisation of lattice spacing and m_{q} with QED
$X_{\pi}=\sqrt{\frac{1}{3}\left(m_{K^{+}}^{2}+m_{K^{0}}^{2}+m_{\pi^{+}}^{2}\right)}=X_{\pi}^{\text {phys }}=411 \mathrm{MeV}$

"DASHEN SCHEME"

$$
a m_{q}=\frac{1}{2}\left(\frac{1}{\kappa}-\frac{1}{\kappa_{c}}\right)
$$

$$
\begin{aligned}
& \beta_{\mathrm{QCD}}=5.50 \\
& \beta_{\mathrm{QED}}=0.8
\end{aligned}
$$

Renormalisation of lattice spacing and m_{q} with QED

$$
\begin{aligned}
\kappa_{\mathrm{sym}}^{u} & =0.1243838 \\
\kappa_{\mathrm{sym}}^{d, s} & =0.1217026 \\
\kappa_{\mathrm{sym}}^{n} & =0.1208142
\end{aligned}
$$

> Cartoon illustrating the different running of the bare quark masses

- Once tuned to the symmetric point, different charge quarks run differently to the chiral limit

Dashen scheme: rescale the horizontal axis so that all meson

$$
\delta \mu_{q}^{D}=\left(1+K Q_{q}^{2} e^{2}\right) \delta \mu_{q}
$$ masses depend on the "Dashen mass" in the same way

PSEUDOSCALAR MASSES

QCDSF, JHEP 1604, 093 (2016)

- Neutral mesons on different lines
> Scatter of charged pion: dependence on $\delta m_{d}-\delta m_{u}$

"DASHEN SCHEME" - PSEUDOSCALAR MASSES

QCDSF, JHEP 1604, 093 (2016)

- Neutral mesons on uniform curve
> "Scatter" removed from charged mesons

LATIICE QCD+QED - ZERO MODES

- Ground state energy of a single particle shifted from rest mass

$$
E=\sqrt{m^{2}+Q^{2}(e \vec{B})^{2}}
$$

> Subtract \boldsymbol{B}^{2} contribution to find m
> Alternative: eliminate by additional gauge-fixing of Uno \& Hayakawa (2008) - on valence quarks

$$
\sum A_{\mu}(t, \vec{x})=0, \quad \forall \mu \text { and } t
$$

