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INTRODUCTION TO
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See previous talks

aHVP
μ

Hadronic Contributions

Majority of uncertainty comes from HVP and hadronic light-by-light

We will focus on the HVP now

Alex Westin (QCDSF) QED+QCD calculation of LO HVP of aµ QCD Downunder, July 2017 7 / 25

This talk:  

• Apply QCDSF’s flavour-breaking procedure to 

• Employing recent dynamical QCD+QED configurations

aHVP
μ



ACCESSING 
➤ Traditional: 

➤ polarisation tensor: 

➤ fit with Padé, VMD, … 

➤ put back into integral
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aHVP
μ

aHVP
μ = 4α2 ∫

∞

0
dQ2K(Q2; m2

μ)Π̂(Q2),

Π(Q2) − Π(0)Known kernel

Πμν(Q) = ∫ d4x eiQ⋅x⟨Jμ(x)Jν(0)⟩ = (QμQν − δμνQ2) Π(Q2)

Fitting to Lattice Data

We have lattice results for ⇧(Q2)
Need to fit a function to data
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ACCESSING 
➤ Time-moment(um) representation: 

➤ Note: 

➤ requires long-time integral (            ) 

➤ lattice data have finite t and suffer from large noise at large t 

➤ lots of progress - see other talks �5

aHVP
μ

aHVP
μ = 4α2 ∫

∞

0
dt G(t)K̃(t; mμ)

G(t) =
1
3 ∑

i=1,2,3
∫ d3x ⟨Ji(x)Ji(0)⟩

Known kernelvector-vector 2-pt function
[Bernecker-Meyer (2011)]

→ ∞



RECALL: QCDSF QUARK MASS TUNING (QCD)
➤ Nf =2+1 O(a)-improved Clover (“SLiNC”) 

➤ Tree-level Symanzik gluon action 

➤ Novel method for tuning the quark masses 

➤ keep the singlet quark mass fixed 

➤ at its physical value 

➤ Multiple V, a, mq 
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FLAVOUR-BREAKING EXPANSIONS (QCD)
➤ Using properties of SU(3) 

➤ e.g. light octet vector mesons with flavour         [partially quenched]
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M(ab̄) = M0 + α(δμa + δμb) +
1
2

c(δmu + δmd + δms) +
1
6

β0(δm2
u + δm2

d + δm2
s )

+β1(δμ2
a + δμ2

b) + β2(δμ2
a − δμ2

b)

(ab̄)

[QCDSF (2011)]

(δμq, δmq) = (μq, mq) − m0 =
1
2 ( 1

κq
−

1
κ0 )

SU(3)-symmetric point
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M(ab̄) = M0 + α(δμa + δμb) +
1
2

c(δmu + δmd + δms) +
1
6

β0(δm2
u + δm2

d + δm2
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δmu + δmd + δms = 0 on our trajectory

(δμq, δmq) = (μq, mq) − m0 =
1
2 ( 1

κq
−

1
κ0 )



FLAVOUR-BREAKING EXPANSIONS (QCD)
➤ Using properties of SU(3) 

➤ e.g. light octet vector mesons with flavour         [partially quenched]
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M(ab̄) = M0 + α(δμa + δμb) +
1
2

c(δmu + δmd + δms) +
1
6

β0(δm2
u + δm2

d + δm2
s )

+β1(δμ2
a + δμ2

b) + β2(δμ2
a − δμ2

b)

(ab̄)

[QCDSF (2011)]

δmu + δmd + δms = 0 on our trajectory

(δμq, δmq) = (μq, mq) − m0 =
1
2 ( 1

κq
−

1
κ0 )

➤ Flavour-diagonal                                  :

M(aā) = M0 + 2αδμa + β0δm2
l + 2β1δμ2

a

(with m̄ = constant)



➤ Non-compact QED 

➤ Gauge coupling corresponding to αQED = 0.1  

➤ SU(3)f symmetric point? 

➤ QCD: trivial — input  

➤ +QED: with  

➤ Define the “Dashen Scheme”  

➤ Tune quark masses to SU(3)sym point via  

➤ n : 0 

➤ d : -1/3 

➤ u : +2/3 �8

LATTICE QCD+QED SET-UP

muū
⇡ = mdd̄

⇡ = mss̄
⇡

Qu = +
2

3
, Qd = Qs = �1

3

mR
u = mR

d = mR
samu = amd = ams

amu = amd = ams mR
u 6= mR

d = mR
s

gauge-fixing of Uno & Hayakawa (2008) 
— on valence quarks

QCDSF, JHEP 1604, 093 (2016)

mdd̄
⇡ = 409(1) MeV

mnn̄
⇡ = 408(3) MeV

muū
⇡ = 407(3) MeV

V=323x64, a=0.068fm



Dashen scheme:  
• absorb all EM effects of neutral PS mesons into q masses 
• rescale the horizontal axis so that all meson masses 

depend on the “Dashen mass” in the same way 

FLAVOUR-BREAKING EXPANSIONS (QCD+QED)
➤ Extend to include quark charges, e.g. flavour-diagonal

�9

M(aā) = M0 + 2αδμa + β0δm2
l + 2β1δμ2

a + βEM
0 (e2

u + e2
d + e2

s ) + 2βEM
1 e2

a

+γEM
0 (e2

uδmu + es
dδmd + e2

s δms) + 2γEM
1 e2

aδμa

+2γEM
4 (e2

u + e2
d + e2

s )δμa + 2γEM
5 ea(euδmu + edδmd + esδms)

(with m̄ = constant)

QCDSF, JHEP 1604, 093 (2016)

Figure 2: Sketch illustrating the transformation from bare masses (left panel) to Dashen
scheme masses (right panel). In the left panel all the flavour diagonal mesons have the
same mass at the symmetric point (δµq = 0), but have different critical points (M2

PS = 0).
In the Dashen scheme (right panel) we rescale the masses horizontally, so that all the
critical points are the same. The different mesons now all depend on δµD

q in the same
way.

One way to interpret the behaviour in Fig. 2 is to consider a u and d quark with the
same bare lattice mass. Since the magnitude of the charge of the u quark is twice as large
as that of the d quark, it will acquire a larger self-energy due to the surrounding photon
cloud and hence it will be physically more massive, which is why the mass of the uū
meson rises more steeply than the dd̄ meson, when plotted against bare mass. By instead
plotting against the Dashen mass, we have effectively added the extra mass of the photon
cloud to the quark mass. Two quarks with the same Dashen mass are physically similar
in mass, and so they form mesons of the same mass, as seen in the right-hand panel of
Fig. 2.

Applying these ideas to our simulations, in Fig. 3 we show how the symmetric κsym

and critical κc are determined, using the dd̄ meson as an example. κc is defined from the
point where the partially-quenched meson mass extrapolates to zero, (5), while κsym is
defined by the point where the fit line crosses M2

PS = X2
π, (3).

We repeat this procedure for the u and n quarks and plot the resulting 1/κc and
1/κsym values as a function of the square of the quark charges, Q2

q , in Fig. 4 Here we
clearly see that in both cases 1/κ depends linearly on Q2

q .

Despite appearances, the two lines are not quite parallel. In Fig. 5 we plot the bare
mass at the symmetric point,

amsym
q =

1

2κsym
q

−
1

2κc
q

. (24)

κc
q for each flavour is defined as the point at which the flavour-diagonal qq̄ meson becomes

massless. We see that our data show the behaviour shown in the left-hand panel of Fig. 2,
with each meson reaching the axis at a different point.

The factors needed to bring the charged bare masses into agreement with the neutral
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δμD
q = (1 + KQ2

qe2)δμ



QCD+QED SPECTRUM
➤ Physical point determination. Constrain to experimental masses:  

➤ Physical point, and lattice scale:  

➤ Prescription for switching �10

M⇡0 = 134.977MeV,

MK0 = 497.614MeV,

MK+ = 493.677MeV

323 × 64 483 × 96
aδm⋆

u −0.00834(8) −0.00791(4)
aδm⋆

d −0.00776(7) −0.00740(4)
aδm⋆

s 0.01610(15) 0.01531(8)
a−1/GeV 2.89(5) 2.91(3)

Table 2: Bare quark mass parameters at the physical point, and inverse lattice spacing,
defined from Xπ. These masses have been tuned to reproduce the real-world π0, K0 and
K+ when αEM = 1/137.

323 × 64 483 × 96 Real World
Mπ+ 140.3(5) 139.6(2) 139.570

Mπ+ −Mπ0 5.3(5) 4.6(2) 4.594

Table 3: The predicted value of the π+ mass, and π+-π0 splitting, in MeV.

a scheme-dependent concept. When we look with greater resolution we see more short
wavelength photons, which had previously been counted as part of the quark mass, and
therefore part of the QCD contribution to the mass.

The traditional way of expressing the electromagnetic contributions is through the ϵ
parameters, which measure M2

γ in units of

∆π ≡ M2
π+ −M2

π0 , (49)

a natural choice because it is a quantity of a similar origin, and similar order of magnitude.

The ϵ parameters are defined by [13]

M2
γ (π

0) = M2
π0(g2, e2)−M2

π0(g2, 0) = ϵπ0∆π ,

M2
γ (K

0) = M2
K0(g2, e2)−M2

K0(g2, 0) = ϵK0∆π ,

M2
γ (π

+) = M2
π+(g2, e2)−M2

π+(g2, 0) = [1 + ϵπ0 − ϵm]∆π , (50)

M2
γ (K

+) = M2
K+(g2, e2)−M2

K+(g2, 0) = ϵK+∆π = [1 + ϵ+ ϵK0 − ϵm]∆π .

ϵK+ is defined in this way so that the electromagnetic contribution to the following quan-
tity has a simple expression

[M2
K+ −M2

K0 −M2
π+ +M2

π0 ]γ = ϵ∆π . (51)

From now on we will neglect the small quantity ϵm, the QCD contribution to the π+-π0

splitting, which comes largely from annihilation diagrams. This is a reasonable assumption
here since we note that phenomenological estimates for the this QCD contribution are of
order 0.1 MeV (or 2%) [23], which is within the precision of our present calculation.

In the Dashen scheme the ϵ parameters are simply,

ϵDπ0 = 0, ϵDK0 = 0, ϵDπ+ = 1 , (52)
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Figure 5: Fan plots of pseudoscalar meson (top) and baryon masses (bottom) on the 483 × 96
lattice as a function of δµu + δµd, with δµu + δµd + δµs = 0. The baryon masses are the averages
of the isospin doublets.

ms/md remains a renormalization group invariant, even in the presence of QED. Hence Eq. (15)
represents our results in the MS scheme at µ2 = 4GeV2.

In this Letter we are primarily interested in the isospin splittings of pseudoscalar meson and
octet baryon masses. To get to our final numbers, we need to correct for finite size effects first.
From QED we expect power-law corrections, due to the photon being massless, in addition to
exponential corrections from QCD. We correct for QCD finite size effects by using the results
of [14, 15], adapted to three flavors of PQ quarks. In case of the nucleon the corrections amount
to approximately 1% on the 483×96 lattice and to 5% on the 323×64 lattice. Having successfully
removed the zero modes, we can correct for the remaining QED effects by employing the mass
shift formulae of effective field theory (EFT) [13]. We test this in Fig. 6, where we compare
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Figure 6: The QED contribution to the p − n mass splitting on the 323 × 64 and 483 × 96 lattices
compared with the prediction of [13].
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(�µu + �µd)/2

QCDSF, JHEP 1604, 093 (2016)
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a scheme-dependent concept. When we look with greater resolution we see more short
wavelength photons, which had previously been counted as part of the quark mass, and
therefore part of the QCD contribution to the mass.

The traditional way of expressing the electromagnetic contributions is through the ϵ
parameters, which measure M2

γ in units of
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π+ −M2

π0 , (49)
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From now on we will neglect the small quantity ϵm, the QCD contribution to the π+-π0

splitting, which comes largely from annihilation diagrams. This is a reasonable assumption
here since we note that phenomenological estimates for the this QCD contribution are of
order 0.1 MeV (or 2%) [23], which is within the precision of our present calculation.

In the Dashen scheme the ϵ parameters are simply,
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ms/md remains a renormalization group invariant, even in the presence of QED. Hence Eq. (15)
represents our results in the MS scheme at µ2 = 4GeV2.

In this Letter we are primarily interested in the isospin splittings of pseudoscalar meson and
octet baryon masses. To get to our final numbers, we need to correct for finite size effects first.
From QED we expect power-law corrections, due to the photon being massless, in addition to
exponential corrections from QCD. We correct for QCD finite size effects by using the results
of [14, 15], adapted to three flavors of PQ quarks. In case of the nucleon the corrections amount
to approximately 1% on the 483×96 lattice and to 5% on the 323×64 lattice. Having successfully
removed the zero modes, we can correct for the remaining QED effects by employing the mass
shift formulae of effective field theory (EFT) [13]. We test this in Fig. 6, where we compare
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compared with the prediction of [13].
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➤ Simulate with 5 ensembles 

➤ partially-quenched with masses 

➤ and charges

�11

G-2: LATTICE QCD+QED SET-UP a=0.068fm

# (L, T ) Nf muū mdd̄ mss̄ mmin
qq̄ L mπ+ mK+

1 (32,64) 2 + 1 430 405 405 4.4 435 435
2 (32,64) 2 + 1 360 435 435 4.0 415 415
3 (32,64) 1 + 1 + 1 290 300 570 3.2 320 470
4 (48,96) 2 + 1 430 405 405 6.7 435 435
5 (48,96) 2 + 1 360 435 435 5.9 420 420

260 ≤ mqq̄ ≤ 770 MeV

Qq ∈ (0, −
1

3 13
, +

2

3 13
, ± 1

3
, ± 2

3
, ± 2

3 ) e

αQED =
e2

4π
≃ 0.1



ZV

�12

➤ ZV determined from nucleon 3pt functions at tuned symmetric point 
(uud, uun, nnd, …) 

➤ ZV depends on the charge of the active quark
[Also observed in Boyle et al., 
1706.05293]

mdd̄
⇡ = 409(1) MeV

mnn̄
⇡ = 408(3) MeV

muū
⇡ = 407(3) MeV



TIME-MOMENT CALCULATION
➤ Recall we need 2-point function at large times (noisy) 

➤ Instead only use 2-point function up to some tcut  

➤ Then use ground state vector meson mass in single exponential 

➤    remaining systematic error in description of correlator at large t 
using single state

�13

aHVP
μ = 4α2 ∫

∞

0
dt G(t)K̃(t; mμ) G(t) =

1
3 ∑

i=1,2,3
∫ d3x ⟨Ji(x)Ji(0)⟩

G(t) = {
G(t) t ≤ tcut

Ae−Mvt t > tcut
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TIME-MOMENT CALCULATION (tcut dependence)
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TIME-MOMENT CALCULATION (tcut dependence)



BOUNDING METHOD

�15

C̃(t; tcut, E) = {
C(t) t < tcut

C(tmax) e−E(t−tcut) t ≥ tcut

upper bound : E = E0

lower bound : E = log[ C(tmax)
C(tmax + 1) ]

[see e.g. A.Meyer(RBC/UKQCD) @ g-2, Mainz]



➤ Recall flavour-diagonal vector meson 

➤ same expansion for 

FLAVOUR-BREAKING EXPANSIONS (QCD+QED)

�16

M(aā) = M0 + 2αδμa + β0δm2
l + 2β1δμ2

a + βEM
0 (e2

u + e2
d + e2

s ) + 2βEM
1 e2

a

+γEM
0 (e2

uδmu + es
dδmd + e2

s δms) + 2γEM
1 e2

aδμa

+2γEM
4 (e2

u + e2
d + e2

s )δμa + 2γEM
5 ea(euδmu + edδmd + esδms)

(with m̄ = constant)

aμ

aμ,a = aμ,0 + 2αδμa + β0δm2
l + 2β1δμ2

a + βEM
0 (e2

u + e2
d + e2

s ) + 2βEM
1 e2

a

+γEM
0 (e2

uδmu + es
dδmd + e2

s δms) + 2γEM
1 e2

aδμa

+2γEM
4 (e2

u + e2
d + e2

s )δμa + 2γEM
5 ea(euδmu + edδmd + esδms)



FLAVOUR EXPANSION
➤ Apply simultaneous to all quark masses/charges on each volume

�17

323 × 64

u-quark d-quark s-quarkδμD

aH
V

P
μ

aμ ≈ 480 × 10−10



FLAVOUR EXPANSION
➤ Apply simultaneous to all quark masses/charges on each volume

�17

323 × 64

u-quark d-quark s-quarkδμD

aH
V

P
μ

483 × 96
aμ ≈ 570 × 10−10aμ ≈ 480 × 10−10



FINITE VOLUME EFFECTS
➤ Aubin et al. (2016): 

➤ Compare different irreducible representations 

➤ 10 - 15% finite volume effects

�18

aHVP
μ,A1

[0.1 GeV2] = 6.8(4) × 10−8

aHVP
μ,A44

1
[0.1 GeV2] = 7.5(3) × 10−8

A1: ∑ Πii

A44
1 : Π44

mπ = 220 MeV, L = 3.8 fm, mπL = 4.2

[Aubin et al. Phys.Rev. D93 (2016)]



FINITE VOLUME EFFECTS
➤ Compare 4 different representations on our 2 volumes

�19

A1: ∑ Πii

A44
1 : Π44
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FINITE VOLUME EFFECTS
➤ Compare 4 different representations on our 2 volumes
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A1: ∑ Πii

A44
1 : Π44

aHVP
μ
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ISOLATING CHARGE EFFECTS
➤ Difficult to resolve electric charge effects from fit 

➤ Try correlated ratios 

�21

αQED =
e2

4π
≃ 0.1

R =
Πq(Q2) − Πn(Q2)

Πn(Q2) Without ZV



ISOLATING CHARGE EFFECTS
➤ Difficult to resolve electric charge effects from fit 

➤ Try correlated ratios 
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αQED =
e2

4π
≃ 0.1

R =
Πq(Q2) − Πn(Q2)

Πn(Q2) With ZV



ISOLATING CHARGE EFFECTS
➤ Difficult to resolve electric charge effects from fit 

➤ Try correlated ratios 

�23

αQED =
e2

4π
≃ 0.1

R =
Π̂q(Q2) − Π̂n(Q2)

Π̂n(Q2)
Π̂(Q2) = Π(Q2) − Π(0)



ISOLATING CHARGE EFFECTS
➤ Difficult to resolve electric charge effects from fit 

➤ Try correlated ratios 

�23

αQED =
e2

4π
≃ 0.1

R =
Π̂q(Q2) − Π̂n(Q2)

Π̂n(Q2)
Π̂(Q2) = Π(Q2) − Π(0)

δaQED
μ ≲ 1 %



SUMMARY
➤ Constraints on QED effect on aμ becoming possible 

➤ This work: 

➤ Flavour-breaking expansion can be applied to aμ  

➤ Much still to be done!

�24

[Miura,Wed.9:00]

δaQED
μ ≲ 1 %

Separation of strong and EM IB effects in Dashen
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“DASHEN SCHEME”

�26

Symmetric point: “Dashen scheme”

• In the spirit of Dashen’s theorem, we define all neutral mesons to have no 
electromagnetic contribution 

• We tune our lattice simulations to recover the SU(3) symmetric point 

• neutral mesons can therefore act as a  
proxy for “quark mass” 

• distance from symmetric point 
measures amount of SU(3) breaking 

• Tuned parameters:

�QCD = 5.50, �QED = 0.8,

u = 0.124362, d = s = 0.121713

amq =
1

2

✓
1


� 1

c

◆

�QCD = 5.50

�QED = 0.8

Xπ =
1
3

(m2
K+ + m2

K0 + m2
π+) = Xphys

π = 411 MeV
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“DASHEN SCHEME”

➤ Iterate and converge to

�26

Symmetric point: “Dashen scheme”

• In the spirit of Dashen’s theorem, we define all neutral mesons to have no 
electromagnetic contribution 

• We tune our lattice simulations to recover the SU(3) symmetric point 

• neutral mesons can therefore act as a  
proxy for “quark mass” 

• distance from symmetric point 
measures amount of SU(3) breaking 

• Tuned parameters:

�QCD = 5.50, �QED = 0.8,

u = 0.124362, d = s = 0.121713

amq =
1

2

✓
1


� 1

c

◆

QCD
sym

�QCD = 5.50

�QED = 0.8

Renormalisation of lattice 
spacing and mq with QED

u
sym d,s

sym n
sym

n
sym = 0.1208142

d,s
sym = 0.1217026

u
sym = 0.1243838

Xπ =
1
3

(m2
K+ + m2

K0 + m2
π+) = Xphys

π = 411 MeV



➤ Cartoon illustrating the different running of the bare quark masses  

➤ Once tuned to the symmetric point, different charge quarks run 
differently to the chiral limit 

�27

“DASHEN SCHEME”

Figure 2: Sketch illustrating the transformation from bare masses (left panel) to Dashen
scheme masses (right panel). In the left panel all the flavour diagonal mesons have the
same mass at the symmetric point (δµq = 0), but have different critical points (M2

PS = 0).
In the Dashen scheme (right panel) we rescale the masses horizontally, so that all the
critical points are the same. The different mesons now all depend on δµD

q in the same
way.

One way to interpret the behaviour in Fig. 2 is to consider a u and d quark with the
same bare lattice mass. Since the magnitude of the charge of the u quark is twice as large
as that of the d quark, it will acquire a larger self-energy due to the surrounding photon
cloud and hence it will be physically more massive, which is why the mass of the uū
meson rises more steeply than the dd̄ meson, when plotted against bare mass. By instead
plotting against the Dashen mass, we have effectively added the extra mass of the photon
cloud to the quark mass. Two quarks with the same Dashen mass are physically similar
in mass, and so they form mesons of the same mass, as seen in the right-hand panel of
Fig. 2.

Applying these ideas to our simulations, in Fig. 3 we show how the symmetric κsym

and critical κc are determined, using the dd̄ meson as an example. κc is defined from the
point where the partially-quenched meson mass extrapolates to zero, (5), while κsym is
defined by the point where the fit line crosses M2

PS = X2
π, (3).

We repeat this procedure for the u and n quarks and plot the resulting 1/κc and
1/κsym values as a function of the square of the quark charges, Q2

q , in Fig. 4 Here we
clearly see that in both cases 1/κ depends linearly on Q2

q .

Despite appearances, the two lines are not quite parallel. In Fig. 5 we plot the bare
mass at the symmetric point,

amsym
q =

1

2κsym
q

−
1

2κc
q

. (24)

κc
q for each flavour is defined as the point at which the flavour-diagonal qq̄ meson becomes

massless. We see that our data show the behaviour shown in the left-hand panel of Fig. 2,
with each meson reaching the axis at a different point.

The factors needed to bring the charged bare masses into agreement with the neutral

10

Figure 2: Sketch illustrating the transformation from bare masses (left panel) to Dashen
scheme masses (right panel). In the left panel all the flavour diagonal mesons have the
same mass at the symmetric point (δµq = 0), but have different critical points (M2

PS = 0).
In the Dashen scheme (right panel) we rescale the masses horizontally, so that all the
critical points are the same. The different mesons now all depend on δµD

q in the same
way.

One way to interpret the behaviour in Fig. 2 is to consider a u and d quark with the
same bare lattice mass. Since the magnitude of the charge of the u quark is twice as large
as that of the d quark, it will acquire a larger self-energy due to the surrounding photon
cloud and hence it will be physically more massive, which is why the mass of the uū
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Dashen scheme: rescale the horizontal axis so that all meson 
masses depend on the “Dashen mass” in the same way 

�µD
q = (1 +KQ2

qe
2)�µq

QCDSF, JHEP 1604, 093 (2016)
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➤ Neutral mesons on different lines 

➤ Scatter of charged pion: dependence on �md � �mu

Bare quark mass (δμa + δμb)

PSEUDOSCALAR MASSES
QCDSF, JHEP 1604, 093 (2016)
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➤ Neutral mesons on uniform curve 

➤ “Scatter” removed from charged mesons

Dashen mass (δμD
a + δμD

b )

“DASHEN SCHEME” - PSEUDOSCALAR MASSES
QCDSF, JHEP 1604, 093 (2016)



➤ Ground state energy of a single particle shifted from rest mass  

➤ Subtract B2 contribution to find m 

➤ Alternative: eliminate by additional gauge-fixing of Uno & Hayakawa 
(2008) — on valence quarks

�30

LATTICE QCD+QED - ZERO MODES

E =
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m2 +Q2(e ~B)2
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