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Introduction Strategy Results Conclusions

Physical context

Charmonium
Charmonium is a bound state cc̄

The high mass of a c quark allows a
description of cc̄ states in terms of
non-relativistic potential models and
relativistic corrections (spin-orbit and
spin-spin forces)

→ Accurate measurements of mass
give insight into the confining QCD
potential.

Experiments discovered a large number
of unexpected charmonium-like states,
many of which are poorly understood.
This highlights the need for a more
complete theoretical understanding
from first principles.
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Physical context

Typical Lattice QCD simulations
Nf = 2 + 1 QCD (light quarks)

pros

good approximation of QCD at energies much below the charm
quark mass, Mc ≈ 1.3 GeV (decoupling of heavy quarks), good
agreement with experiments
it can also be used for charm physics, provided that charm loop
effects are small (goal of our work)

cons

unknown systematical errors

Nf = 2 + 1 + 1 QCD (light quarks + charm quark)

pros

provide a better understanding of charm physics

cons

multi-scale problem (Lmπ � 1 and amJ/ψ � 1), simulation costs
charm sea effects require high precision to be resolved (see Refs.
[M. Bruno et al.: arXiv:1410.8374] and [F. Knechtli et al.: arXiv:1511.0491])
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Physical context

Goals and strategy

Main goals of this project

1 Evaluate the impact of a dynamical charm quark on various
quantities, like the hyperfine splitting, quark masses and
meson decay constants, in the continuum limit.

2 Study of lattice artifacts, exploring six lattice spacings in the
range 0.02 fm . a . 0.10 fm (λmJ/ψ

= 1
mJ/ψ

≈ 0.064 fm)

Simplified setup

As we aim at a precision that cannot be currently reached in Full
QCD, we consider a model

Nf = 2 QCD (with two degenerate charm quarks)

and we compare it to Nf = 0 QCD (quenched QCD)

The absence of light quarks allows us to reach extremely fine lattice
spacings which are crucial for reliable continuum extrapolations.
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Numerical setup

Matching
Decoupling

Nf = 2 QCD at M = Mc can be described by an effective
Lagrangian for E � Mc [Weinberg, Phys. Lett. B91 (1980)]

Ldec = LNf =0 +
1

M2
c

L6 + · · ·

To match the two theories, we need to specify a value of the
coupling at some scale or equivalently the Λ parameter.
After matching, a low energy hadronic observable mhad satisfies

mhad (Mc )|Nf =2 = mhad |Nf =0 +O
(

Λ2

M2
c

)
we use mhad = 1/

√
t0 [M. Lüscher, 1006.4518] to match the two theories

Fixing the charm quark mass Mc

to compare Nf = 0 and Nf = 2 QCD we fix Mc such that
√
t0mηc |Nf =2 =

√
t0mηc |Nf =0 = 1.8075, (≈ physical mηc )
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Numerical setup

Ensembles
T
a
×

(
L
a

)3
β a[fm] κ aµ M/Λ t0/a2

96 × 243 5.300 0.097 0.135943 0.36151 4.87 1.23950(85)

120 × 323 5.500 0.051 0.136638 0.165997 4.87 4.4730(95)

192 × 483 5.600 0.042 0.136710 0.130949 4.87 6.609(15)

120 × 323 5.700 0.036 0.136698 0.113200 4.87 9.104(36)

192 × 483 5.880 0.028 0.136509 0.087626 4.87 15.622(62)

192 × 483 6.000 0.023 0.136335 0.072557 4.87 22.39(12)

120 × 323 6.100 0.052 – – ∞ 4.4329(32)

120 × 323 6.340 0.036 – – ∞ 9.034(29)

192 × 483 6.672 0.023 – – ∞ 21.924(81)

192 × 643 6.900 0.017 – – ∞ 39.41(15)

SG : Wilson’s plaquette gauge action

SF : clover improved doublet of twisted mass fermions at maximal
twist

Open boundaries in time, periodic in space

For further details, see [F. Knechtli et al., 1706.04982]

Finite volume check

We use L/
√
t0 > 10 and LmPS � 4: negligible finite volume effects.
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Meson and quark masses

Effective mass
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we focus only on iso-triplet operators (no disconnected diagrams)

f (x0, y0) = a6

L3

∑
x,y〈O(x0, x)O†(y0, y)〉

O ∈ {c̄ ′1γ5c
′
2︸ ︷︷ ︸

mηc

, c̄ ′1γic
′
2︸ ︷︷ ︸

mJ/ψ

, · · · } (physical basis)

ameff
(
x0 + a

2

)
= log

(
f (x0,y0)

f (x0+a,y0)

)
(x0−y0)/a�1−−−−−−−−→ meff

(
x0 + a

2

)
≈ m
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Meson and quark masses

Study of lattice artifacts
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If 1% precision (or better) is needed, continuum extrapolations linear
in a2 seem unsafe for lattice spacings 0.06 fm . a . 0.10 fm.

Constant fit (0.02 . a/fm . 0.03) ≈ linear fit in a2 (a . 0.05 fm)
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Meson and quark masses

Continuum extrapolation of mJ/ψ

0 0.05 0.1 0.15 0.2
1.88

1.89

1.9

1.91

1.92

Thanks to lattice spacings a . 0.05 fm continuum extrapolations
linear in a2 are under control

No charm sea effects resolvable at a precision of 0.1%
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Meson and quark masses

Hyperfine splitting: (mJ/ψ −mηc
)/mηc
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0.035
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Quantity with large cutoff effects, see [Y-G. Cho et al.,1504.01630]

Light sea quarks, disconnected contributions and electromagnetism
are presumably responsible for the deviation to physical number

No charm sea effects resolvable at a precision of 2%
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Meson and quark masses

RGI mass
m̄ = 1

ZP

√
µ2 + Z 2

Am
2
PCAC

Nf = 2

1 ZP ,M/m̄
[P. Fritzsch et al.: arXiv:1205.5380]

2 ZA

[M. Della Morte et al.: arXiv:0505026]

Nf = 0

1 ZP ,M/m̄
[A. Jüttner: arXiv:0503040]

2 ZA

[M. Lüscher et al.: arXiv:9611015]
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the running masses m̄ are not renormalized at the same scale, but
from M/m̄ we can determine the RGI mass Mc , whose continuum
values are comparable

the relative size of charm sea effects is ≈ 5%
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Decay constants

Meson decay constants in twisted mass QCD
fηc

In twisted mass QCD we can define the pseudo-scalar decay
constant fηc through [K. Jansen et al: arXiv:0312013]

fηcm
2
ηc
≡ 2µ〈0|c̄1γ5c2|ηc〉 ≡ 2µ〈0|P|ηc〉

The renormalization factors of the pseudo-scalar density ZP and Zµ
obey ZPZµ = 1 → we can determine fηc without the need of any
renormalization factor [R. Frezzotti et al: arXiv:0101001], [R. Frezzotti et al: arXiv:0104014]

fJ/ψ

Continuum definition: 〈0|c̄ ′1γic
′
2|J/ψ〉 = 〈0|V ′i |J/ψ〉 = εi fJ/ψmJ/ψ

〈0|V ′i |J/ψ〉phys = 〈0|Ai |J/ψ〉twisted (on a lattice we need ZA)
[K. Jansen et al: arXiv:0906.4720]

Dealing with open boundary conditions

With OB conditions, we need to take care of the boundary effects.
We follow the strategy described in [M. Bruno et al: arXiv:1608.08900]
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Decay constants

Computation of fηc
: example for Nf = 2 QCD, β = 5.7

40 50 60 70 80 90
0.1

0.15

0.2

0.25

R(x0, y0) =
√
|fPP (x0,y0)fPP (x0,T−y0)|

fPP (T−y0,y0) , with fPP = a6

L3

∑
x,y〈P(x)P†(y)〉

R(x0, y0) ∝ fηc if 0� x0 � T .

Speaker: S. Cal̀ı Lattice 2018

Comparison between models with and without dynamical charm quarks 13 / 16



Introduction Strategy Results Conclusions

Decay constants

Preliminary results for fηc
and fJ/ψ
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cutoff effects look milder in fJ/ψ

charm sea effects seem small

increase statistics and explore other lattice spacings
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Summary and Outlook

Summary

Conclusions

Dynamical charm effects:

1 not resolvable in charmonium masses (. 0.1% in
√
t0mJ/ψ) and in

the hyperfine splitting (. 2% in (mJ/ψ −mηc )/mηc )
2 considerable in the RGI mass (≈ 5%)
3 seem to be small in the mesons decay constants, but further

investigations are needed

Lattice artifacts for charmonium masses:

1 O(a2) below a = 0.05 fm
2 linear extrapolations in a2 for 0.06 fm < a < 0.10 fm seem unsafe

Future plans

Increase the statistics and explore more lattice spacings for the decay
constants of the mesons ηc and J/ψ → more accurate results and
study of the lattice artifacts
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Summary and Outlook

Thank you for your attention
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Backup slides

Dynamical Ensembles
Action

SG : Wilson’s plaquette gauge action

SF : clover improved doublet of twisted mass fermions at maximal
twist

Open boundaries in time, periodic in space

Nf = 2

β ∈ {5.3, 5.5, 5.6, 5.7, 5.88, 6.0}, 0.02 fm . a . 0.10 fm

a is determined through the hadronic scale L1 ≈ 0.4 fm, which is
defined at mPCAC = 0 → Standard fermions and TM fermions are
equivalent [M. Blossier et al.: arXiv:1203.6516], [P. Fritzsch et al.: arXiv:1205.5380]

aµ = Zp × M
Λ2
× Λ2L1 × m̄

M ×
a

L1
, with M

Λ2
= 4.87

κc interpolation of [P. Fritzsch et al.: arXiv:1205.5380], [P. Fritzsch et al.: arXiv:1508.0693]

csw [K. Jansen and R. Sommer: arXiv:hep-lat/9709022]
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Backup slides

Description of the matching procedure
Matching

We compare the continuum limits of several quantities in Nf = 0
and in Nf = 2 QCD.

The comparison is done at the mass point where
√
t0mηc = 1.8075,

which corresponds to the value obtained in Nf = 2 QCD with our
finest lattice (β = 6.0).

Nf = 0 QCD

3 values of µ → we determine µ? corresponding to the matching
point through interpolation.

Nf = 2 QCD

µ of the simulation → quantity R and its error δR

Compute dR/daµ

Determine µ? such that:
√
t0mηc + (aµ? − aµ)

d
√

t0mηc

daµ ≡ 1.8075

Find R? at the tuning point using: R? ≡ R + (aµ? − aµ) dR
daµ
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Backup slides

Meson correlation functions and twisted mass derivatives
We focus on

1 masses and hyperfine splitting: R =
√
t0mηc ,

√
t0mJ/ψ,

mJ/ψ−mηc

mηc

2 quark masses: R =
√
t0m̄,

√
t0Mc

3 decay constants: R =
√
t0fηc ,

√
t0fJ/ψ

R is extracted from the zero-momentum correlation function

f (x0, y0) =
a6

L3

∑
x,y

〈J(x0, x)J†(y0, y)〉, J ∈

physical basis︷ ︸︸ ︷
{c̄ ′1γ5c

′
2︸ ︷︷ ︸

mηc

, c̄ ′1γic
′
2︸ ︷︷ ︸

mJ/ψ

, · · · }

In Nf = 2 QCD, to find R? at the tuning point µ? we need to

compute df (x0,y0)
dµ and dS

dµ

We determine f (x0, y0), df (x0, y0)/dµ and dS/dµ using stochastic
sources
〈ηαa(u)〉noise = 0, 〈η?αa(u)ηβb(v)〉noise = δu0x0δv0x0δuvδαβδab
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Backup slides

Dealing with open boundary conditions

With OB, the two-point functions fPP = a6

L3

∑
x,y〈P(x)P†(y)〉 and

fAi Ai = a6

L3

∑
x,y〈Ai (x)A†i (y)〉 have the following asymptotic behavior

1 fPP = k1(y0)〈0|P|ηc〉e−mηc (x0−y0),
2 fAi Ai = k2(y0)〈0|Ai |J/ψ〉e−mJ/ψ(x0−y0),

where k1(y0) and k2(y0) are two amplitudes that depend on the
distance from the boundary.

To extract the needed matrix elements and remove k1(y0) and
k1(y0), we compute the ratios [M. Bruno et al: arXiv:1608.08900]

1 Rηc =
√
|fPP (x0,y0)fPP (x0,T−y0)|

fPP (T−y0,y0)
= 〈0|P|ηc〉√

2mηc

2 RJ/ψ =

√
|fAi Ai

(x0,y0)fAi Ai
(x0,T−y0)|

fAi Ai
(T−y0,y0)

= 〈0|Ai |J/ψ〉√
2mJ/ψ
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