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exp. SM
ar’ vs. aj

SM contribution a5t 1070 Ref.
QED [5 loops] 11658471.8951 + 0.0080 [Aoyama et al '12]
HVP-LO (pheno.) 692.6 + 3.3 [Davier et al '16]
694.94+4.3 [Hagiwara et al '11]

681.5+4.2 [Benayoun et al '16]

688.8 + 3.4 [Jegerlehner *17]

HVP-NLO (pheno.) —9.84 +0.07 [Hagiwara et al '11]
[Kurz et al '11]

HVP-NNLO 1.24 + 0.01 [Kurz et al "11]
HLbyL 10.5+2.6 [Prades et al '09]
Weak (2 loops) 15.36 £ 0.10  [Gnendiger et al '13]
SM tot [0.42 ppm] 11659180.2 + 4.9 [Davier et al '11]
[0.43 ppm] 11659182.8 5.0 [Hagiwara et al '11]

[0.51 ppm] 11659184.0 + 5.9 [Aoyama et al '12]

Exp [0.54 ppm] 11659208.9 + 6.3 [Bennett et al '06]
Exp — SM 28.7 +£8.0 [Davier et al '11]
26.1+7.8 [Hagiwara et al '11]

249+ 8.7 [Aoyama et al '12]

a0 MVP | yonewphys x 1010 ~ 720 £ 7,
FNAL E989 (2017): 0.14-ppm, J-PARC E34: 0.1-ppm
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Motivation
pub iy T
HVP in Phenomenology ]
° The HVP in Pheno |s: 5
ImM(s)
[0 dss s+02) s
R .
= (@®/(127%)) [ dssgfo? ,
@ with R-ratio [right fig. Jegerlehner 2
EPJ- Web2016] given by
oo had) S
Rrad(S) = %% 20579 :
@ where the systematics is challenging to e e
control(next talk). Some tension among " £ < DASPI CLED, UK, HAT,CELLD MARK
experiments in o(e*e” — nfx7). | e pocee:

6
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HVP in Phenomenology
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ImM(s)
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control(next talk). Some tension among " 6 < DASPHCLED CLSE,HAC,CELLO MARK
experiments in o(eTe™ — 7w 7). I
2 & é - 8 10 12

Requirement for Lattice QCD:

@ Independent cross-check of Hadronic Vauccum Polarization Contribution
to muon g-2 (ai’"),

@ Permil-Level determination of &"" w.r.t. FNAL/J-PARC expr.
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Objective in This Work

@ Hadron Vacuum Polarization (HVP): Q
M (Q) = [ d*x % (ju(x)ji (0)) Q Q
= (QuQy — 6, Q)N(CP)
ju = 5Tt — §dvud — §8vus + BCyuc+ -

@ Leading-Order(LO) HVP Contr. to Muon g-2: “/é\“

adomP = (a/n)? [5° dQ? w(Qz/mﬁ)ﬁ(Qz) )

(@) = (@) - N(0). )
Se 15000
@ HVP Time-Moments: &
fI(@) = 3,y Q"M T
d"A(Q? (&2 . . N% 5000
Mo = o G oo = 2ox v (X (0))- S s N

0 0.02 0.04 0.06 0.08
Q% GeV?
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Access to Deep IR: Pade and Time-Moment Rep.

Model Independent Approximants

Pade Approximant

@ For @ < @2, lattice HVP data are fitted to

@ A2 Qz
_ e Tt 1
=gy M
@ The dispersion relation (%) = [; ds; 5322 ““':r(s) is seen as so-called

Stieltjes Integral [Aubin et.al., PRD2012], WhICh guarantees a finite
conversion radius.

Time-Momentum Representation (TMR)

@ For @® < @2, define [Bernecker and Meyera, EPJA2011],
in[Q1/2]\2] 1 <= . ...
&)=y eli- (A uwion. @
t i=1

@ The momentum Q is Continuous. The Sine-Cardinal sin[Qt/2]/(Qt/2)
accounts for a pediodic feature of lattice correlators (ji())i(0)).
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Example of TMR
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Figure: From BMW Ensemble (a = 0.064 fm) used in PRD2017 and PRL2018.
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Multi-Exponential Fits [HPQCD PRD2017]

(diagrams below + all
iterations of these diagrams)

, m \, p // m \

’\/VW\/‘\ /r—‘\ /'\/\/\/V\/
10 20 30 A PSRN | P
t/a 0(e2gp? x q2/N\?)

@ Left: HPQCD PRD2017, vector-current correlator with ud-quarks and a fit line
t> 1 GU(t 1) = GUI, (t < t*) or (Gpr(t > t*) + Grr(t > t*)) , where
t* € [0.5,1.5]fm. Multi(N = 5)-Exponential Ansatz are adopted and p-meson
dominates.

@ Right: From a slide of Van de Water at Mainz Workshop 2018. Diagrams in
effective theory to correct missing effects in the fits. Taste-spliting and finite volume
corrections are also taken account.
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Multi-Exponential Fits [FNAL/HPQCD/MILC Preliminary]

R e a~0.15 fm ensemble with 9362 configurations
900~ 1 o a~0.15 fm (997 configurations) ] S0

[ | = a~0.15fm (7746 configurations) ] « Gy (1) + G (1) G_(i>17)

r Bl average of upper and lower bounds
800 — - 700 -

= [ ] 5
< L | = L 1

700 |- - Om1 600 — —

[ { ] =] :HIH;Higggﬁﬁlﬁﬁiﬁi
600 | 3 [ HIHI 1

g | 500 —

[z 2 3 & & £} b = ]
sool i L b b 10 ] i

0 2 N 3 4 5 a0 2\ ‘z

.
t (fm) thort, (fm)

@ Left: The t* dependence of

2 el
a2 () = (2)° [ a0 w(@/m) FTIGH(LL), Pl e (3

}J. ud

With high-statistics, aLO HIP get stable at larger t*. For t* < 2 fm, low-(used in
PRD2017) and high- statlsncs are consistent.

@ Right: The high-statistics in the left-panel is compared with Bounding Method (next
page).
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Bounding [BMW PRD2017 and PRL2018]
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Figure shows

3
5] 1 WIS
cH(t) =5 3 3 D UHX Djr())
x ° =t
by BMW Ensemble with a = 0.078 [fm]
used in PRD2017/PRL2018.

@ The connected-light correlator C49(t) loses
signal for t > 3fm. To control statistical error,

consider CY(t > tc) — Cu9, (. 1c), where

Cif (1, tc) = C(tc) (1) /o (tc),
CYd (t,t) = 0.0,
with o(t) = cosh[Ex(T/2 — )],
and Ep, = 2(M2 + (2m/L)?)1/2.

@ Similarly, C%s¢(t) — Cﬂ’;s/ﬁ()w(t, te),

=Gt > to) = 0.1C%(te) p(1)/p(tc),
—Cdse(t > 1) = 0.0.
@ By construction,

Crtndso(t, 1) < CUde(f) < G @5°(t, 1)

low
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Bounding [BMW PRL2018]

% 650 “ HH
%; eoo: IHHHﬁHHHMHM ] ] l
o 150 %2%’35’:: { \ ‘j“

%MM]H
| i

@ Corresponding to C

Figure: BMW, PRL2018.

ud,disc :
up,low ([c), We obtain

upper/lower bounds for muon g-2:
ud,disc (f )
w,up/low\*CJ*
Two bounds meet around . = 3fm.
Consider the average of bounds:
BP0 (1o) = 0.5(8,6p™ + 8oy ) (L)
which is stable around t. = 3fm.

We pick up such averages a“"%*°(t,) with
4 — 6 kinds of . around 3fm. The average
of average is adopted as a;,,q/is. to be
analysed, and a fluctuation over selected .

gives systematic error.

A similar method is proposed by C.Lehner
in Lattice2016 and used in
RBC/UKQCD-PRL2018. Improved
bounding method with GEVP:

[A. Meyer/C. Lehner, 27 Fri Hadron Structure].
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Large Distance Control Using F,, [Mainz CLS JHEP2017]

@ Isospin Decomp. of Vector-Current Correlator:

G(t,L) = G='(t,L) + G™°(t, L), G™'(t,L) Z\A [2e=wnt | (4)

where wp = 24/ M2 + k2. Investigate the large distance behavior of G'="(t).
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Large Distance Control Using F,, [Mainz CLS JHEP2017]

@ Isospin Decomp. of Vector-Current Correlator:

G(t,L) = G='(t,L) + G™°(t, L), G™'(t,L) Z\A [2e=wnt | (4)

where wp = 24/ M2 + k2. Investigate the large distance behavior of G'="(t).
@ Lischer’s Formula [NPB1991]: The p-wave phase shift determines kp,
S1=1(kn) + ¢(knL/(2m)) = nm | (5)
where ¢ is a known kinematical function.
@ Meyer’s Formula [PRL2011]:

2 Ja
Frlan)lt = Z (o 00 1 g, 2 (41 g == (@
which is analogous to Lellouch-Lischer Formula [CMP2012].
@ Gounaris-Sakurai(GS) [PRL1968] (c.f. Fransis et.al. [PRD2013]):
(K3 /w) cot 63 (k) = k2h(w) — kzh( ) + B[k, M, T ] (k% — kf%) ,

F38(w) = fo[Mr, Mp, Tp]/((K®/w)(cot[6FS(K)] — 1)) , K = (MZ/4) —
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Large Distance Control Using F,, [Mainz CLS JHEP2017]

@ Isospin Decomp. of Vector-Current Correlator:

G(t,L) = G='(t,L) + G™°(t, L), G™'(t,L) Z\A [2e=wnt | (4)

where wp = 24/ M2 + k2. Investigate the large distance behavior of G'="(t).
@ Lischer’s Formula [NPB1991]: The p-wave phase shift determines kp,
S1=1(kn) + ¢(knL/(2m)) = nm | (5)
where ¢ is a known kinematical function.
@ Meyer’s Formula [PRL2011]:

Frlon)? = S8 (1 2ll0) g, 200Dy g, KL g
which is analogous to Lellouch-Lischer Formula [CMP2012].
@ Gounaris-Sakurai(GS) [PRL1968] (c.f. Fransis et.al. [PRD2013]):
(k3 /w) cot 68 (k) = k2h(w) — k2h(M,) + blk,, M,, T ,)(k? — kf%) ,
F38(w) = f[Mx, My, T,]/ (K w)(cot[853(K)] — 1)) ,  KZ = (MZ/4) —
@ Construct G'="(t): For given lattice data (M- ,), using GS formulae with Egs. (5)

and (6), GI,'(t) is fitted to Eq. (4) to determine (An, kn, T ).
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Large Distance Control Using F

G([O)K (o) /1

" - e

o .;fmi'??i, H L mapnn = S are VT

0.008 |- ,-;i ’323 zi" (B) G=1(t > t*, L — o) =

0.004 ' 7oz Jou dw (1 — %)3/2|Fﬂ(w)|297w|t ,
o

zo [fm]

@ Figure: [Mainz Prelim], update of [Mainz Lat2017]. (K(t)/m,)Gn(t, L) vs xo = t for
Nf =2+ 1, Mz =200 MeV. Gy is given by Eq. (A). c.f. Talk by H. Wittig (27 Fri,
Hadron Structure).

@ The lowest mode (n = 1) becomes dominant at around 3 [fm]. A single
exponential-fit provides a good approximation at long-distance.

@ Using F&8(w), the infinite-volume correlator G'=(t, L — o) is given by Eq. (B).
Comparing &:°/* obtaind with G'="(t > t*, L — oo) or Gi3/" (t > t*, L), a finite
volume effect can be estimated.
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Large Distance Control Using F

Finite Volume Effects

Gounaris-Sakurai Phase-Shift Paramefrization
B2ID lattice data (6.2fm box at phys. pion mass) ——<—i
P4ID lattice data (4.7fm box at phys. pion mass)

3L 4

&
N
T

0 L L TR I
02 03 04 05 06 07 08 09 1 11 12 13
sqrt(s) / GeV

Figure: RBC/UKQCD Preliminary.
@ E, =0.766(21) [GeV]
(c.f. PDG: 0.77549(34) [GeV]).

@ I, =0.139(18) [GeV]
(c.f. PDG: 0.1462(7) [GeV]).

Consider a,>/i/ (L) — a5/ (L1).

@ (L1,Lp) = (4.66,6.22)[fm], physical M,
[RBC/UKQCD Prelim., talk by C. Lehner (27 Fri, Hadron
Structure)]

e XPT:12.2x 1010,
e LQCD: 21.6(6.3) x 1010
@ GSL:20(3) x 10-10 .

@ (L, L) = (5.4,10.8)[fm], M, = 135[MeV]
[talk by E. Shintani (24 Tue, Hadron Spectroscopy), update
of PACS 1805.04250]

e LQCD: 40(18) x 10— 1%, 2.5 times larger
than XPT estimates.

@ L, =large, MzLy ~ 4
o XPT/RBCUK-PRL18: 16(4) x 1010 |
o GSL/RBCUK-Prelim: 22(1) x 1010 |
e XPT/BMW-PRL18: 15(15) x 10—10 |
o GSL/Mainz-Prelim: 20.4(4.2) x 1010 |
o GSL+dual/ETM-prelim: 31(6) x 10~10 .
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Continuum Extrapolation
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[e] le]e]

Controlled Continuum Extrap. [BMW PRL2018]

BMW Ensemble PRD2017 and PRL2018

@ 6-3, 15 simulation with all physical

masses.

Nf=(2+1+1) staggered quarks.

@ Large Volume: (L, T) ~ (6,9 — 12)fm.

@ AMA with 6000-9000 random-source
meas. for disconnected. [c.i. Mainz-Lat2014,

RBC/UKQCD-PRL2016, HPQCD-PRD2016]. [Poster by
S. Yamamoto FNAL/HPQCD/MILC, 24 Tue].

x10'°

LO-HVP
,ud

a
®

x10'°

LO-HVP
aH,s

x10'°

12.0

8.0 @ Get systematic uncertainty from various
cuttings: no-cut, or cutting
a>0.134, 0.111, or 0.095.

@ Strong & deps. for a4/, due to taste

violations, and for a;°¢"** due to large m..

LO-HVP
aM.C

10.0 P
75
5.0

x10'°

LO-HVP
u,disc

-,

@ Get good x?/dof with extrapolation linear
in &, and interpolation linear in M2
(strange) or M2 and M,; (charm).

2.5
0.000 0.005 0.010 0.015 0.020
a2[fm?]
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Crosscheck of Continuum Extrapolation [BMW PRL2018]

700 .
Fig.S4 -~
(FV + taste) crr. —2—
- 650 Fig.S4 cont.lim. + FV_—#— | |
©
¢ 600
Z3
Sz
© 550
500 — . i i
0 0.005 0.01 0.015 0.02
a?[fm?]

@ Red open-circles are raw lattice data and continuum-extrapolated (red
filled-circle). Then finite-volume correction using XPT is added to get the
green-square point.

@ Similarly to HPQCD-PRD2017, raw data (red-circles) are first corrected
with finite-volume and taste-partner effects to get blue open-triangles,
which are continuum-extrapolated to get blue filled-triangle.
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Continuum Extrapolation, Comparison

BMWec 17
: : : BMWec 17 taste+FV
TA0J0) |epossccnaass R BMWc 17 final res.
. . . HPQCD 16
HPQCD 16 taste+FV

90 650 P o FHM (prelim) —&
>

'

FHM (prelim) taste+FV 4+

0 0005 001 0015 002 0025
a2[fm?]

Figure: BMW-PRL2018 vs HPQCD-PRD2017 and FNAL/HPQCD/MILC-Prelim.
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QED and Strong-Isospin Breaking
Corrections

O(a) ~ O(M) ~ 1% Correction .

Naco
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Strong Isospin Breaking (SIB)

Strong isospin breaking: my — my, = 2.41(6)(4)(9) [BMW PRL2016] in MS-2[GeV].
@ Direct Simulations with my # mgy [FNALUHPQCD/MILC-PRL2018].
@ Perturbative Method [RM123-JHEP2012, RBC/UKQCD JHEP17]:
(0) = (O, gmin + (Muya — ) L + O((myyq — M) ,
= <O>mu/d:m (mu/d - )<Os>mu/d:m )
where i = (my 4+ mg)/2,and S = 3, Qu/aqQu/a(X)-

< 5 OO0

‘ my=mgy

580

" e

phys.
af

" ]
560 — L T i

10 (u+d, LO)

m
u

A,V = +1.5(7)%|

520 L . | | I I
08 1.2 14

0.6 1
(m\ + m‘) / 2111,

) a
w
— me |
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Strong Isospin Breaking (SIB)

Strong isospin breaking: my — my, = 2.41(6)(4)(9) [BMW PRL2016] in MS-2[GeV].
@ Direct Simulations with my # mgy [FNALUHPQCD/MILC-PRL2018].
@ Perturbative Method [RM123-JHEP2012, RBC/UKQCD JHEP17]:

(0) = (O)m,gmtn + (Muja = M) G|+ O((rmugg — )P)

- <O>mu/d:m (mu/d - )<Os>mu/d:m ’
where i = (my 4+ mg)/2,and S = 3, Qu/aqQu/a(X)-

< 5 OO0

Up: Strong Isospin Breaking Diagrams. I .

Right: FNAL/HPQCD/MILC-PRL2018 (Van 2 1
de Water, Mainz g-2 workshop). s 1
Valence-quark dep. of a;>*"" for (2+1+1) s 2 T ]
and (1+1+1+1) ensemble. Two ensemble © m 1
results agree at m; = (my + my)/2; = ! m

sea-quark SIB are negligible. To quantify Hor ' ]
SIB, define, Ag 2P = A agHvP = +1 .5(7)%|
(4a|;¢07HVP‘mu + abO—HVP|md)/5 - abO—HVP|mI_ 520 L . I I I I

06 0.8 1 12 14

SIB corr. = AgtOHVP /gl oMV |, = 1.5(7)% (m_+m)/2m,

" e

u

10 (u+d, LO)
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QED Correction

@ Consider QCD + QED Eucridean partition function:

(0)= 5 [ Dla.a, UID|A) 0 &V A-Sallg-0 (7
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QED Correction

@ Consider QCD + QED Eucridean partition function:

(©0)= 3 [ Dla.3.UDIA 0 e~ SHaaUA-SalI -S4 ()

@ Full QCD + QED: First Come Out! [QCDSF-Prelim, talk by J. Zanotti (27 Fri,
Hadron Structure)].

@ Stochastic Method: Stochastic photon fields A, are generated with
weight =5~ independently of gluon fields U, (electro-quenched), and
multiplied, U, (x) — e~ %A, (x) [Duncan et.al. PRL1996].

@ Perturbative Method: QED can be treated in a perturbative way in
o = €%/(47%) [RM123-PRD2013]:
2 02
_ e~ 9°(0)
<O> B <O>0+ 2 862 e=0
The stochastic and perturbative methods gave consistent corrections
[RBC/UKQCD-Lat2017].

+ O(A?) . (8)
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QED Correction

@ Consider QCD + QED Eucridean partition function:

(©0)= 3 [ Dla.3.UDIA 0 e~ SHaaUA-SalI -S4 ()

@ Full QCD + QED: First Come Out! [QCDSF-Prelim, talk by J. Zanotti (27 Fri,
Hadron Structure)].

@ Stochastic Method: Stochastic photon fields A, are generated with
weight =5~ independently of gluon fields U, (electro-quenched), and
multiplied, U, (x) — e~ %A, (x) [Duncan et.al. PRL1996].

@ Perturbative Method: QED can be treated in a perturbative way in
o = €%/(47%) [RM123-PRD2013]:
2 02
_ e~ 9°(0)
(0) = {O)o + 2 0e% le=o
The stochastic and perturbative methods gave consistent corrections
[RBC/UKQCD-Lat2017].

@ To control QED FV effects, QED, prescription [Hayakawa PTP2008] is used;
spatial zero-modes and the universal 1/L"="2 corrections to mass are
removed [BMW Science2015], while a reflection positivity is preserved.

+ O(A?) . (8)
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QED Correction Diagrams in Perturbative Approach

@ @ @ CeTn

> Q Quark-Disconnected

Q%Q

@ Left: B = vector-current, A = tadpole, @ =

da’(t)*10"°

0.008

0.004

0.000 gl

-0.004

-0.008

-0.012

D20.48

strange contribution
%,

——total

<= self

7 «#-tad + PS
# ---exch
«em=scalar
-z,

(pseudo-)scalar insersions.

@ Right: [ETMc JHEP2017, talk by D. Giusti, (27 Fri, Hadron structure)] with
corrections [1],[2],[3],[8] (mass retuning) and [9] (keeping maximal twist) for strange

component.

@ RBCUKQCD (Domain-Wall) considered [1],[2],[3],[4]; the others ~ 1 /N or
irrelevant. One must take are a double counting problem in [4] w.r.t. single-photon
and additional glues [talks by RBC/UKQCD (27 Fri, Hadron Structure).]

@ For diagram details, see [talk by A. Risch (24 Tue, Hadron Spectroscopy)].
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SIB + QED Corrections, Short Summary

@ ETMc Preliminary
582" x 10" = 7(2) (quark connected and qQED).

e BMW PRL2018
582" % 10" = 7.8(5.1) (pheno. (7%, 1y, p — w MiX, Mr1)).

@ RBC/UKQCD PRL2018
582" % 10" = 9.5(10.2) (quark connected + one disconnected and
gQED. Also relevant to use tau decay input for HVP, [M. Bruno, 27 Fri Hadron
Structure].)

o FNAL/HPQCD/MILC PRL2018
5a2™? x 10" = 9.5(4.5) (Strong Isospin Breaking only).

@ QCDSF Prelim:
sa >t /ai>m™"® < 1% (Dynamical QED, M, ~ 400[MeV])
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The obvious: aho’HVP

aho HVP 110
ETM 14 @
HPQCD 16
EW\CNCFQ7 +FV +1B W
Wc;L: fr8
RBC/UKQCD 18 ——+
ETM (prelim —
FHM (prelim ——
Jegerlehner 17 HilH
DHMZ 17 HilH
KNT 18 L]

RBC/UKQCD 18

LQCD (Ngz2+1) @~
Pheno. i+ )
Pheno+LQCD . . l\llo new physws
640 660 680 700 720

740

@ Lattice errors ~ 2% vs phenomenology errors ~ 0.4%.

@ Some lattice results suggest new physics others not but all compatible with phenomenology.
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a2 HvP: flavor by flavor comparison

LO-HVP 4110
- 10

LO-HVP 10
q a,c o .10
> M: 17
z| ) o~ s g z T
_ i s Mainz 17 (TMR)
& ——®@——  Mainz (prelim) 4
i} - -
3 RBC/UKACD 18 T RBC/UKQCD 18
s —@— HPQCD 16 é‘» +—————+ Mainz (prelim)
3 ——@—+— BMWc 17 .
1 e ETM (prelim) * ——— HPQCD 14
o FHM (prelim) & ———@——+— ETM17
L L L L L h N
550 575 600 625 650 675 z ) Racal L
14 14.5 15 15.5
al\:VOSVHVP X 1010
LO-HVP 10
o — 3 gisc - 10
S| —a— Mainz 17 (TMR) _ : : : . . .
= &
cﬁ w1l RBC/UKQCD 18 éL e RBC/UKQCD 18
=z H——————Mainz (prelim)
T i
b —e— HPQCD 14 T ——e—— AT
Q —— & ETM17 i
= —e— BMWc 17 z n L L L L L
L L L L L L -14 -12 -10 -8 -6 4

50 51 52 53 54 55 56

a0V already known with high enough precision for FNAL E989

“Di LO-HVP
@ “Disagreement” is on a,’
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Derivatives of NM(Q?) at @*> = 0: ud contribution

A d"ﬁ(Qz) 2 n+1 .
My = nl - (d@2)n Q2—0 Zx 2n+2 ] OAL( )/P( )>
"9 [GeV? 139 [GeV4]
o — HPQCD 16 o —~@— HPQCD 16
(a=0.15fm) (a=0.15fm)
2= —.— HPQCD 16 © i HPQCD 16
(a=0.12fm) (a=0.12fm)
e BMWc 16 O g BMWc 16
—&—e—. RBC/UKQCD 18 ——&—% . RBC/UKQCD 18
o ETMc 18 — o ETMcij
N=2+1 w/o corr. o~ N=2+1 w/o corr. ~o~
l§l22+1 w/ corr. @~ ) N22+1 w/ corr. @ )
0.145 0.155 0.165 0.175 024 029 0.34 0.39

@ In Pad picture, larger My (M) — larger (smaller) a,,.

@ HPQCD 16 has slightly smaller N%? and larger —M4° than BMWc 16 and RBC/UKQCD 18 —
combine to give smaller aboll'jivp

@ Suggests that HPQCD 16 has smaller C(t) for t ~ 1fm but larger for t > 2 fm

@ Difference comes from HPQCD 16’s large corrections
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Time window: lattice + phenomenology

500 T T T T T T 450 T : : .
R-ratio C(t)w I
Light+Strange a™l=2.36Gev 400 C(t) w, 6(t,1.5fm,0. 15fm) —
/\ () W, [1°6(t,0.4im,0.15fm)]
400 - R
\ 350
/ %
a0l / X | 300
E / \ S 250
2 \\ S
o 200 / % 4 % 200k
3
150 -/
100 % |
e 100
0 Br—— | 50
. . . . . . i i 0 _
0 05 1 15 2 25 3 35 4 45 0 05 1 15 2 25 3 35 4 45

t/fm t/fm

@ Figure: [RBC/UKQCD-PRL2018, talk by C. Lehner and Colleages (27 Fri, Hadron Structure)]. In
aotv® = (a/m)? 32, W(t, Q2 /m?2)C(t), consider lattice/pheno cgrrelators;
Ciat(t) = Sx § S84 Gi(%, 0/%(0)) ,  Coneno(t) = § J5° dsv/s T e= Vel
Ciat(t) may be more precise in intermediate  ~ 1 [fm].

@ Consider the decomposition C(t) = (C%° + CV + C'P)(t), where
(CSD7 CW7 CLD)(t) = C(t)(1 — e(t' lo, A)? @(t, fo, A) - e(t7 b, A)/ e(tv t, A)) with
the smeared step function, ©(t, t’, A) = (1 + tanh[(t — t//A)])/2.

@ For CY(t), use lattice data CJ};. For the others, use phenomenological data Cop.7 .

(fo, t1, A) = (0.4,1.0,0.15)[fm], a:>"'® = 692.5(2.7) - 10~ '° [RBC/UKQCD-PRL2018].
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Window Method: DWF vs HISQ vs Pheno.

l—9&002 0  0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

a% (fm?)

@ Fig.: T. Blum (27 Fri). Continuum extrapolation of aW > Ch(H)W(t, m,,), where
Cl.(1) = Cat(D)((O(t, fo, A) — O(t, ty, A))) with o = 4.0, t; = 1.0, A = 0.15[fm].
@ (2+1+1) HISQ(MILC ensemble) and DWF all physical points in 5.5 [fm] boxes. HISQ
and DWF shows 2-3 ¢ tension; lattice spacing, statistics may be responsible. The
DWEF result is consistent with phenomenology.
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Other Important Subjects

Lattice (@* < Q2) - Perturbation (@* > Q2,) Matching [BMW-PRL2018].
Lattice results of Higher-Order HVP [FNAL/HPQCD/MILC, 1806.08190].

Dual Propagator + Gounaris-Sakurai-Llscher Propagator [ETMc-Prelim,
Mainz g-2 Workshop].

@ Omnes Formula for time-like pion form factor [Mainz Preliminary, talk by
H. Wittig (27 Fri, Hadron Structure)].

HVP for sin 6y [talk by C& Marco, (27 Fri, Hadron Structure)].



Summary and Conclusions

Table of Contents

0 Summary and Conclusions



Summary and Conclusions

Summary and Conclusions

e Lattice computation of a;°""" has total error ~ 2% >~ 0.4% from
phenomenology. Some results are consistent with no new physics and
phenomenology, others with phenomenology and new physics

@ Difference comes from ud contribution and most probably from treatment of
long-distance physics, for which many progress have been done but need more
understandings.

@ Comparison of ud time moments suggests:
@ larger intermediate-distance contribution in [BMWc-PRL2018 and RBC/UKQCD-PRL2018]
@ larger long-distance contribution in [HPQCD-PRD2017], associated with model description

@ With current lattice results, too early to make detailed comparisons with dispersive

approach. However, combination of lattice and phenomenology [rRBc/ukacD PRL1s,

T. Bum Preliminary] May deliver a reliable 0.2% a0,
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Summary and Conclusions

e Lattice computation of a;°""" has total error ~ 2% >~ 0.4% from
phenomenology. Some results are consistent with no new physics and
phenomenology, others with phenomenology and new physics

@ Difference comes from ud contribution and most probably from treatment of
long-distance physics, for which many progress have been done but need more
understandings.

@ Comparison of ud time moments suggests:
@ larger intermediate-distance contribution in [BMWc-PRL2018 and RBC/UKQCD-PRL2018]
@ larger long-distance contribution in [HPQCD-PRD2017], associated with model description

@ With current lattice results, too early to make detailed comparisons with dispersive
approach. However, combination of lattice and phenomenology [rRBc/ukacD PRL1s,

T. Bum Preliminary] May deliver a reliable 0.2% a0,

@ Lattice combined with Experimental Data: Next Talk by Marina.
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Large Distance Control (GSL + SVZ) [ETMc Preliminary]

why [
\l@ < D20.48
<otk ‘% [TTos="t? paen)| @ Top panel [ETMc JHEP2017]: Vector-current
N % correlator data are well described by 1-loop QCD up
T %, ] to 1fm > hc/Aqcp- This was interpreted as the
< Yo, onset of SVZ Quark-Hadron Duality [NPB1979].
&
10° L fight contribution Q%Q 4 @ Motivated by the duality, consider the following
m - 12 Mev \ ”&v% expression for the vector-current correlator,
] s s ‘ . 5R 1
0 0.0 0.2 0.4 0.6 0.8 1.0 Vdua/(t 72:1:3/ fszc 1 dsfe \/EIH” OCD(S) )

where, R1-QC0(g) = (1 — 4y

2
= ORAIRR=

@ This expression differs from 1-loop QCD by two fit
params (Rgya/, Squar)» and combined with 2-pion
correlator Vi constructed via Gounaris-Sakurai
FSs.

@ Bottom panel [ETMc Preliminary]: (Vgyas + Vrr)
describes well lattice data whole range. FV effects
and other systematics can be studied with this.

3
a v (1
o
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Large Distance Control Omnés [Mainz Preliminary]

Gk

P
0.012 R 3§ Gk
0.010 LA I I § 8 G R, =2
Lt 85 Py
0.008 L et e, i o o BGEK
0.006 . ° °. - 8 6 6 gk
o I 5 Goml
0.004 * oo °o 00,
e ° o8
0002l o ° ©8g 4
o 8 88 ¢g4
o 2 © 99 000
0.0 05 10 15 20 30 %o

Omneés Formula (Nuovo Cimento (1958))

. . L 1 &% CMF
@ Figs: Mainz Preliminary, Thanks to F.Erben 4r §% & o1,
10 .
® Fr(w) = Fo of , oo ¢ om
2n s T
exp [wZPn_1(w2) + <= Jawe dssn(s:i,s‘z )7,‘6)} : & M
ol 2

@ Lattice data are used for F: and §; and fit 2l Hur

parameters are in the Polynomial P,_ . ol °

@ Omneés gives a better description than GS in 0.2 0.3 0.4

the middle range. a Eem
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Continuum Extrapolation and Mass Dependence

HVP,LO —10
b Ay ud x 10
fu 8 T
650 00
)
m
Ei
n 700 |
)
2 550 F\\
e n
. E 600 F
k=)
2
s oF 500 | ) .
o —\}ﬂy
350 400 F
NNLO CHPT included
E' data correctea for FVE 3y 300
250 L L 1 1 L L L L
000 001 002 003 004 005 0 0.02 0.04 0.06 0.08 0.1 0.12

m . (GeV) Y

ud

@ Left: ETM Preliminary. From slide by S.Simula in Mainz g-2 workshop
2018. The continuum limit line (black-solid) becomes sensitive to m,y at
physical point.

@ Right: Mainz Preliminary. From slide by H.Meyer in Mainz g-2 workshop
2018. ¥ = (M, /(4nf.))>.
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ISB + QED Corrections, [ETMc JHEP2017 and Preliminary]

0.02 T

5 0015

3

=

5

T A

e

-~

=)

T

B=1.90, L=20
B=1.90, L=24
B=1.90, L=32
B=1.90, L=40

B=

*oHOA(EO)

physical point

sa®(t)*10"°

0 0.01

0.02 0.03

m (GeV)

0.04 0.

.05

0.008

0.004

0.000 &

-0.004

-0.008

-0.012

D20.48

strange contribution

—=—total

i = self

,’ =+®-tad + PS
=-®-exch

=-m=scalar

-z
A

20 30 40

@ Left: ETMc Preliminary, (SIB + QED) corrections for light components.
The chiral/continuum-extrapolation is investigated with FV effects taken

account.

@ Right: ETMc JHEP2017, (SIB + QED) corrections for strange component
integrand for each diagrams shown previous pages. The charm is also
investigated. In both, partial cancellations among the various diagrams.
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Comparison of derivatives of M(Q?) at Q> = 0

1 a"f (02) - (7;&2,)n+1 i i
Mp = n' (d@2)n Q-0 - Zx (2n+2)! O}L(X)/u(o»-
1, [GeV?] -1, [GeV™]
—— HPQCD 16 ——@—— HPQCD
(a=0.15fm, no disc., no IB) (a=0.15fm, no dlsc no IB)
—— HPQCD 16 —@—— HPQCD 16
(a=0.12fm, no disc., no IB) (a=0.12fm, no disc., no IB)
——@&—+—— BMWc 16 — BMWc 16
—— Benayoun 16 L J Benayoun 16
HiH KMNT 18 ] KMNT 18
QCD (N22+7) ~@~ QCD (N>2+1) @~
Pheno. HilH ) Flheno - )
0.096 0.1 0.104 0.165 0.185 0.205 0.225

BMWc 16 has Iy comparable to phenomenology but smaller —I,

— suggests that BMWc (and RBC/UKQCD) has C(t) slightly larger for t ~ 1 fm and smaller for
t > 2fm
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