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Functional Renormalization Group (FRG)
The FRG is a reformulation of QFT; study non-linear response
of functionals to scale dependent mode modulation – in
functional integral replace action s[ϕ]→ s[ϕ] + 1

2ϕ · Rk · ϕ.
Rk suppresses low energy modes.

Modern formulations focus on the Legendre transform of the
Polchinski equation, determining the Legendre Effective (aka
Effective Average) Action.

Legendre Effective Action Method
Wetterich, Christof.

“Exact evolution equation for the effective potential.”
Physics Letters B 301.1 (1993): 90-94.

∂k Γk [φ] =
1
2

Tr
(

∂k Rk

Γ
(2)
k [φ] + Rk

)
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Successes of FRG

• New approximation schemes: no expansion in
conventional coupling constants.

• Consistent with known results: ε expansion, large N
expansion, . . .

• Excellent effort to outcome ratio: relatively little effort yields
fixed points, critical exponents, Wilson-type β-functions,
some access to momentum-dependent correlation
functions.

• Computations feasible for any spacetime dimension D.
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Weaknesses of FRG
1 Wetterich equation solved via truncation Ansätze

Γk [φ] =
∑

n

cn,kσn[φ]

However, exact Γ[φ] is highly non-local, no structural
characterization known. In particular, solution of Γk [φ] flow
eq. via (non-series) truncations is ad-hoc, no clear ordering
principle. Non-local terms, e.g. φ∂−2φ, (∂φ)2φ5∂−10φ?

2 To solve Wetterich equation, need initial condition(s)
typically at k = ΛUV (it may be ill-posed at k = ΛUV ).
With standard choice: Γk=ΛUV [φ] = sbare[φ], one makes
implicit reference to perturbation theory.

3 No statement about asymptotic correctness or
convergence of truncations is known.

Linked Cluster Expansions for the Functional Renormalization Group Banerjee



Remedying the Weaknesses
• Fix Weakness 2: use ultralocal+linking split of action in

lattice formulation

s[ϕ] =
∑

x

s0(ϕx )
ultralocal

+
1
2
ϕ · ` · ϕ

linking
,

and specify ultralocal initial data at some k = k0 via exact
single site integrals depending on s0(ϕ) only (choose Rk
s.t. Rk=k0 = −`) [Dupuis-Machado, 2010].

• We address Weakness 1 via linked cluster expansion of
Γk [φ] via `→ `+ Rk (potentially long ranged).

• Perspective on Weakness 3: rigorous proofs for
convergence of linked cluster expansion known in many
other cases.
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Linked Cluster Expansion (LCE) and the FRG
On lattice write action s[ϕ] =

∑
x s0(ϕx )

ultralocal
+ κ

2ϕ · ` · ϕ
linking

.

LCE is expansion of quantities in powers of κ, in particular

Γκ[φ] =
∞∑
l=0

κl Γl [φ].

FRGs entail closed recursion relations for Γls.

Obtain solution to Wetterich eq. from solution to LCE recursion:

Γk [φ] = Γκ[φ]

∣∣∣∣
`→`+Rk

However, direct iteration of recursion impractical beyond O(κ6)

Solve recursions with GRAPHICAL METHODS instead.
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Γκ LCE Graph Rules

Goal: Convert known LCE graph rules for Generating
Functional Wκ[J] [Wortis, 1974] into ones applicable to Γκ[φ]
LCE.

Γκ[φ] related to Wκ[J] by modified Legendre transform:

Γκ[φ] := φ · Jκ[φ]−Wκ[Jκ[φ]]− κ

2
φ · ` · φ , δWκ

δJ
(
Jκ[φ]

)
= φ .

Insert κ-series expansions for Γκ, Wκ, and Jκ, get mixed Γm
(m < l), Wm (m ≤ l) recursion (∗) for Γl .

Our result: exact graph solution of the recursion.
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Connected and One-Line-Irreducible Graphs
Wκ[J] LCE graph expansion→ Connected graphs.

Γκ[φ] LCE graph expansion→ One-Line-Irreducible (or 1PI)
graphs.

(a) (b)

Analogous to perturbation theory.
Considerable net computational gain:

l |Cl | |Ll |
2 2 1
3 5 2
4 12 4
5 33 8
6 100 22

Table 1: Number of connected, one-line irreducible graphs with l
edges.
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Theorem

For any l ≥ 2 the solution of the recursion (∗) is given by

Γl [φ] =
∑

L=(V ,E)∈L

(−)l+1

Sym(L)

∏
e∈E

`s(e),t(e)

∏
v∈V

µΓ(v |L)

µΓ(v |L) =

|I(v)|∑
n=1

∑
T∈T (B(v),n)

(−)s(T ) |Perm(B(v))|
Sym(T )

µ(T ) .

• At order l draw all topologically distinct 1PI graphs with l
edges.
E.g. The following graphs contribute to Γ4:

, , , .
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Theorem
For any l ≥ 2 the solution of the recursion (∗) is given by

Γl [φ] =
∑

L=(V ,E)∈L

(−)l+1

Sym(L)

∏
e∈E

`s(e),t(e)

∏
v∈V

µΓ(v |L)

µΓ(v |L) =

|I(v)|∑
n=1

∑
T∈T (B(v),n)

(−)s(T ) |Perm(B(v))|
Sym(T )

µ(T ) .

• At order l draw all topologically distinct 1PI graphs with l
edges.
E.g. The following graphs contribute to Γ4:

, , , .
• Divide by the symmetry factor Sym(L) of the graph.
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Theorem
For any l ≥ 2 the solution of the recursion (∗) is given by

Γl [φ] =
∑

L=(V ,E)∈L

(−)l+1

Sym(L)

∏
e∈E

`s(e),t(e)

∏
v∈V

µΓ(v |L)

µΓ(v |L) =

|I(v)|∑
n=1

∑
T∈T (B(v),n)

(−)s(T ) |Perm(B(v))|
Sym(T )

µ(T ) .

• At order l draw all topologically distinct 1PI graphs with l
edges.
E.g. The following graphs contribute to Γ4:

1
48 , 1

4 , 1
8 , 1

8 .
• Divide by the symmetry factor Sym(L) of the graph.
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• In a graph L, for each edge connecting vertices v , v ′ write
−`v ,v ′ , and for each vertex v a vertex weight µΓ(v |L).

µΓ(v |L) is a finite sum of products of exactly computable
single site functions $n(φ), γn(φ), determined by the single
site action action s0(ϕ).

µΓ(v |L) can be obtained as a sum over labeled tree graphs.
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• In a graph L, for each edge connecting vertices v , v ′ write
−`v ,v ′ , and for each vertex v a vertex weight µΓ(v |L).

µΓ(v |L) is a finite sum of products of exactly computable
single site functions $n(φ), γn(φ), determined by the single
site action action s0(ϕ).

v1 v2 v3

µΓ(v1|L) = $2(φv1),

µΓ(v2|L) = $4(φv2)− γ2(φv2)$3(φv2)2,

µΓ(v3|L) = $2(φv3).

µΓ(v |L) can be obtained as a sum over labeled tree graphs.

Linked Cluster Expansions for the Functional Renormalization Group Banerjee



• In a graph L, for each edge connecting vertices v , v ′ write
−`v ,v ′ , and for each vertex v a vertex weight µΓ(v |L).

µΓ(v |L) is a finite sum of products of exactly computable
single site functions $n(φ), γn(φ), determined by the single
site action action s0(ϕ).

v1 v2 v3

µΓ(v1|L) = $2(φv1),

µΓ(v2|L) = $4(φv2)− γ2(φv2)$3(φv2)2,

µΓ(v3|L) = $2(φv3).

µΓ(v |L) can be obtained as a sum over labeled tree graphs.
• The µΓ(v) data can be stored in a look-up table.

Proof ≈ 40 pages, R.B. and M.N. under review.
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Critical Behavior of ϕ4 Theory in Four Dimensions
Reparametrize ϕ4 action on lattice:

s[ϕ] =
∑

x

(
ϕ2

x + λ(ϕ2
x − 1)2 − λ

)
ultralocal

− κ

2

∑
x,y

ϕx`xyϕy

hopping

• Critical line κc(λ) yields continuum limit:
correlation length ξ →∞⇐⇒ mR = 1/ξ → 0.

• κc(λ) obtained by Lüscher-Weisz [Lüscher-Weisz, 1987]
using LCE of generalized susceptibilities, e.g.

χ2 :=
∑

x < ϕx ϕ0 >
c=
∑

l≥0 κ
lχ2,l .

Considerable effort required.

FRG to LCE correspondence yields dramatic simplification.
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FRG Perspective

Wetterich eq. can be solved on lattice by emulating LCE

Γk [φ] = Γκ[φ]
∣∣
`→`+Rk

=
∞∑

l=0

κlΓk ,l [φ]

• Critical line determined by bulk quantities: use

Γk [φ]
∣∣
φ=ϕ=const = Uk (ϕ) =

∞∑
l=0

κlUk ,l(ϕ)

itself as bulk quantity.
• Expansion and resummation of κ-series commutes with

homogenization in φ.
• Use homogenized FRG, i.e. the Local Potential

Approximation (LPA) to resum κ-series.
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Critical line from LPA

Rescale field and potential to obtain dimensionless LPA eq.

k∂kVk (ϕ) = −4Vk (ϕ) + ϕV ′k (ϕ) +
vol(k)

1 + V ′′k (ϕ)
.

Base continuum limit directly on Gaussian fixed point.

Expand Vk (ϕ) =
∑N

i=0
g2i (k)
(2i)! ϕ

2i , get closed system of N coupled
ODEs.

In 4 dim. find only Gaussian fixed point with g∗2i = 0 as k → 0.

Inject bare data (λ, κ) at ultra-local scale k = k0, numerically
integrate to k = 0 to reach fixed point.
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Shooting to the Fixed Point
Inject bare data (λ, κ) via ultralocal intial conditions g2i(k = k0),
employ shooting technique for ODEs to reach fixed point.

0.2 0.4 0.6 0.8 1.0
s

-1.0

-0.5

0.5

1.0

Figure 1: Flow of g2(s),g4(s),g8(s),g10(s) for
(λ, κ) = (4.3303,0.091693). Red: g2, Blue: g4, Orange: g6, Black:
g8, Dashed: g10. s := k/k0
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κc(λ) Results and Comparsion
Compare our results to Lüscher-Weisz benchmark:

○

○○○
○○

○
○ ○

○

○

○

○

1 2 3 4
λ

0.10

0.11

0.12

0.13

0.14

κc

Figure 2: Critical line κc(λ) computed from LPA (Red) compared to
the benchmark [Lüscher-Weisz, 1987] (Black).
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κc(λ) Results and Comparsion
λ κc,LW κc ∆κc
0 0.1250(1) 0.1250 0

2.4841×10−2 0.1294(1) 0.12928(3) 9.66× 10−4

3.5562×10−2 0.1308(1) 0.13068(3) 9.48× 10−4

1.3418×10−1 0.1385(1) 0.1381(4) 2.82× 10−3

2.7538×10−1 0.1421(1) 0.1416(4) 3.36× 10−3

4.8548×10−1 0.1418(1) 0.1414(4) 2.64× 10−3

7.7841×10−1 0.1376(1) 0.1374(4) 1.30× 10−3

1.7320 0.1194(1) 0.1190(5) 3.61× 10−3

2.5836 0.1067(1) 0.1066(5) 3.94× 10−3

4.3303 0.09220(9) 0.0917(7) 5.51× 10−3

∞ (LW) or 100 (here) 0.07475(7) 0.07225(9) 3.34× 10−2

Table 2: Critical values for φ4
4 theory in D = 4. Left, κc,LW from

Lüscher-Weisz [3]. Right κc from LPA. The relative deviation is
defined as ∆κc = (κc,LW − κc)/κc,LW .

Linked Cluster Expansions for the Functional Renormalization Group Banerjee



Remarks on the interplay between LCE and FRG

There is a fruitful interplay between:

LCE for Γκ[φ] with exact
graph sum formula for l th

order.

Solution Γk [φ] of Wetterich
eq. with ultralocal initial data.

LHS is amenable to convergence proofs, yields correlation
functions, & new types of approximations via subsums.

RHS governs partial resummations, e.g. can obtain
contributions at fixed order in ~. Resumming polygons gives:

ΓO(~)
κ =

1
2

Tr
[

ln(1 + κ`$2)
]

Linked Cluster Expansions for the Functional Renormalization Group Banerjee



Spatial LCE in Friedmann-Lemaı̂tre spacetimes
Consider flat FL spacetimes ds2 = −N(t)2dt2 + a(t)2δabdxadxb.
• Keep t real and continuous to avoid issues with Wick

rotation and discretization of a(t).
• Discretize d-dim. space on hypercubical lattice with

spacing as.
Decompose scalar field action into spatially ultralocal plus
linking term:

S[φ] =
∑
x∈Σ

s[ad/2
s φ(·, x)] + κ̌V[φ],

s[ϕ] =

∫ t2

t1
dt
{ ad

2N
(∂tϕ)2 − Nad−2 d

a2
s
ϕ2 − NadU(ϕ)

}
(t) ,

V[φ] =
ad−2

s

2

∫ t2

t1
dt N(t)a(t)d−2

∑
x ,y

φ(t , x)`xyφ(t , y) .
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Spatial LCE for Generating Functional W[J]

Postpone solution of real time QM on FL. Assume generating
functional ω[] of QM and its moments to be known.

Set

ωn(tn, . . . , t1|x) :=
δnω[]

δ(tn) . . . δ(t1)

∣∣∣
(·)7→ad/2

s J(·,x)
,

and W0[J] =
∑

x ω[ad/2
s J(·, x)].

Can formulate graph rules for LCE of
W [J] = W0[J] +

∑
l≥1 κ̌

lWl [J] in QFT in terms of ωn’s.

Linked Cluster Expansions for the Functional Renormalization Group Banerjee



Result: Wl [J] is a sum of contributions over connected graphs
with temporal measure dν(t) = N(t)a(t)2d−2dt .

E.g.

W2[J] = + ,

= a−4
s

∫
dν(t1)dν(t2)

{ i~
2

∑
x1,x2

(`x1x2)2 ω2(t1, t2|x1)ω2(t2, t1|x2)

+
∑

x1,x2,x3

`x1x2`x2x3 ω1(t1|x1)ω2(t1, t2|x2)ω1(t2|x3)
}
.
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Spatial LCE for Legendre Effective Action

Aim at analogous expansion for Legendre effective action
Γ[φ] = Γ0[φ] +

∑
l≥1 κ̌

lΓl [φ] in terms of (fewer) 1PI graphs.

Write γ[ϕ] for Legendre transform of ω[] and
Γ0[φ] :=

∑
x γ[ad/2

s φ(·, x)]. Set
$n(tn, . . . , t1|x) = ωn(tn, . . . , t1|x)|

(·) 7→ad/2
s (∂γ/∂ϕ)(ad/2

s φ(·,x))
.

In the absence of temporal discretization Legendre transform of
W [J] could be ill-defined due to $n at coinciding t ’s.

Corollary to main Theorem: Γl [φ] in spatial LCE are
well-defined for all l ≥ 1, only integrability of $n’s short t
singularities wrt dν(t) is required.
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Graph rules for Γl [φ] in Spatial LCE

The graph rules for the covariant Euclidean case carry over
with the following changes:
• A vertex v of degree n is attributed a factor µΓ(en, . . . ,e1|v)

where e1, . . . ,en are the edges incident on v .
• Embed the 1PI graph into Λ|V | × R|E | by associating each

vertex with a unique spatial lattice point, i 7→ xi ∈ Λ,
i = 1, . . . , |V |. Associate to each edge label a unique real
time variable, e 7→ t ∈ R , e = 1, . . . , l = |E |. Perform an
unconstrained sum x1, x2, . . . , x|V | and an unconstrained
integration dν(t1), . . . ,dν(tl).
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Modified weights in spatial LCE for Γl [φ]

Recall the vertex v in the pair of glasses graph at l = 4:
v

The weight of the labeled vertex v now is

$4(t1, t2, t3, t4|v)−
∫

ds1ds2$3(t1, t2, s1|v)γ2(s1, s2|v)$3(s2, t3, t4|v) ,

where t1, t2, t3, t4 are the time variables associated to the edges.

Combinatorics of tree graph formula in Theorem is unchanged.
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Conclusions and Outlook
Spatial LCE on Friedmann-Lemaı̂tre spacetimes brings many
cosmological issues into the realm of non-perturbative lattice
techniques, e.g.

• The dynamical status of spatial homogeneity in the early
universe. In perturbation theory only small deviations from
the assumed spatially homogeneous initial state can be
explored, while in the present setting any ultralocal state
can be dynamically evolved.

• Interacting ground states (as opposed to Bunch-Davies),
their VEVs like Γ[φ = const .], and their relation to the
cosmological constant problem.

• (Non-)triviality of scalar QFTs in Friedmann-Lemaı̂tre
spacetimes.
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