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aexp.
µ vs. aSM

µ

SM contribution acontrib.
µ × 1010 Ref.

QED [5 loops] 11658471.8951± 0.0080 [Aoyama et al ’12]
HVP-LO (pheno.) 692.6± 3.3 [Davier et al ’16]

694.9± 4.3 [Hagiwara et al ’11]
681.5± 4.2 [Benayoun et al ’16]
688.8± 3.4 [Jegerlehner ’17]

HVP-NLO (pheno.) −9.84± 0.07 [Hagiwara et al ’11]
[Kurz et al ’11]

HVP-NNLO 1.24± 0.01 [Kurz et al ’11]
HLbyL 10.5± 2.6 [Prades et al ’09]
Weak (2 loops) 15.36± 0.10 [Gnendiger et al ’13]

SM tot [0.42 ppm] 11659180.2± 4.9 [Davier et al ’11]
[0.43 ppm] 11659182.8± 5.0 [Hagiwara et al ’11]
[0.51 ppm] 11659184.0± 5.9 [Aoyama et al ’12]

Exp [0.54 ppm] 11659208.9± 6.3 [Bennett et al ’06]
Exp − SM 28.7± 8.0 [Davier et al ’11]

26.1± 7.8 [Hagiwara et al ’11]
24.9± 8.7 [Aoyama et al ’12]

aLO-HVP
µ |NoNewPhys × 1010 ' 720± 7,

FNAL E989 (2017): 0.14-ppm, J-PARC E34: 0.1-ppm
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Really aexp.
µ 6= aSM

µ ?



Introduction Challenges and Progresses Discussion Summary and Conclusions

Motivation

HVP in Phenomenology

The HVP in Pheno. is:
Π̂(Q2) =

∫∞
0 ds Q2

s(s+Q2)

ImΠ(s)
π

= (Q2/(12π2))
∫∞

0 ds Rhad (s)

s(s+Q2)
,

with R-ratio [right fig. Jegerlehner
EPJ-Web2016] given by
Rhad (s) ≡ σ(e+e−→had.)

4πα2(s)/(3s)
,

where the systematics is challenging to
control(next talk). Some tension among
experiments in σ(e+e− → π+π−).

Requirement for Lattice QCD:

Independent cross-check of Hadronic Vauccum Polarization Contribution
to muon g-2 (aHVP

µ ),

Permil-Level determination of aHVP
µ w.r.t. FNAL/J-PARC expr.
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Objective in This Work

Hadron Vacuum Polarization (HVP):

Πµν(Q) =
∫

d4x eiQx 〈jµ(x)jν(0)〉

= (QµQν − δµνQ2)Π(Q2) ,

jµ = 2
3 ūγµu − 1

3 d̄γµd − 1
3 s̄γµs + 2

3 c̄γµc + · · · .

Leading-Order(LO) HVP Contr. to Muon g-2:

aLO-HVP
µ = (α/π)2 ∫∞

0 dQ2 ω(Q2/m2
µ)Π̂(Q2) ,

Π̂(Q2) = Π(Q2)− Π(0) .

HVP Time-Moments:

Π̂(Q2) =
∑

n=1 Q2nΠn ,

Πn = 1
n!

dnΠ̂(Q2)

(dQ2)n

∣∣∣
Q2→0

=
∑

x
(−x̂2

ν )n+1

(2n+2)!
〈jµ(x)jµ(0)〉.

HAD
µ µ

γ
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Access to Deep IR: Pade and Time-Moment Rep.

Model Independent Approximants

Pade Approximant

For Q2 < Q2
cut , lattice HVP data are fitted to

Π̂(Q2) =
A2Q2 + · · ·

1 + B2Q2 + · · · . (1)

The dispersion relation Π̂(Q2) =
∫∞

0 ds Q2

s(s+Q2)

ImΠ(s)
π

is seen as so-called
Stieltjes Integral [Aubin et.al., PRD2012], which guarantees a finite
conversion radius.

Time-Momentum Representation (TMR)

For Q2 < Q2
uv -cut , define [Bernecker and Meyera, EPJA2011],

Π̂(Q2) =
∑

t

t2
[
1−

( sin[Qt/2]

Qt/2

)2
]

1
3

3∑
i=1

〈ji (t)ji (0)〉 . (2)

The momentum Q is Continuous. The Sine-Cardinal sin[Qt/2]/(Qt/2)
accounts for a pediodic feature of lattice correlators 〈ji (t)ji (0)〉.
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Example of TMR
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Figure: From BMW Ensemble (a = 0.064 fm) used in PRD2017 and PRL2018.
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Multi-Exponential Fits [HPQCD PRD2017]

Left: HPQCD PRD2017, vector-current correlator with ud-quarks and a fit line
t > t∗: Gud (t , t∗) = Gud

data(t < t∗) or (Gfit (t > t∗) + Gππ(t > t∗)) , where
t∗ ∈ [0.5, 1.5]fm. Multi(N = 5)-Exponential Ansatz are adopted and ρ-meson
dominates.

Right: From a slide of Van de Water at Mainz Workshop 2018. Diagrams in
effective theory to correct missing effects in the fits. Taste-spliting and finite volume
corrections are also taken account.
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Multi-Exponential Fits [FNAL/HPQCD/MILC Preliminary]
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Left: The t∗ dependence of

aLO-HVP
µ,ud (t∗) =

(α
π

)2
∫ ∞

0
dQ2 ω(Q2/m2

µ) FT [Gud (t , t∗),Q2]with Pade . (3)

With high-statistics, aLO-HVP
µ,ud get stable at larger t∗. For t∗ . 2 fm, low-(used in

PRD2017) and high-statistics are consistent.

Right: The high-statistics in the left-panel is compared with Bounding Method (next
page).
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Bounding [BMW PRD2017 and PRL2018]

1.0e-09

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

 0  1  2  3  4

C
l (t

)

t fm

Figure shows

Cud (t) =
5
9

∑
~x

1
3

3∑
i=1

〈jud
i (~x , t)jud

i (0)〉 ,

by BMW Ensemble with a = 0.078 [fm]
used in PRD2017/PRL2018.

The connected-light correlator Cud (t) loses
signal for t > 3fm. To control statistical error,
consider Cud (t > tc)→ Cud

up/low(t , tc), where

Cud
up (t , tc) = Cud (tc) ϕ(t)/ϕ(tc),

Cud
low(t , tc) = 0.0,

with ϕ(t) = cosh[E2π(T/2− t)],

and E2π = 2(M2
π + (2π/L)2)1/2.

Similarly, Cdisc(t)→ Cdisc
up/low(t , tc),

−Cdisc
up (t > tc) = 0.1Cud (tc) ϕ(t)/ϕ(tc),

−Cdisc
low (t > tc) = 0.0.

By construction,
Cud,disc

low (t , tc) ≤ Cud,disc(t) ≤ Cud,disc
up (t , tc).
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Bounding [BMW PRL2018]
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Figure: BMW, PRL2018.

Corresponding to Cud,disc
up/low (tc), we obtain

upper/lower bounds for muon g-2:
aud,disc
µ,up/low (tc).

Two bounds meet around tc = 3fm.
Consider the average of bounds:
āud,disc
µ (tc) = 0.5(aud,disc

µ,up + aud,disc
µ,low )(tc),

which is stable around tc = 3fm.

We pick up such averages āud,disc
µ (tc) with

4− 6 kinds of tc around 3fm. The average
of average is adopted as aLO-HVP

µ,ud/disc to be
analysed, and a fluctuation over selected tc
gives systematic error.

A similar method is proposed by C.Lehner
in Lattice2016 and used in
RBC/UKQCD-PRL2018. Improved
bounding method with GEVP:
[A. Meyer/C. Lehner, 27 Fri Hadron Structure].
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Large Distance Control Using Fπ, [Mainz CLS JHEP2017]

Isospin Decomp. of Vector-Current Correlator:

G(t , L) = GI=1(t , L) + GI=0(t , L) , GI=1(t , L) =
∑
n=1

|An|2e−ωn t , (4)

where ωn = 2
√

M2
π + k2

n . Investigate the large distance behavior of GI=1(t).

Lüscher’s Formula [NPB1991]: The p-wave phase shift determines kn,

δl=1(kn) + φ(knL/(2π)) = nπ , (5)

where φ is a known kinematical function.

Meyer’s Formula [PRL2011]:

|Fπ(ωn)|2 =
3πω2

n

2k5
n

(
kn
∂δ1(kn)

∂kn
+ qn

∂φ(qn)

∂qn

)
|An|2 , qn =

knL
2π

, (6)

which is analogous to Lellouch-Lüscher Formula [CMP2012].

Gounaris-Sakurai(GS) [PRL1968] (c.f. Fransis et.al. [PRD2013]):
(k3/ω) cot δGS

1 (k) = k2h(ω)− k2
ρh(Mρ) + b[kρ,Mρ, Γρ](k2 − k2

ρ) ,

F GS
π (ω) = f0[Mπ ,Mρ, Γρ]/((k3/ω)(cot[δGS

1 (k)]− i)) , k2
ρ = (M2

ρ/4)−M2
π .

Construct GI=1(t): For given lattice data (Mπ,ρ), using GS formulae with Eqs. (5)
and (6), GI=1

lat (t) is fitted to Eq. (4) to determine (An, kn, Γρ).
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Large Distance Control Using Fπ

(A) GI=1
n (t , L) =

∑n
j=1 |Aj |2e

−
√

M2
π+k2

j t
,

(B) GI=1(t > t∗, L→∞) =

1
48π2

∫∞
2Mπ

dω ω2(1− 4M2
π

ω2 )3/2|Fπ(ω)|2e−ω|t| .

Figure: [Mainz Prelim], update of [Mainz Lat2017]. (K̃ (t)/mµ)Gn(t , L) vs x0 = t for
Nf = 2 + 1, Mπ = 200 MeV. Gn is given by Eq. (A). c.f. Talk by H. Wittig (27 Fri,
Hadron Structure).

The lowest mode (n = 1) becomes dominant at around 3 [fm]. A single
exponential-fit provides a good approximation at long-distance.

Using F GS
π (ω), the infinite-volume correlator GI=1(t , L→∞) is given by Eq. (B).

Comparing aLO-HVP
µ,ud obtaind with GI=1(t > t∗, L→∞) or GI=1

lat (t > t∗, L), a finite
volume effect can be estimated.
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Large Distance Control Using Fπ
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Figure: RBC/UKQCD Preliminary.
Eρ = 0.766(21) [GeV]

(c.f. PDG: 0.77549(34) [GeV]).

Γρ = 0.139(18) [GeV]
(c.f. PDG: 0.1462(7) [GeV]).

Finite Volume Effects

Consider aLO-HVP
µ,ud (L2)− aLO-HVP

µ,ud (L1).

(L1, L2) = (4.66, 6.22)[fm], physical Mπ
[RBC/UKQCD Prelim., talk by C. Lehner (27 Fri, Hadron
Structure)]

XPT: 12.2× 10−10 ,
LQCD: 21.6(6.3)× 10−10 ,

GSL: 20(3)× 10−10 .

(L1, L2) = (5.4, 10.8)[fm], Mπ = 135[MeV]
[talk by E. Shintani (24 Tue, Hadron Spectroscopy), update
of PACS 1805.04250]

LQCD: 40(18)× 10−10 , 2.5 times larger
than XPT estimates.

L2 = large, MπL1 ∼ 4

XPT/RBCUK-PRL18: 16(4)× 10−10 ,

GSL/RBCUK-Prelim: 22(1)× 10−10 ,

XPT/BMW-PRL18: 15(15)× 10−10 ,

GSL/Mainz-Prelim: 20.4(4.2)× 10−10 ,

GSL+dual/ETM-prelim: 31(6)× 10−10 .
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Continuum Extrapolation
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Controlled Continuum Extrap. [BMW PRL2018]
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BMW Ensemble PRD2017 and PRL2018

6-β, 15 simulation with all physical
masses.

Nf=(2+1+1) staggered quarks.

Large Volume: (L,T ) ∼ (6, 9− 12)fm.

AMA with 6000-9000 random-source
meas. for disconnected. [c.f. Mainz-Lat2014,

RBC/UKQCD-PRL2016, HPQCD-PRD2016]. [Poster by

S. Yamamoto FNAL/HPQCD/MILC, 24 Tue].

Get systematic uncertainty from various
cuttings: no-cut, or cutting
a ≥ 0.134, 0.111, or 0.095.

Strong a2 deps. for aLO-HVP
µ,ud/disc due to taste

violations, and for aLO-HVP
µ,c due to large mc .

Get good χ2/dof with extrapolation linear
in a2, and interpolation linear in M2

K
(strange) or M2

π and Mηc (charm).
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Crosscheck of Continuum Extrapolation [BMW PRL2018]
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Fig.S4 cont.lim. + FV

1 Red open-circles are raw lattice data and continuum-extrapolated (red
filled-circle). Then finite-volume correction using XPT is added to get the
green-square point.

2 Similarly to HPQCD-PRD2017, raw data (red-circles) are first corrected
with finite-volume and taste-partner effects to get blue open-triangles,
which are continuum-extrapolated to get blue filled-triangle.
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Continuum Extrapolation, Comparison
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Figure: BMW-PRL2018 vs HPQCD-PRD2017 and FNAL/HPQCD/MILC-Prelim.
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QED and Strong-Isospin Breaking
Corrections

O(α) ∼ O
(md −mu

ΛQCD

)
∼ 1% Correction .



Introduction Challenges and Progresses Discussion Summary and Conclusions

Strong Isospin Breaking (SIB)

Strong isospin breaking: md −mu = 2.41(6)(4)(9) [BMW PRL2016] in MS-2[GeV].
Direct Simulations with mu 6= md [FNAL/HPQCD/MILC-PRL2018].

Perturbative Method [RM123-JHEP2012,RBC/UKQCD-JHEP17]:
〈O〉 = 〈O〉mu/d =m̂ + (mu/d − m̂) ∂〈O〉

∂mu/d

∣∣∣
mu=md

+O((mu/d − m̂)2) ,

= 〈O〉mu/d =m̂ − (mu/d − m̂)〈OS〉mu/d =m̂ ,

where m̂ = (mu + md )/2, and S =
∑

x q̄u/d qu/d (x).

S

S
S

Up: Strong Isospin Breaking Diagrams.

Right: FNAL/HPQCD/MILC-PRL2018 (Van
de Water, Mainz g-2 workshop).
Valence-quark dep. of aLO-HVP

µ for (2+1+1)
and (1+1+1+1) ensemble. Two ensemble
results agree at ml = (mu + md )/2;
sea-quark SIB are negligible. To quantify
SIB, define, ∆aLO-HVP

µ =

(4aLO-HVP
µ |mu + aLO-HVP

µ |md )/5− aLO-HVP
µ |ml .

SIB corr. = ∆aLO-HVP
µ /aLO-HVP

µ |ml = 1.5(7)%
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Strong isospin breaking: md −mu = 2.41(6)(4)(9) [BMW PRL2016] in MS-2[GeV].
Direct Simulations with mu 6= md [FNAL/HPQCD/MILC-PRL2018].

Perturbative Method [RM123-JHEP2012,RBC/UKQCD-JHEP17]:
〈O〉 = 〈O〉mu/d =m̂ + (mu/d − m̂) ∂〈O〉

∂mu/d

∣∣∣
mu=md

+O((mu/d − m̂)2) ,

= 〈O〉mu/d =m̂ − (mu/d − m̂)〈OS〉mu/d =m̂ ,

where m̂ = (mu + md )/2, and S =
∑

x q̄u/d qu/d (x).

S

S
S

Up: Strong Isospin Breaking Diagrams.

Right: FNAL/HPQCD/MILC-PRL2018 (Van
de Water, Mainz g-2 workshop).
Valence-quark dep. of aLO-HVP

µ for (2+1+1)
and (1+1+1+1) ensemble. Two ensemble
results agree at ml = (mu + md )/2;
sea-quark SIB are negligible. To quantify
SIB, define, ∆aLO-HVP

µ =

(4aLO-HVP
µ |mu + aLO-HVP

µ |md )/5− aLO-HVP
µ |ml .

SIB corr. = ∆aLO-HVP
µ /aLO-HVP

µ |ml = 1.5(7)%
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QED Correction

Consider QCD + QED Eucridean partition function:

〈O〉 =
1
Z

∫
D[q, q̄,U]D[A] O e−SF [q,q̄,U,A]−SG [U]e−Sγ [A] . (7)

Full QCD + QED: First Come Out! [QCDSF-Prelim, talk by J. Zanotti (27 Fri,
Hadron Structure)].

Stochastic Method: Stochastic photon fields Aµ are generated with
weight e−Sγ independently of gluon fields Uµ (electro-quenched), and
multiplied, Uµ(x)→ e−ieqf Aµ(x)Uµ(x) [Duncan et.al. PRL1996].

Perturbative Method: QED can be treated in a perturbative way in
α = e2/(4π2) [RM123-PRD2013]:

〈O〉 = 〈O〉0 +
e2

2
∂2〈O〉
∂e2

∣∣∣
e=0

+O(α2) . (8)

The stochastic and perturbative methods gave consistent corrections
[RBC/UKQCD-Lat2017].

To control QED FV effects, QEDL prescription [Hayakawa PTP2008] is used;
spatial zero-modes and the universal 1/Ln=1,2 corrections to mass are
removed [BMW Science2015], while a reflection positivity is preserved.
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QED Correction Diagrams in Perturbative Approach

Quark-Connected

Quark-Disconnected

Renormalization

Sea-Quark QED

S PS

[1] [3][2]

[5][4]

[7][6] [9][8]

[12][11][10]

Left: � = vector-current, N = tadpole,
⊕

= (pseudo-)scalar insersions.

Right: [ETMc JHEP2017, talk by D. Giusti, (27 Fri, Hadron structure)] with
corrections [1],[2],[3],[8] (mass retuning) and [9] (keeping maximal twist) for strange
component.

RBCUKQCD (Domain-Wall) considered [1],[2],[3],[4]; the others ∼ 1/Nc or
irrelevant. One must take are a double counting problem in [4] w.r.t. single-photon
and additional glues [talks by RBC/UKQCD (27 Fri, Hadron Structure).]

For diagram details, see [talk by A. Risch (24 Tue, Hadron Spectroscopy)].
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SIB + QED Corrections, Short Summary

ETMc Preliminary
δaLO-HVP
µ × 1010 = 7(2) (quark connected and qQED).

BMW PRL2018
δaLO-HVP
µ × 1010 = 7.8(5.1) (pheno. (π0γ, ηγ, ρ− ω mix, Mπ±)).

RBC/UKQCD PRL2018
δaLO-HVP
µ × 1010 = 9.5(10.2) (quark connected + one disconnected and

qQED. Also relevant to use tau decay input for HVP, [M. Bruno, 27 Fri Hadron
Structure].)

FNAL/HPQCD/MILC PRL2018
δaLO-HVP
µ × 1010 = 9.5(4.5) (Strong Isospin Breaking only).

QCDSF Prelim:
δaLO-HVP
µ /aLO-HVP

µ . 1% (Dynamical QED, Mπ ∼ 400[MeV])



Introduction Challenges and Progresses Discussion Summary and Conclusions

Table of Contents

1 Introduction

2 Challenges and Progresses
Large Distance Systematics
Continuum Extrapolation
SIB/QED Corrections

3 Discussion
Comparisons
Lattice QCD Combined with Phenomenology

4 Summary and Conclusions



Introduction Challenges and Progresses Discussion Summary and Conclusions

The obvious: aLO-HVP
µ

 640  660  680  700  720  740

ETM 14
HPQCD 16
BMWc 17 + FV + IB
BMWc + FV
BMWc (L=6fm)

RBC/UKQCD 18
ETM (prelim)
FHM (prelim)

Jegerlehner 17
DHMZ 17
KNT 18

RBC/UKQCD 18

No new physics

aµ

LO-HVP
 . 10

10

LQCD (Nf≥2+1)
Pheno.

Pheno+LQCD

Lattice errors ∼ 2% vs phenomenology errors ∼ 0.4%.

Some lattice results suggest new physics others not but all compatible with phenomenology.
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aLO-HVP
µ : flavor by flavor comparison

 550  575  600  625  650  675

FHM (prelim)

ETM (prelim)

BMWc 17

HPQCD 16

RBC/UKQCD 18

Mainz (prelim)

Mainz 17
(TMR+FV)

  
  
  
N

f=
2
+

1
+

1
  
  
N

f=
2
+

1
  
  
N

f=
2

a
µ,ud
LO-HVP

 . 10
10

 50  51  52  53  54  55  56

BMWc 17

ETM 17

HPQCD 14

Mainz (prelim)

RBC/UKQCD 18

Mainz 17 (TMR)

  
 N

f=
2
+

1
+

1
  
 N

f=
2
+

1
  
N

f=
2

a
µ,s
LO-HVP

 . 10
10

 14  14.5  15  15.5

BMWc 17

ETM 17

HPQCD 14

Mainz (prelim)

RBC/UKQCD 18

Mainz 17 (TMR)

N
f=

2
+

1
+

1
  
N

f=
2
+

1
  
N

f=
2

a
µ,c
LO-HVP

 . 10
10

-14 -12 -10 -8 -6 -4

BMWc 17

RBC/UKQCD 18

N
f=

2
+

1
+

1
  
  
N

f=
2
+

1

a
µ,disc
LO-HVP

 . 10
10

aLO-HVP
µ, s,c,disc already known with high enough precision for FNAL E989

“Disagreement” is on aLO-HVP
µ, ud
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Derivatives of Π(Q2) at Q2 = 0: ud contribution

Πn = 1
n!

dnΠ̂(Q2)

(dQ2)n

∣∣∣
Q2→0

=
∑

x
(−x̂2

ν )n+1

(2n+2)!
〈jµ(x)jµ(0)〉.

 0.145  0.155  0.165  0.175

HPQCD 16
(a=0.15fm)

HPQCD 16
(a=0.12fm)

BMWc 16

RBC/UKQCD 18

ETMc 18

Π1
 ud

 [GeV
-2

]

Nf≥2+1 w/o corr.
Nf≥2+1 w/ corr.

 0.24  0.29  0.34  0.39

HPQCD 16
(a=0.15fm)

HPQCD 16
(a=0.12fm)

BMWc 16

RBC/UKQCD 18

ETMc 18

-Π2
 ud

 [GeV
-4

]

Nf≥2+1 w/o corr.
Nf≥2+1 w/ corr.

In Pad picture, larger Π1(Π2)→ larger (smaller) aµ.

HPQCD 16 has slightly smaller Πud
1 and larger −Πud

2 than BMWc 16 and RBC/UKQCD 18→
combine to give smaller aLO-HVP

µ, ud

Suggests that HPQCD 16 has smaller C(t) for t ∼ 1 fm but larger for t >∼ 2 fm

Difference comes from HPQCD 16’s large corrections
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Time window: lattice + phenomenology

 0

 100

 200

 300

 400

 500

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

x 
10

-1
0

t / fm

R-ratio
Light+Strange a-1 = 2.36 GeV

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

x 
10

-1
0

t / fm

C(t) wt
C(t) wt θ(t,1.5fm,0.15fm)

C(t) wt [1-θ(t,0.4fm,0.15fm)]

Figure: [RBC/UKQCD-PRL2018, talk by C. Lehner and Colleages (27 Fri, Hadron Structure)]. In
aLO-HVP
µ = (α/π)2∑

t W (t ,Q2/m2
µ)C(t), consider lattice/pheno correlators;

Clat (t) =
∑
~x

1
3
∑3

i=1〈ji (~x , t)jud
i (0)〉 , Cpheno(t) = 1

2

∫∞
0 ds

√
s R(s)

3 e−
√

s|t| .
Clat (t) may be more precise in intermediate t ∼ 1 [fm].

Consider the decomposition C(t) = (CSD + CW + CLD)(t), where
(CSD,CW,CLD)(t) = C(t)(1−Θ(t , t0,∆),Θ(t , t0,∆)−Θ(t , t1,∆),Θ(t , t1,∆)) with
the smeared step function, Θ(t , t ′,∆) = (1 + tanh[(t − t ′/∆)])/2.

For CW(t), use lattice data CW
lat . For the others, use phenomenological data CSD/LD

pheno .
(t0, t1,∆) = (0.4, 1.0, 0.15)[fm], aLO-HVP

µ = 692.5(2.7) · 10−10 [RBC/UKQCD-PRL2018].
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Window Method: DWF vs HISQ vs Pheno.

Fig.: T. Blum (27 Fri). Continuum extrapolation of aW
µ =

∑
t CW

lat (t)W (t ,mµ), where
CW

lat (t) = Clat (t)((Θ(t , t0,∆)−Θ(t , t1,∆))) with t0 = 4.0, t1 = 1.0, ∆ = 0.15[fm].

(2+1+1) HISQ(MILC ensemble) and DWF all physical points in 5.5 [fm] boxes. HISQ
and DWF shows 2-3 σ tension; lattice spacing, statistics may be responsible. The
DWF result is consistent with phenomenology.
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Other Important Subjects

Lattice (Q2 < Q2
cut ) - Perturbation (Q2 ≥ Q2

cut ) Matching [BMW-PRL2018].

Lattice results of Higher-Order HVP [FNAL/HPQCD/MILC, 1806.08190].

Dual Propagator + Gounaris-Sakurai-Lüscher Propagator [ETMc-Prelim,
Mainz g-2 Workshop].

Omnès Formula for time-like pion form factor [Mainz Preliminary, talk by
H. Wittig (27 Fri, Hadron Structure)].

HVP for sin2 θW [talk by Cè Marco, (27 Fri, Hadron Structure)].
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Summary and Conclusions

Lattice computation of aLO-HVP
µ has total error ∼ 2%�∼ 0.4% from

phenomenology. Some results are consistent with no new physics and
phenomenology, others with phenomenology and new physics

Difference comes from ud contribution and most probably from treatment of
long-distance physics, for which many progress have been done but need more
understandings.

Comparison of ud time moments suggests:
larger intermediate-distance contribution in [BMWc-PRL2018 and RBC/UKQCD-PRL2018]

larger long-distance contribution in [HPQCD-PRD2017], associated with model description

With current lattice results, too early to make detailed comparisons with dispersive
approach. However, combination of lattice and phenomenology [RBC/UKQCD PRL18,

T. Blum Preliminary] may deliver a reliable 0.2% aLO-HVP
µ .

Lattice combined with Experimental Data: Next Talk by Marina.
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Large Distance Control (GSL + SVZ) [ETMc Preliminary]

Top panel [ETMc JHEP2017]: Vector-current
correlator data are well described by 1-loop QCD up
to 1fm > ~c/ΛQCD . This was interpreted as the
onset of SVZ Quark-Hadron Duality [NPB1979].

Motivated by the duality, consider the following
expression for the vector-current correlator,

Vdual (t) =
5Rdual
72π2

∫∞
sdual

ds
√

se−
√

st R1l-QCD(s) ,

where, R1l-QCD(s) = (1− 4m2
ud

s )1/2(1 +
2m2

ud
s ) .

This expression differs from 1-loop QCD by two fit
params (Rdual , sdual ), and combined with 2-pion
correlator Vππ constructed via Gounaris-Sakurai
F GS
π .

Bottom panel [ETMc Preliminary]: (Vdual + Vππ)
describes well lattice data whole range. FV effects
and other systematics can be studied with this.
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Large Distance Control Omnès [Mainz Preliminary]

Omnès Formula (Nuovo Cimento (1958))

Figs: Mainz Preliminary, Thanks to F.Erben
(GSI-HIM).

Fπ(ω) =

exp

[
ω2Pn−1(ω2) + ω2n

π

∫∞
4M2
π

ds δ1(s)

sn(s−ω2−iε)

]
.

Lattice data are used for Fπ and δ1 and fit
parameters are in the Polynomial Pn−1.

Omnès gives a better description than GS in
the middle range.
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Continuum Extrapolation and Mass Dependence

Left: ETM Preliminary. From slide by S.Simula in Mainz g-2 workshop
2018. The continuum limit line (black-solid) becomes sensitive to mud at
physical point.

Right: Mainz Preliminary. From slide by H.Meyer in Mainz g-2 workshop
2018. ỹ = (Mπ/(4πfπ))2.
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ISB + QED Corrections, [ETMc JHEP2017 and Preliminary]

Left: ETMc Preliminary, (SIB + QED) corrections for light components.
The chiral/continuum-extrapolation is investigated with FV effects taken
account.

Right: ETMc JHEP2017, (SIB + QED) corrections for strange component
integrand for each diagrams shown previous pages. The charm is also
investigated. In both, partial cancellations among the various diagrams.
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Comparison of derivatives of Π(Q2) at Q2 = 0

Πn = 1
n!

dnΠ̂(Q2)

(dQ2)n

∣∣∣
Q2→0

=
∑

x
(−x̂2

ν )n+1

(2n+2)!
〈jµ(x)jµ(0)〉.

 0.096  0.1  0.104

HPQCD 16
(a=0.15fm, no disc., no IB)

HPQCD 16
(a=0.12fm, no disc., no IB)

BMWc 16

Benayoun 16

KMNT 18

Π1 [GeV
-2

]

LQCD (Nf≥2+1)
Pheno.

 0.165  0.185  0.205  0.225

HPQCD 16
(a=0.15fm, no disc., no IB)

HPQCD 16
(a=0.12fm, no disc., no IB)

BMWc 16

Benayoun 16

KMNT 18

-Π2 [GeV
-4

]

LQCD (Nf≥2+1)
Pheno.

BMWc 16 has Π1 comparable to phenomenology but smaller −Π2

→ suggests that BMWc (and RBC/UKQCD) has C(t) slightly larger for t ∼ 1 fm and smaller for
t >∼ 2 fm
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