▲ロト ▲周 ト ▲ヨ ト ▲目 = シスペ

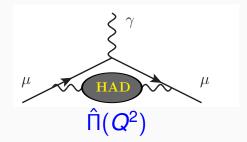
Review on Lattice Muon g-2 HVP Calculation

Kohtaroh Miura (GSI Helmholtz-Instute Mainz)

Lattice 2018, 36th International Symposium on Lattice Field Theory, Michigan State University USA, 22 – 28 July 2018

▲ロト ▲周 ト ▲ヨ ト ▲目 = シスペ

Hadron Vaccum Polarization (HVP) Contribution to Muon g - 2



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SM contribution	$a_{\mu}^{ m contrib.} imes 10^{10}$	Ref.
QED [5 loops]	11658471.8951 ± 0.0080	[Aoyama et al '12]
HVP-LO (pheno.)	692.6 ± 3.3	[Davier et al '16]
	694.9 ± 4.3	[Hagiwara et al '11]
	681.5 ± 4.2	[Benayoun et al '16]
	688.8 ± 3.4	[Jegerlehner '17]
HVP-NLO (pheno.)	-9.84 ± 0.07	[Hagiwara et al '11]
		[Kurz et al '11]
HVP-NNLO	1.24 ± 0.01	[Kurz et al '11]
HLbyL	10.5 ± 2.6	[Prades et al '09]
Weak (2 loops)	15.36 ± 0.10	[Gnendiger et al '13]
SM tot [0.42 ppm]	11659180.2 ± 4.9	[Davier et al '11]
[0.43 ppm]	11659182.8 ± 5.0	[Hagiwara et al '11]
[0.51 ppm]	11659184.0 ± 5.9	[Aoyama et al '12]
Exp [0.54 ppm]	11659208.9 ± 6.3	[Bennett et al '06]
Exp – SM	28.7 ± 8.0	[Davier et al '11]
	26.1 ± 7.8	[Hagiwara et al '11]
	24.9 ± 8.7	[Aoyama et al '12]

 $a_{\mu}^{\text{LO-HVP}}|_{\textit{NoNewPhys}} \times 10^{10} \simeq 720 \pm 7$, FNAL E989 (2017): 0.14-ppm, J-PARC E34: 0.1-ppm

Really $a_{\mu}^{exp.} \neq a_{\mu}^{SM}$?

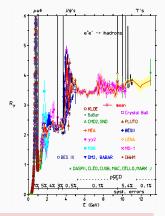
Motivation

HVP in Phenomenology

• The HVP in Pheno. is:
$$\begin{split} \hat{\Pi}(Q^2) &= \int_0^\infty ds \frac{Q^2}{s(s+Q^2)} \frac{\mathrm{Im}\Pi(s)}{\pi} \\ &= (Q^2/(12\pi^2)) \int_0^\infty ds \frac{R_{had}(s)}{s(s+Q^2)} \;, \end{split}$$

• with R-ratio [right fig. Jegerlehner EPJ-Web2016] given by $R_{had}(s) \equiv \frac{\sigma(e^+e^- \rightarrow had.)}{4\pi\alpha^2(s)/(3s)}$,

 where the systematics is challenging to control(next talk). Some tension among experiments in σ(e⁺e⁻ → π⁺π⁻).



Requirement for Lattice QCD:

- Independent cross-check of Hadronic Vauccum Polarization Contribution to muon g-2 (a^{HVP}_μ),
- Permil-Level determination of a_{μ}^{HVP} w.r.t. FNAL/J-PARC expr.

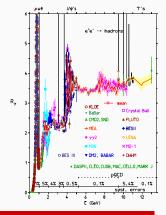
Motivation

HVP in Phenomenology

• The HVP in Pheno. is:
$$\begin{split} \hat{\Pi}(Q^2) &= \int_0^\infty ds \frac{Q^2}{s(s+Q^2)} \frac{\operatorname{Im}\Pi(s)}{\pi} \\ &= (Q^2/(12\pi^2)) \int_0^\infty ds \frac{R_{had}(s)}{s(s+Q^2)} \;, \end{split}$$

• with R-ratio [right fig. Jegerlehner EPJ-Web2016] given by $R_{had}(s) \equiv \frac{\sigma(e^+e^- \rightarrow had.)}{4\pi\alpha^2(s)/(3s)}$,

 where the systematics is challenging to control(next talk). Some tension among experiments in σ(e⁺e⁻ → π⁺π⁻).



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

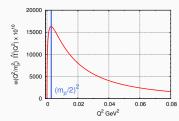
Requirement for Lattice QCD:

- Independent cross-check of Hadronic Vauccum Polarization Contribution to muon g-2 (a^{HVP}_μ),
- Permil-Level determination of a_{μ}^{HVP} w.r.t. FNAL/J-PARC expr.

Discussion 000000

Objective in This Work

- Hadron Vacuum Polarization (HVP):
 - $\begin{aligned} \Pi_{\mu\nu}(Q) &= \int d^4x \ e^{iQx} \langle j_{\mu}(x) j_{\nu}(0) \rangle \\ &= (Q_{\mu}Q_{\nu} \delta_{\mu\nu}Q^2) \Pi(Q^2) \ , \\ j_{\mu} &= \frac{2}{3} \bar{u}\gamma_{\mu}u \frac{1}{3} \bar{d}\gamma_{\mu}d \frac{1}{3} \bar{s}\gamma_{\mu}s + \frac{2}{3} \bar{c}\gamma_{\mu}c + \cdots \ . \end{aligned}$
- Leading-Order(LO) HVP Contr. to Muon g-2: $a_{\mu}^{\text{LO-HVP}} = (\alpha/\pi)^2 \int_0^\infty dQ^2 \ \omega(Q^2/m_{\mu}^2)\hat{\Pi}(Q^2) ,$ $\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0) .$
- HVP Time-Moments:
 - $$\begin{split} \hat{\Pi}(Q^2) &= \sum_{n=1} Q^{2n} \Pi_n , \\ \Pi_n &= \frac{1}{n!} \frac{d^n \hat{\Pi}(Q^2)}{(dQ^2)^n} \Big|_{Q^2 \to 0} = \sum_x \frac{(-\hat{x}_{\nu}^2)^{n+1}}{(2n+2)!} \langle j_{\mu}(x) j_{\mu}(0) \rangle. \end{split}$$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

iscussion

Summary and Conclusions

・ロト・日本・エート・エー・ シック

Access to Deep IR: Pade and Time-Moment Rep.

Model Independent Approximants

Pade Approximant• For $Q^2 < Q_{out}^2$, lattice HVP data are fitted to $\hat{\Pi}(Q^2) = \frac{A_2Q^2 + \cdots}{1 + B_2Q^2 + \cdots}$.(1)• The dispersion relation $\hat{\Pi}(Q^2) = \int_0^\infty ds \frac{Q^2}{s(s+Q^2)} \frac{Im\Pi(s)}{\pi}$ is seen as so-called
Stieltjes Integral [Aubin et.al., PRD2012], which guarantees a finite
conversion radius.Time-Momentum Representation (TMR)• For $Q^2 < Q^2$

• For $Q^2 < Q^2_{uv-cut}$, define [Bernecker and Meyera, EPJA2011],

$$\hat{\Pi}(Q^2) = \sum_{t} t^2 \left[1 - \left(\frac{\sin[Qt/2]}{Qt/2} \right)^2 \right] \frac{1}{3} \sum_{i=1}^3 \langle j_i(t) j_i(0) \rangle .$$
⁽²⁾

• The momentum *Q* is *Continuous*. The Sine-Cardinal $\sin[Qt/2]/(Qt/2)$ accounts for a pediodic feature of lattice correlators $\langle j_i(t)j_i(0)\rangle$.

Discussion

Summary and Conclusions

くロン 人間 シスピン スヨン 山戸 うみつ

Access to Deep IR: Pade and Time-Moment Rep.

Model Independent Approximants

Pade Approximant

• For $Q^2 < Q_{cut}^2$, lattice HVP data are fitted to

$$\hat{H}(Q^2) = \frac{A_2 Q^2 + \cdots}{1 + B_2 Q^2 + \cdots}$$
 (1)

• The dispersion relation $\hat{\Pi}(Q^2) = \int_0^\infty ds \frac{Q^2}{s(s+Q^2)} \frac{\operatorname{Im}\Pi(s)}{\pi}$ is seen as so-called *Stieltjes Integral* [Aubin et.al., PRD2012], which guarantees a finite conversion radius.

Time-Momentum Representation (TMR)

• For $Q^2 < Q^2_{uv-cut}$, define [Bernecker and Meyera, EPJA2011],

$$\hat{\Pi}(Q^2) = \sum_{t} t^2 \left[1 - \left(\frac{\sin[Qt/2]}{Qt/2} \right)^2 \right] \frac{1}{3} \sum_{i=1}^3 \langle j_i(t) j_i(0) \rangle .$$
⁽²⁾

• The momentum *Q* is *Continuous*. The Sine-Cardinal $\sin[Qt/2]/(Qt/2)$ accounts for a pediodic feature of lattice correlators $\langle j_i(t)j_i(0) \rangle$.

Discussion 000000

▲□▶▲□▶▲□▶▲□▶ ▲□▲ のへで

Example of TMR

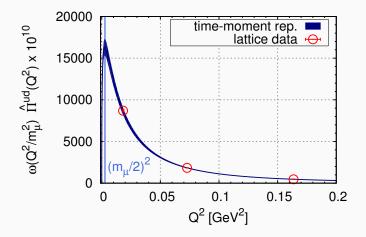


Figure: From BMW Ensemble (a = 0.064 fm) used in PRD2017 and PRL2018.

▲□▶▲□▶▲□▶▲□▶ 三回 のQ@

Table of Contents

- Challenges and Progresses
 - Large Distance Systematics
 - Continuum Extrapolation
 - SIB/QED Corrections

3 Discussion

- Comparisons
- Lattice QCD Combined with Phenomenology

Summary and Conclusions

Table of Contents

Introduction

- 2 Challenges and Progresses
 - Large Distance Systematics
 - Continuum Extrapolation
 - SIB/QED Corrections

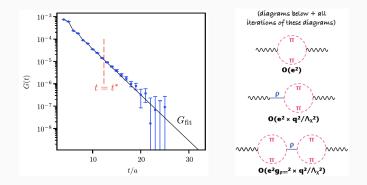
3 Discussion

- Comparisons
- Lattice QCD Combined with Phenomenology

Discussion

Summary and Conclusions

Multi-Exponential Fits [HPQCD PRD2017]

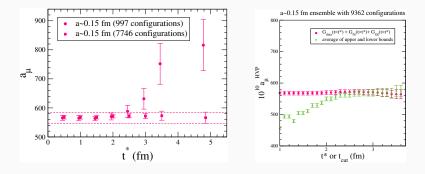


- Left: HPQCD PRD2017, vector-current correlator with ud-quarks and a fit line $t > t^*$: $G^{ud}(t,t^*) = G^{ud}_{data}(t < t^*)$ or $(G_{fit}(t > t^*) + G_{\pi\pi}(t > t^*))$, where $t^* \in [0.5, 1.5]$ *fm*. Multi(N = 5)-Exponential Ansatz are adopted and ρ -meson dominates.
- **Right:** From a slide of Van de Water at Mainz Workshop 2018. Diagrams in effective theory to correct missing effects in the fits. Taste-spliting and finite volume corrections are also taken account.

Discussion

Summary and Conclusions

Multi-Exponential Fits [FNAL/HPQCD/MILC Preliminary]



• Left: The t* dependence of

 $a_{\mu,\nu d}^{\text{LO-HVP}}(t^*) = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dQ^2 \ \omega(Q^2/m_{\mu}^2) \ \mathcal{FT}[G^{\nu d}(t,t^*),Q^2]_{\text{with Pade}}.$ (3)

With high-statistics, $a_{\mu,vd}^{\text{LO-HVP}}$ get stable at larger t^* . For $t^* \leq 2$ fm, low-(used in PRD2017) and high-statistics are consistent.

• **Right:** The high-statistics in the left-panel is compared with *Bounding Method* (next page).

Discussion

Bounding [BMW PRD2017 and PRL2018]

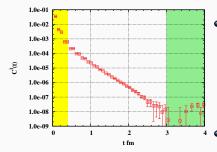


Figure shows

$$\mathcal{C}^{ud}(t) = rac{5}{9} \sum_{\vec{x}} rac{1}{3} \sum_{i=1}^{3} \langle j_i^{ud}(\vec{x},t) j_i^{ud}(0) \rangle \; ,$$

by BMW Ensemble with a = 0.078 [fm] used in PRD2017/PRL2018.

- The connected-light correlator $C^{ud}(t)$ loses signal for t > 3fm. To control statistical error, consider $C^{ud}(t > t_c) \rightarrow C^{ud}_{up/low}(t, t_c)$, where $C^{ud}_{up}(t, t_c) = C^{ud}(t_c) \varphi(t)/\varphi(t_c)$, $C^{ud}_{low}(t, t_c) = 0.0$, with $\varphi(t) = \cosh[E_{2\pi}(T/2 - t)]$, and $E_{2\pi} = 2(M_{\pi}^2 + (2\pi/L)^2)^{1/2}$.
- Similarly, $C^{disc}(t) \rightarrow C^{disc}_{up/low}(t, t_c)$, $-C^{disc}_{up}(t > t_c) = 0.1 C^{ud}(t_c) \varphi(t)/\varphi(t_c)$, $-C^{disc}_{low}(t > t_c) = 0.0$.
- By construction, $C_{low}^{ud,disc}(t, t_c) \leq C^{ud,disc}(t) \leq C_{up}^{ud,disc}(t, t_c).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Discussion 000000

Bounding [BMW PRL2018]

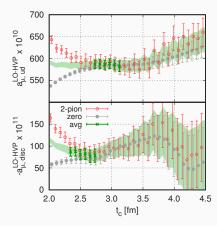


Figure: BMW, PRL2018.

- Corresponding to $C_{up/low}^{ud,disc}(t_c)$, we obtain upper/lower bounds for muon g-2: $a_{\mu,up/low}^{ud,disc}(t_c)$.
- Two bounds meet around $t_c = 3fm$. Consider the average of bounds: $\bar{a}^{ud,disc}_{\mu}(t_c) = 0.5(a^{ud,disc}_{\mu,up} + a^{ud,disc}_{\mu,low})(t_c)$, which is stable around $t_c = 3fm$.
- We pick up such averages $\bar{a}_{\mu}^{ud,disc}(t_c)$ with 4-6 kinds of t_c around 3fm. The average of average is adopted as $a_{\mu,ud/disc}^{LO,HVP}$ to be analysed, and a fluctuation over selected t_c gives systematic error.
- A similar method is proposed by C.Lehner in Lattice2016 and used in RBC/UKQCD-PRL2018. Improved bounding method with GEVP:

[A. Meyer/C. Lehner, 27 Fri Hadron Structure].

iscussion

Summary and Conclusions

Large Distance Control Using F_{π} , [Mainz CLS JHEP2017]

• Isospin Decomp. of Vector-Current Correlator:

 $G(t,L) = G^{l=1}(t,L) + G^{l=0}(t,L) , \quad G^{l=1}(t,L) = \sum_{n=1} |A_n|^2 e^{-\omega_n t} , \qquad (4)$

where $\omega_n = 2\sqrt{M_{\pi}^2 + k_n^2}$. Investigate the large distance behavior of $G^{l=1}(t)$.

• Lüscher's Formula [NPB1991]: The p-wave phase shift determines kn,

$$\delta_{l=1}(\mathbf{k}_n) + \phi(\mathbf{k}_n L/(2\pi)) = n\pi , \qquad (5)$$

where ϕ is a known kinematical function.

• Meyer's Formula [PRL2011]:

$$|F_{\pi}(\omega_n)|^2 = \frac{3\pi\omega_n^2}{2k_n^5} \Big(k_n \frac{\partial \delta_1(k_n)}{\partial k_n} + q_n \frac{\partial \phi(q_n)}{\partial q_n} \Big) |A_n|^2 , \quad q_n = \frac{k_n L}{2\pi} , \tag{6}$$

which is analogous to Lellouch-Lüscher Formula [CMP2012].

Gounaris-Sakurai(GS) [PRL1968] (c.f. Fransis et.al. [PRD2013]):

 $(k^3/\omega) \cot \delta^{
m GS}_1(k) = k^2 h(\omega) - k_
ho^2 h(M_
ho) + b[k_
ho, M_
ho, \Gamma_
ho](k^2 - k_
ho^2) \,,$

 $F^{\rm GS}_{\pi}(\omega) = f_0[M_{\pi}, M_{\rho}, \Gamma_{\rho}]/((k^3/\omega)(\cot[\delta^{\rm GS}_1(k)] - i)) , \quad k_{\rho}^2 = (M_{\rho}^2/4) - M_{\pi}^2 .$

Construct G^{l=1}(t): For given lattice data (M_{π,ρ}), using GS formulae with Eqs. (5) and (6), G^{l=1}_{lat}(t) is fitted to Eq. (4) to determine (A_n, k_n, Γ_ρ).

iscussion

(日) (日) (日) (日) (日) (日)

Large Distance Control Using F_{π} , [Mainz CLS JHEP2017]

• Isospin Decomp. of Vector-Current Correlator:

$$G(t,L) = G^{l=1}(t,L) + G^{l=0}(t,L) , \quad G^{l=1}(t,L) = \sum_{n=1} |A_n|^2 e^{-\omega_n t} , \qquad (4)$$

where $\omega_n = 2\sqrt{M_{\pi}^2 + k_n^2}$. Investigate the large distance behavior of $G^{l=1}(t)$.

• Lüscher's Formula [NPB1991]: The p-wave phase shift determines kn,

$$\delta_{l=1}(\mathbf{k}_n) + \phi(\mathbf{k}_n L/(2\pi)) = n\pi , \qquad (5)$$

where ϕ is a known kinematical function.

• Meyer's Formula [PRL2011]:

$$|F_{\pi}(\omega_n)|^2 = \frac{3\pi\omega_n^2}{2k_n^5} \Big(k_n \frac{\partial \delta_1(k_n)}{\partial k_n} + q_n \frac{\partial \phi(q_n)}{\partial q_n} \Big) |A_n|^2 , \quad q_n = \frac{k_n L}{2\pi} , \tag{6}$$

which is analogous to Lellouch-Lüscher Formula [CMP2012].

• Gounaris-Sakurai(GS) [PRL1968] (c.f. Fransis et.al. [PRD2013]):

 $(k^3/\omega)\cot\delta_1^{\mathrm{GS}}(k) = k^2h(\omega) - k_\rho^2h(M_\rho) + b[k_\rho, M_\rho, \Gamma_\rho](k^2 - k_\rho^2),$

 $F_{\pi}^{\rm GS}(\omega) = f_0[M_{\pi}, M_{\rho}, \Gamma_{\rho}]/((k^3/\omega)(\cot[\delta_1^{\rm GS}(k)] - i)) \ , \quad k_{\rho}^2 = (M_{\rho}^2/4) - M_{\pi}^2 \ .$

Construct G^{l=1}(t): For given lattice data (M_{π,ρ}), using GS formulae with Eqs. (5) and (6), G^{l=1}_{lat}(t) is fitted to Eq. (4) to determine (A_n, k_n, Γ_ρ).

iscussion

Summary and Conclusions

(日) (日) (日) (日) (日) (日)

Large Distance Control Using F_{π} , [Mainz CLS JHEP2017]

• Isospin Decomp. of Vector-Current Correlator:

$$G(t,L) = G^{l=1}(t,L) + G^{l=0}(t,L) , \quad G^{l=1}(t,L) = \sum_{n=1} |A_n|^2 e^{-\omega_n t} , \qquad (4)$$

where $\omega_n = 2\sqrt{M_{\pi}^2 + k_n^2}$. Investigate the large distance behavior of $G^{l=1}(t)$.

• Lüscher's Formula [NPB1991]: The p-wave phase shift determines kn,

$$\delta_{l=1}(\mathbf{k}_n) + \phi(\mathbf{k}_n L/(2\pi)) = n\pi , \qquad (5)$$

where ϕ is a known kinematical function.

• Meyer's Formula [PRL2011]:

$$|F_{\pi}(\omega_n)|^2 = \frac{3\pi\omega_n^2}{2k_n^5} \Big(k_n \frac{\partial \delta_1(k_n)}{\partial k_n} + q_n \frac{\partial \phi(q_n)}{\partial q_n} \Big) |A_n|^2 , \quad q_n = \frac{k_n L}{2\pi} , \tag{6}$$

which is analogous to Lellouch-Lüscher Formula [CMP2012].

• Gounaris-Sakurai(GS) [PRL1968] (c.f. Fransis et.al. [PRD2013]):

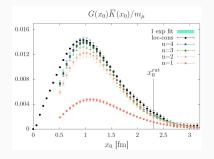
 $(k^3/\omega)\cot\delta_1^{\mathrm{GS}}(k) = k^2h(\omega) - k_\rho^2h(M_\rho) + b[k_\rho, M_\rho, \Gamma_\rho](k^2 - k_\rho^2),$

 $F_{\pi}^{\rm GS}(\omega) = f_0[M_{\pi}, M_{\rho}, \Gamma_{\rho}]/((k^3/\omega)(\cot[\delta_1^{\rm GS}(k)] - i)) , \quad k_{\rho}^2 = (M_{\rho}^2/4) - M_{\pi}^2 .$

Construct G^{l=1}(t): For given lattice data (M_{π,ρ}), using GS formulae with Eqs. (5) and (6), G^{l=1}_{lat}(t) is fitted to Eq. (4) to determine (A_n, k_n, Γ_ρ).

Discussion

Large Distance Control Using F_{π}



(A)
$$G_n^{l=1}(t,L) = \sum_{j=1}^n |A_j|^2 e^{-\sqrt{M_\pi^2 + k_j^2} t}$$
,
(B) $G^{l=1}(t > t^*, L \to \infty) = \frac{1}{48\pi^2} \int_{2M_\pi}^{\infty} d\omega \, \omega^2 (1 - \frac{4M_\pi^2}{\omega^2})^{3/2} |F_\pi(\omega)|^2 e^{-\omega |t|}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

- Figure: [Mainz Prelim], update of [Mainz Lat2017]. ($\tilde{K}(t)/m_{\mu}$) $G_n(t, L)$ vs $x_0 = t$ for $N_f = 2 + 1$, $M_{\pi} = 200$ MeV. G_n is given by Eq. (A). c.f. Talk by H. Wittig (27 Fri, Hadron Structure).
- The lowest mode (*n* = 1) becomes dominant at around 3 [fm]. A single exponential-fit provides a good approximation at long-distance.
- Using F^G_π(ω), the infinite-volume correlator G^{l=1}(t, L→∞) is given by Eq. (B). Comparing a^{LO-HVP}_{μ,U} obtaind with G^{l=1}(t > t^{*}, L→∞) or G^{l=1}_{lat}(t > t^{*}, L), a finite volume effect can be estimated.

Discussion

Large Distance Control Using F_{π}

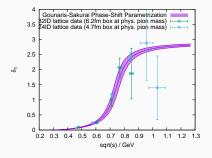


Figure: RBC/UKQCD Preliminary.

- *E_ρ* = 0.766(21) [GeV] (c.f. PDG: 0.77549(34) [GeV]).
- Γ_ρ = 0.139(18) [GeV] (c.f. PDG: 0.1462(7) [GeV]).

Finite Volume Effects

Consider
$$a_{\mu,ud}^{\text{LO-HVP}}(L_2) - a_{\mu,ud}^{\text{LO-HVP}}(L_1).$$

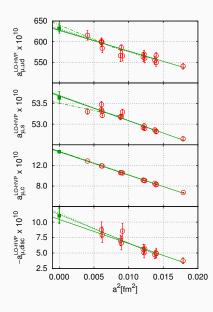
- $(L_1, L_2) = (4.66, 6.22)$ [fm], physical M_{π} [RBC/UKQCD Prelim., talk by C. Lehner (27 Fri, Hadron Structure)]
 - XPT: 12.2 × 10⁻¹⁰,
 - LQCD: 21.6(6.3) × 10⁻¹⁰
 - GSL: 20(3) × 10⁻¹⁰.
- $(L_1, L_2) = (5.4, 10.8)$ [fm], $M_{\pi} = 135$ [MeV] [talk by E. Shintani (24 Tue, Hadron Spectroscopy), update of PACS 1805.04250]
 - LQCD: $40(18) \times 10^{-10}$, 2.5 times larger than XPT estimates.
- $L_2 = \text{large}, M_{\pi}L_1 \sim 4$
 - XPT/RBCUK-PRL18: 16(4) × 10⁻¹⁰,
 - GSL/RBCUK-Prelim: 22(1) × 10⁻¹⁰
 - XPT/BMW-PRL18: 15(15) × 10⁻¹⁰,
 - GSL/Mainz-Prelim: 20.4(4.2) × 10⁻¹⁰
 - GSL+dual/ETM-prelim: $31(6) \times 10^{-10}$.

Continuum Extrapolation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Discussion

Controlled Continuum Extrap. [BMW PRL2018]

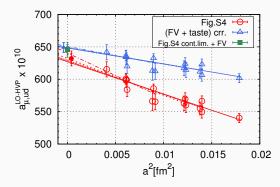


BMW Ensemble PRD2017 and PRL2018

- 6-β, 15 simulation with all physical masses.
- Nf=(2+1+1) staggered quarks.
- Large Volume: $(L, T) \sim (6, 9 12)$ fm.
- AMA with 6000-9000 random-source meas. for disconnected. [c.f. Mainz-Lat2014, RBC/UKQCD-PRL2016, HPQCD-PRD2016]. [Poster by S. Yamamoto FNAL/HPQCD/MILC, 24 Tue].
- Get systematic uncertainty from various cuttings: no-cut, or cutting
 a ≥ 0.134, 0.111, or 0.095.
- Strong a² deps. for a^{LO-HVP}_{µ,ud/disc} due to taste violations, and for a^{LO-HVP}_{µ,c} due to large m_c.
- Get good χ^2/dof with extrapolation linear in a^2 , and interpolation linear in M_K^2 (strange) or M_π^2 and $M_{\eta c}$ (charm).

Discussion 000000

Crosscheck of Continuum Extrapolation [BMW PRL2018]



- Red open-circles are raw lattice data and continuum-extrapolated (red filled-circle). Then finite-volume correction using XPT is added to get the green-square point.
- Similarly to HPQCD-PRD2017, raw data (red-circles) are first corrected with finite-volume and taste-partner effects to get blue open-triangles, which are continuum-extrapolated to get blue filled-triangle.

Discussion

Summary and Conclusions

▲□▶▲□▶▲□▶▲□▶ ▲□■ のへ⊙

Continuum Extrapolation, Comparison

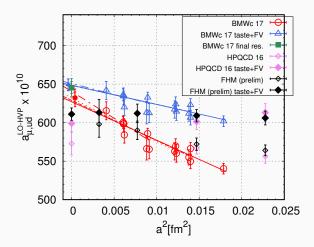


Figure: BMW-PRL2018 vs HPQCD-PRD2017 and FNAL/HPQCD/MILC-Prelim.

QED and Strong-Isospin Breaking Corrections

$\mathcal{O}(\alpha) \sim \mathcal{O}(rac{m_d - m_u}{\Lambda_{QCD}}) \sim 1\% \text{ Correction }.$

うせん 正正 スポッスポッス セッ

Discussion 000000

Strong Isospin Breaking (SIB)

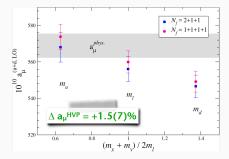
Strong isospin breaking: $m_d - m_u = 2.41(6)(4)(9)$ [BMW PRL2016] in \overline{MS} -2[GeV].

- Direct Simulations with $m_u \neq m_d$ [FNAL/HPQCD/MILC-PRL2018].
- Perturbative Method [RM123-JHEP2012,RBC/UKQCD-JHEP17]:

$$\begin{split} \langle O \rangle &= \langle O \rangle_{m_{u/d} = \hat{m}} + (m_{u/d} - \hat{m}) \frac{\partial \langle O \rangle}{\partial m_{u/d}} \Big|_{m_u = m_d} + \mathcal{O}((m_{u/d} - \hat{m})^2) , \\ &= \langle O \rangle_{m_{u/d} = \hat{m}} - (m_{u/d} - \hat{m}) \langle OS \rangle_{m_{u/d} = \hat{m}} , \\ \text{where } \hat{m} &= (m_u + m_d)/2, \text{ and } S = \sum_x \bar{q}_{u/d} q_{u/d}(x). \end{split}$$

Up: Strong Isospin Breaking Diagrams.

Right: FNAL/HPQCD/MILC-PRL2018 (Van de Water, Mainz g-2 workshop). Valence-quark dep. of $a_{\mu}^{\text{LO-HVP}}$ for (2+1+1) and (1+1+1+1) ensemble. Two ensemble results agree at $m_l = (m_u + m_d)/2$; sea-quark SIB are negligible. To quantify SIB, define, $\Delta a_{\mu}^{\text{LO-HVP}} = (4a_{\mu}^{\text{LO-HVP}}|m_u + a_{\mu}^{\text{LO-HVP}}|m_d)/5 - a_{\mu}^{\text{LO-HVP}}|m_l$. SIB corr. = $\Delta a_{\mu}^{\text{LO-HVP}}/a_{\mu}^{\text{LO-HVP}}|m_l = 1.5(7)\%$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○∧ ◆

Discussion 000000

Strong Isospin Breaking (SIB)

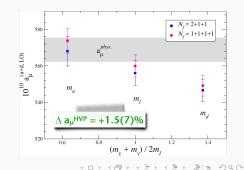
Strong isospin breaking: $m_d - m_u = 2.41(6)(4)(9)$ [BMW PRL2016] in \overline{MS} -2[GeV].

- Direct Simulations with $m_u \neq m_d$ [FNAL/HPQCD/MILC-PRL2018].
- Perturbative Method [RM123-JHEP2012,RBC/UKQCD-JHEP17]:

$$\begin{split} \langle O \rangle &= \langle O \rangle_{m_{u/d} = \hat{m}} + (m_{u/d} - \hat{m}) \frac{\partial \langle O \rangle}{\partial m_{u/d}} \Big|_{m_u = m_d} + \mathcal{O}((m_{u/d} - \hat{m})^2) , \\ &= \langle O \rangle_{m_{u/d} = \hat{m}} - (m_{u/d} - \hat{m}) \langle OS \rangle_{m_{u/d} = \hat{m}} , \\ \text{where } \hat{m} &= (m_u + m_d)/2, \text{ and } S = \sum_x \bar{q}_{u/d} q_{u/d}(x). \end{split}$$

Up: Strong Isospin Breaking Diagrams.

Right: FNAL/HPQCD/MILC-PRL2018 (Van de Water, Mainz g-2 workshop). Valence-quark dep. of $a_{\mu}^{\text{LO-HVP}}$ for (2+1+1) and (1+1+1+1) ensemble. Two ensemble results agree at $m_l = (m_u + m_d)/2$; sea-quark SIB are negligible. To quantify SIB, define, $\Delta a_{\mu}^{\text{LO-HVP}} = (4a_{\mu}^{\text{LO-HVP}}|m_u + a_{\mu}^{\text{LO-HVP}}|m_d)/5 - a_{\mu}^{\text{LO-HVP}}|m_l$. SIB corr. = $\Delta a_{\mu}^{\text{LO-HVP}}/a_{\mu}^{\text{LO-HVP}}|m_l = 1.5(7)\%$



Intro				

Discussion

QED Correction

• Consider QCD + QED Eucridean partition function:

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}[q, \bar{q}, U] \mathcal{D}[A] O e^{-S_F[q, \bar{q}, U, A] - S_G[U]} e^{-S_\gamma[A]} .$$
(7)

- Full QCD + QED: First Come Out! [QCDSF-Prelim, talk by J. Zanotti (27 Fri, Hadron Structure)].
- Stochastic Method: Stochastic photon fields A_{μ} are generated with weight $e^{-S_{\gamma}}$ independently of gluon fields U_{μ} (electro-quenched), and multiplied, $U_{\mu}(x) \rightarrow e^{-ieq_{\ell}A_{\mu}(x)}U_{\mu}(x)$ [Duncan et.al. PRL1996].
- **Perturbative Method:** QED can be treated in a perturbative way in $\alpha = e^2/(4\pi^2)$ [RM123-PRD2013]:

$$\langle O \rangle = \langle O \rangle_0 + \frac{e^2}{2} \frac{\partial^2 \langle O \rangle}{\partial e^2} \Big|_{e=0} + \mathcal{O}(\alpha^2) .$$
 (8)

The stochastic and perturbative methods gave consistent corrections [RBC/UKQCD-Lat2017].

 To control QED FV effects, QED_L prescription [Hayakawa PTP2008] is used; spatial zero-modes and the universal 1/L^{n=1,2} corrections to mass are removed [BMW Science2015], while a reflection positivity is preserved.

Introduction	Challenges and Progresses	Discussion 000000	Summary and Conclusions
OED Correction			

• Consider QCD + QED Eucridean partition function:

 $\langle O \rangle = \frac{1}{Z} \int \mathcal{D}[q, \bar{q}, U] \mathcal{D}[A] O e^{-S_F[q, \bar{q}, U, A] - S_G[U]} e^{-S_\gamma[A]} .$ (7)

- Full QCD + QED: First Come Out! [QCDSF-Prelim, talk by J. Zanotti (27 Fri, Hadron Structure)].
- Stochastic Method: Stochastic photon fields A_{μ} are generated with weight $e^{-S_{\gamma}}$ independently of gluon fields U_{μ} (electro-quenched), and multiplied, $U_{\mu}(x) \rightarrow e^{-ieq_{f}A_{\mu}(x)}U_{\mu}(x)$ [Duncan et.al. PRL1996].
- Perturbative Method: QED can be treated in a perturbative way in $\alpha = e^2/(4\pi^2)$ [RM123-PRD2013]:

$$\langle O \rangle = \langle O \rangle_0 + \frac{e^2}{2} \frac{\partial^2 \langle O \rangle}{\partial e^2} \Big|_{e=0} + \mathcal{O}(\alpha^2) .$$
 (8)

The stochastic and perturbative methods gave consistent corrections [RBC/UKQCD-Lat2017].

 To control QED FV effects, QED_L prescription [Hayakawa PTP2008] is used; spatial zero-modes and the universal 1/L^{n=1,2} corrections to mass are removed [BMW Science2015], while a reflection positivity is preserved.

Introduction	Challenges and Progresses	Discussion 000000	Summary and Conclusions
OED Correction			

• Consider QCD + QED Eucridean partition function:

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}[q, \bar{q}, U] \mathcal{D}[A] O e^{-S_F[q, \bar{q}, U, A] - S_G[U]} e^{-S_\gamma[A]} .$$
(7)

- Full QCD + QED: First Come Out! [QCDSF-Prelim, talk by J. Zanotti (27 Fri, Hadron Structure)].
- Stochastic Method: Stochastic photon fields A_{μ} are generated with weight $e^{-S_{\gamma}}$ independently of gluon fields U_{μ} (electro-quenched), and multiplied, $U_{\mu}(x) \rightarrow e^{-ieq_{f}A_{\mu}(x)}U_{\mu}(x)$ [Duncan et.al. PRL1996].
- Perturbative Method: QED can be treated in a perturbative way in $\alpha = e^2/(4\pi^2)$ [RM123-PRD2013]:

$$\langle O \rangle = \langle O \rangle_0 + \frac{e^2}{2} \frac{\partial^2 \langle O \rangle}{\partial e^2} \Big|_{e=0} + \mathcal{O}(\alpha^2) .$$
 (8)

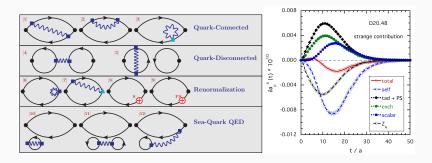
The stochastic and perturbative methods gave consistent corrections [RBC/UKQCD-Lat2017].

 To control QED FV effects, QED_L prescription [Hayakawa PTP2008] is used; spatial zero-modes and the universal 1/L^{n=1,2} corrections to mass are removed [BMW Science2015], while a reflection positivity is preserved.

Discussion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□■ のQ@

QED Correction Diagrams in Perturbative Approach



- Left: \blacksquare = vector-current, \blacktriangle = tadpole, \bigoplus = (pseudo-)scalar insersions.
- Right: [ETMc JHEP2017, talk by D. Giusti, (27 Fri, Hadron structure)] with corrections [1],[2],[3],[8] (mass retuning) and [9] (keeping maximal twist) for strange component.
- RBCUKQCD (Domain-Wall) considered [1],[2],[3],[4]; the others ~ 1/N_c or irrelevant. One must take are a double counting problem in [4] w.r.t. single-photon and additional glues [talks by RBC/UKQCD (27 Fri, Hadron Structure).]
- For diagram details, see [talk by A. Risch (24 Tue, Hadron Spectroscopy)].

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□■ のQ@

SIB + QED Corrections, Short Summary

• ETMc Preliminary $\delta a_{\mu}^{\text{LO-HVP}} \times 10^{10} = 7(2)$ (quark connected and qQED).

- BMW PRL2018 $\delta a_{\mu}^{\text{O-HVP}} \times 10^{10} = 7.8(5.1) \text{ (pheno. } (\pi^0 \gamma, \eta \gamma, \rho \omega \text{ mix, } M_{\pi^+}) \text{)}.$
- **RBC/UKQCD PRL2018** $\delta a_{\mu}^{\text{LO-HVP}} \times 10^{10} = 9.5(10.2)$ (quark connected + one disconnected and qQED. Also relevant to use tau decay input for HVP, [M. Bruno, 27 Fri Hadron Structure].)
- FNAL/HPQCD/MILC PRL2018 $\delta a_{\mu}^{\text{LO-HVP}} \times 10^{10} = 9.5(4.5)$ (Strong Isospin Breaking only).
- QCDSF Prelim: $\delta a_{\mu}^{\text{LO-HVP}}/a_{\mu}^{\text{LO-HVP}} \lesssim 1\%$ (Dynamical QED, $M_{\pi} \sim 400$ [MeV])

Discussion

Table of Contents

Introduction

- 2 Challenges and Progresses
 - Large Distance Systematics
 - Continuum Extrapolation
 - SIB/QED Corrections

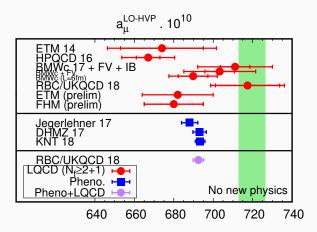
3 Discussion

- Comparisons
- Lattice QCD Combined with Phenomenology

Discussion

▲ロト ▲周 ト ▲ヨ ト ▲目 = シスペ

The obvious: a_{μ}^{LO-HVP}

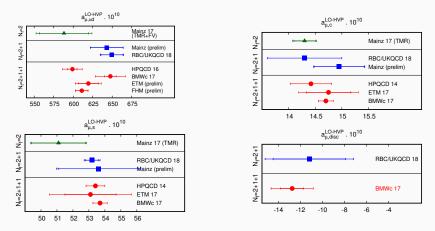


- Lattice errors $\sim 2\%$ vs phenomenology errors $\sim 0.4\%.$
- Some lattice results suggest new physics others not but all compatible with phenomenology.

Discussion

▲□▶▲□▶▲□▶▲□▶ ▲□■ のへで

$a_{\mu}^{\text{LO-HVP}}$: flavor by flavor comparison



- $a_{\mu, s, c, disc}^{\text{LO-HVP}}$ already known with high enough precision for FNAL E989
- "Disagreement" is on $a_{\mu, ud}^{\text{LO-HVP}}$

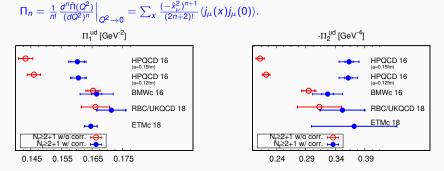
Challenges and Progresses

Discussion

Summary and Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

Derivatives of $\Pi(Q^2)$ at $Q^2 = 0$: *ud* contribution



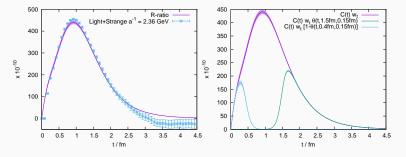
- In Pad picture, larger $\Pi_1(\Pi_2) \rightarrow$ larger (smaller) a_{μ} .
- HPQCD 16 has slightly smaller Π_1^{ud} and larger $-\Pi_2^{ud}$ than BMWc 16 and RBC/UKQCD 18 \rightarrow combine to give smaller $a_{u,ud}^{LO-HVP}$
- Suggests that HPQCD 16 has smaller C(t) for $t \sim 1$ fm but larger for $t \ge 2$ fm
- Difference comes from HPQCD 16's large corrections

Challenges and Progresses

Discussion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

Time window: lattice + phenomenology



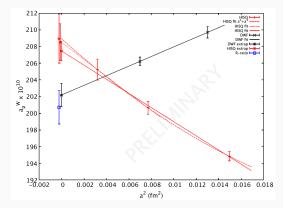
• Figure: [RBC/UKQCD-PRL2018, talk by C. Lehner and Colleages (27 Fri, Hadron Structure)]. In $a_{\mu}^{\text{IC-HVP}} = (\alpha/\pi)^2 \sum_t W(t, Q^2/m_{\mu}^2)C(t)$, consider lattice/pheno correlators; $C_{lat}(t) = \sum_{\vec{x}} \frac{1}{3} \sum_{i=1}^{3} \langle j_i(\vec{x}, t) j_i^{ud}(0) \rangle$, $C_{pheno}(t) = \frac{1}{2} \int_0^\infty ds \sqrt{s} \frac{R(s)}{3} e^{-\sqrt{s}|t|}$. $C_{lat}(t)$ may be more precise in intermediate $t \sim 1$ [fm].

- Consider the decomposition $C(t) = (C^{SD} + C^W + C^{LD})(t)$, where $(C^{SD}, C^W, C^{LD})(t) = C(t)(1 \Theta(t, t_0, \Delta), \Theta(t, t_0, \Delta) \Theta(t, t_1, \Delta), \Theta(t, t_1, \Delta))$ with the smeared step function, $\Theta(t, t', \Delta) = (1 + \tanh[(t t'/\Delta)])/2$.
- For $C^{W}(t)$, use lattice data C_{lat}^{W} . For the others, use phenomenological data $C_{pheno}^{SD/LD}$. (t_0, t_1, Δ) = (0.4, 1.0, 0.15)[fm], $a_{\mu}^{LO-HVP} = 692.5(2.7) \cdot 10^{-10}$ [RBC/UKQCD-PRL2018].

Challenges and Progresses

Discussion

Window Method: DWF vs HISQ vs Pheno.



- Fig.: T. Blum (27 Fri). Continuum extrapolation of $a_{\mu}^{W} = \sum_{t} C_{lat}^{W}(t) W(t, m_{\mu})$, where $C_{lat}^{W}(t) = C_{lat}(t)((\Theta(t, t_{0}, \Delta) \Theta(t, t_{1}, \Delta)))$ with $t_{0} = 4.0, t_{1} = 1.0, \Delta = 0.15$ [fm].
- (2+1+1) HISQ(MILC ensemble) and DWF all physical points in 5.5 [fm] boxes. HISQ and DWF shows 2-3 σ tension; lattice spacing, statistics may be responsible. The DWF result is consistent with phenomenology.

Other Important Subjects

- Lattice $(Q^2 < Q_{cut}^2)$ Perturbation $(Q^2 \ge Q_{cut}^2)$ Matching [BMW-PRL2018].
- Lattice results of Higher-Order HVP [FNAL/HPQCD/MILC, 1806.08190].
- Dual Propagator + Gounaris-Sakurai-Lüscher Propagator [ETMc-Prelim, Mainz g-2 Workshop].
- Omnès Formula for time-like pion form factor [Mainz Preliminary, talk by H. Wittig (27 Fri, Hadron Structure)].
- HVP for $\sin^2 \theta_W$ [talk by Cè Marco, (27 Fri, Hadron Structure)].

Table of Contents

Introduction

- 2 Challenges and Progresses
 - Large Distance Systematics
 - Continuum Extrapolation
 - SIB/QED Corrections

Discussion

- Comparisons
- Lattice QCD Combined with Phenomenology

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Introduction	Challenges and Progresses	Discussion 000000	Summary and Conclusions		
Summary and Conclusions					

- Lattice computation of $a_{\mu}^{\text{LO-HVP}}$ has total error $\sim 2\% \gg \sim 0.4\%$ from phenomenology. Some results are consistent with no new physics and phenomenology, others with phenomenology and new physics
- Difference comes from *ud* contribution and most probably from treatment of long-distance physics, for which many progress have been done but need more understandings.
- Comparison of *ud* time moments suggests:
 - larger intermediate-distance contribution in [BMWc-PRL2018 and RBC/UKQCD-PRL2018]
 - larger long-distance contribution in [HPQCD-PRD2017], associated with model description
- With current lattice results, too early to make detailed comparisons with dispersive approach. However, combination of lattice and phenomenology [RBC/UKQCD PRL18, T. Blum Preliminary] may deliver a reliable 0.2% a_{μ}^{LO-HVP} .
- Lattice combined with Experimental Data: Next Talk by Marina.

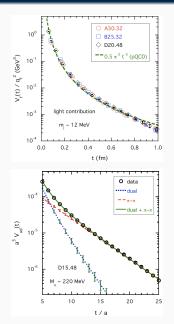
Introduction	Challenges and Progresses	Discussion 000000	Summary and Conclusions		
Summary and Conclusions					

- Lattice computation of $a_{\mu}^{\text{LO-HVP}}$ has total error $\sim 2\% \gg \sim 0.4\%$ from phenomenology. Some results are consistent with no new physics and phenomenology, others with phenomenology and new physics
- Difference comes from *ud* contribution and most probably from treatment of long-distance physics, for which many progress have been done but need more understandings.
- Comparison of *ud* time moments suggests:
 - larger intermediate-distance contribution in [BMWc-PRL2018 and RBC/UKQCD-PRL2018]
 - larger long-distance contribution in [HPQCD-PRD2017], associated with model description
- With current lattice results, too early to make detailed comparisons with dispersive approach. However, combination of lattice and phenomenology [RBC/UKQCD PRL18, T. Blum Preliminary] may deliver a reliable 0.2% a^{LO-HVP}_µ.
- Lattice combined with Experimental Data: Next Talk by Marina.

Backups

Table of Contents

Large Distance Control (GSL + SVZ) [ETMc Preliminary]



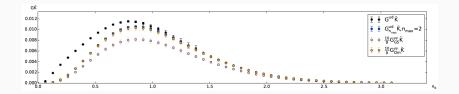
- Top panel [ETMc JHEP2017]: Vector-current correlator data are well described by 1-loop QCD up to $1 fm > \hbar c / \Lambda_{QCD}$. This was interpreted as the onset of SVZ Quark-Hadron Duality [NPB1979].
- Motivated by the duality, consider the following expression for the vector-current correlator,

 $V_{dual}(t) = rac{5R_{dual}}{72\pi^2} \int_{s_{dual}}^{\infty} ds \sqrt{s} e^{-\sqrt{s}t} R^{1I-QCD}(s) \; ,$

where, $R^{1l-QCD}(s) = (1 - \frac{4m_{ud}^2}{s})^{1/2}(1 + \frac{2m_{ud}^2}{s})$.

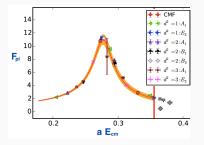
- This expression differs from 1-loop QCD by two fit params (R_{dual}, s_{dual}), and combined with 2-pion correlator $V_{\pi\pi}$ constructed via Gounaris-Sakurai F_{π}^{GS} .
- Bottom panel [ETMc Preliminary]: $(V_{dual} + V_{\pi\pi})$ describes well lattice data whole range. FV effects and other systematics can be studied with this.

Large Distance Control Omnès [Mainz Preliminary]



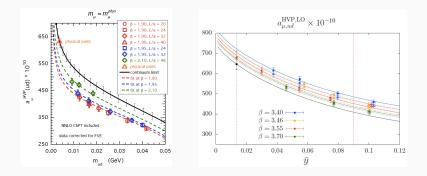
Omnès Formula (Nuovo Cimento (1958))

- Figs: Mainz Preliminary, Thanks to F.Erben (GSI-HIM).
- $F_{\pi}(\omega) = \exp\left[\omega^2 P_{n-1}(\omega^2) + \frac{\omega^{2n}}{\pi} \int_{4M_{\pi}^2}^{\infty} ds \frac{\delta_1(s)}{s^n(s-\omega^2-i\epsilon)}\right].$
- Lattice data are used for *F*_π and δ₁ and fit parameters are in the Polynomial *P*_{n-1}.
- Omnès gives a better description than GS in the middle range.



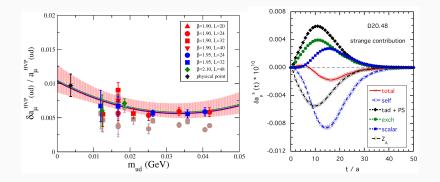
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○◆

Continuum Extrapolation and Mass Dependence



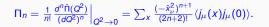
- Left: ETM Preliminary. From slide by S.Simula in Mainz g-2 workshop 2018. The continuum limit line (black-solid) becomes sensitive to m_{ud} at physical point.
- **Right:** Mainz Preliminary. From slide by H.Meyer in Mainz g-2 workshop 2018. $\tilde{y} = (M_{\pi}/(4\pi f_{\pi}))^2$.

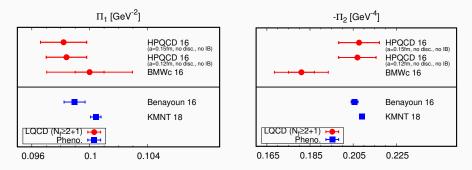
ISB + QED Corrections, [ETMc JHEP2017 and Preliminary]



- Left: ETMc Preliminary, (SIB + QED) corrections for light components. The chiral/continuum-extrapolation is investigated with FV effects taken account.
- **Right:** ETMc JHEP2017, (SIB + QED) corrections for strange component integrand for each diagrams shown previous pages. The charm is also investigated. In both, partial cancellations among the various diagrams.

Comparison of derivatives of $\Pi(Q^2)$ at $Q^2 = 0$





BMWc 16 has Π_1 comparable to phenomenology but smaller $-\Pi_2$

 \rightarrow suggests that BMWc (and RBC/UKQCD) has ${\it C}(t)$ slightly larger for $t\sim$ 1 fm and smaller for $t\gtrsim 2~{\rm fm}$