Nucleon electromagnetic form factors at high- Q^2 from Wilson-clover fermions

Christos Kallidonis

Department of Physics and Astronomy
Stony Brook University

with M. Engelhardt, J. Green, S. Meinel, J. Negele, A. Pochinsky, S. Syritsyn

The 36th Annual International Symposium on Lattice Field Theory
Michigan State University
East Lansing, MI, USA

Outline

- Introduction Motivation
- Lattice setup and methodology
- Form factor results
- Summary and outlook

Motivation

Nucleon electric and magnetic form factors are important probes of its internal structure

High-momentum transfer calculation from first principles:

- test validity of pQCD predictions, quark models and phenomenology
- required for DVCS measurements (EIC@BNL), probing GPDs
- nucleon FFs: good framework to test high-momentum region on the lattice

Rich experimental activity

- Super-BigBite Spectrometer at JLab Hall A S.B.S Program, updated 12-GeV CEBAF accelerator @ JLab
 - elastic *ep* scattering experiments up to $Q^2 \sim 18 \; {\rm GeV}^2$
 - G_E/G_M dependence
 - scaling of F_1/F_2 at $Q^2 \to \infty$
 - individual contributions from up- and down-quarks
 - finalized/published results in ~ 5yr

Simulation details

- two Nf=2+1 Wilson-clover ensembles, produced by JLab lattice group
- different lattice volumes, similar lattice spacing

D5-ensemble: $\beta = 6.3$, $a = 0.094$ fm, $a^{-1} = 2.10$ GeV		
$32^3 \times 64$, $L = 3.01$ fm	$a\mu_l$	-0.2390
	$a\mu_s$	-0.2050
	κ	0.132943
	$C_{ m sw}$	1.205366
	$m_{\pi} \; (\mathrm{MeV})$	280
	$m_{\pi}L$	4.26
	Statistics	86144
D6-ensemble: $\beta = 6.3$, $a = 0.091$ fm, $a^{-1} = 2.17$ GeV		
$48^3 \times 96, L = 4.37 \text{ fm}$	$a\mu_l$	-0.2416
	$a\mu_s$	-0.2050
	κ	0.133035
	$C_{ m sw}$	1.205366
	$m_{\pi} \; (\mathrm{MeV})$	170
	$m_{\pi}L$	3.76
	Statistics	50176

- Computational resources: BNL Institutional Cluster, USQCD 2017 allocation
- Calculation: Qlua interface: QUDA-MG for propagators, contractions on GPU

 A.V. Pochinksy

 S. Syritsyn, C.K.

Form factor decomposition

Matrix element of the vector current: $V_{\mu}(x) = \psi(x)\gamma_{\mu}\psi(x)$

$$\mathcal{V}_{\mu}(x) = \bar{\psi}(x)\gamma_{\mu}\psi(x)$$

$$\langle N(p',s)|\mathcal{V}_{\mu}|N(p,s)\rangle = \sqrt{\frac{m_N^2}{E_N(\vec{p'})E_N(\vec{p})}}\bar{u}_N(p',s) \left[\gamma_{\mu} F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_N} F_2(q^2)\right] u_N(p,s)$$
Dirac
form factor
$$Pauli$$
form factor

Sachs Electric and Magnetic form factors:

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{(2m_N)^2} F_2(Q^2)$$
 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

On the lattice:

Three-point correlation function

- seq. propagators: inversion through sink

$$G_{\mu}(\Gamma, \vec{p}', \vec{q}, t_s, t_{\rm ins}) = \sum_{\vec{x}_s, \vec{x}_{\rm ins}} e^{-i\vec{p}' \cdot (\vec{x}_s - \vec{x}_0)} e^{i\vec{q} \cdot (\vec{x}_{\rm ins} - \vec{x}_0)} \Gamma_{\beta\alpha} \langle \mathcal{N}_{\alpha}(\vec{x}_s, t_s) \mathcal{V}_{\mu}(\vec{x}_{\rm ins}, t_{\rm ins}) \bar{\mathcal{N}}_{\beta}(\vec{x}_0, t_0) \rangle$$

Two-point correlation function

$$C(\vec{p}', t_s) = \sum_{\vec{x}_s} e^{-i\vec{p}' \cdot (\vec{x}_s - \vec{x}_0)} (\Gamma_4)_{\beta\alpha} \langle \mathcal{N}_{\alpha}(\vec{x}_s, t_s) \bar{\mathcal{N}}_{\beta}(\vec{x}_0, t_0) \rangle$$

Form factor decomposition

Ratio of 2pt and 3pt functions

$$R^{\mu}(\Gamma, \vec{q}, \vec{p}'; t_s, t_{\text{ins}}) = \frac{G_{\mu}(\Gamma, \vec{p}', \vec{q}, t_s, t_{\text{ins}})}{C(\vec{p}', t_s - t_0)} \times \sqrt{\frac{C(\vec{p}, t_s - t_{\text{ins}})C(\vec{p}', t_{\text{ins}} - t_0)C(\vec{p}', t_s - t_0)}{C(\vec{p}', t_s - t_{\text{ins}})C(\vec{p}, t_{\text{ins}} - t_0)C(\vec{p}, t_s - t_0)}}$$

- 1. Plateau method: $R^{\mu} \xrightarrow[t_s t_{\rm ins} \gg 1]{} \Pi^{\mu}(\Gamma, \vec{q})$
- 2. Two-state fit method:

$$\begin{split} C(\vec{p}',t_s) &\simeq e^{-E(\vec{p}')t_s} \left[c_0(\vec{p}') + c_1(\vec{p}') e^{-\Delta E_1(\vec{p}')t_s} \right] \\ G_{\mu}(\Gamma,\vec{p}',\vec{p},t_s,t_{\rm ins}) &\simeq e^{-E_0(\vec{p}')(t_s-t_{\rm ins})} e^{-E_0(\vec{p})(t_{\rm ins}-t_0)} \times \\ &\times \left[A_{00}(\vec{p},\vec{p}') + A_{01}(\vec{p},\vec{p}') e^{-\Delta E_1(\vec{p})(t_{\rm ins}-t_0)} + \\ &+ A_{10}(\vec{p},\vec{p}') e^{-\Delta E_1(\vec{p}')(t_s-t_{\rm ins})} + \\ &+ A_{11}(\vec{p},\vec{p}') e^{-\Delta E_1(\vec{p}')(t_s-t_{\rm ins})} e^{-\Delta E_1(\vec{p})(t_{\rm ins}-t_0)} \right] \end{split}$$

$$c_n(\vec{p}') = |\langle \mathcal{N} | n, \vec{p}' \rangle|^2 / 2E_n(\vec{p}')$$

$$A_{nm}(\vec{p}, \vec{p}') = \langle \mathcal{N} | n, \vec{p}' \rangle \langle m, \vec{p} | \mathcal{N} \rangle \langle n, \vec{p}' | \mathcal{V}_{\mu} | m, \vec{p} \rangle / [2\sqrt{E_n(\vec{p})E_n(\vec{p}')}]$$

$$\Pi^{0}(\Gamma_{4}, \vec{q}) = C \frac{E_{N} + m_{N}}{2m_{N}} G_{E}(Q^{2}) \qquad \Pi^{i}(\Gamma_{4}, \vec{q}) = C \frac{q_{i}}{2m_{N}} G_{E}(Q^{2})$$

$$\Pi^{i}(\Gamma_{k}, \vec{q}) = C \frac{\epsilon_{ijk}q_{j}}{2m_{N}} G_{M}(Q^{2})$$

$$S = \sum_{n}^{N} \frac{\left(\sum_{m=E,M} A_{nm} G_{m} - \Pi^{n}\right)^{2}}{\sigma_{n}^{2}}$$

$$\langle 0, \vec{p}' | \mathcal{V}_{\mu} | 0, \vec{p} \rangle = \frac{A_{00}(\vec{p}, \vec{p}')}{\sqrt{c_0(\vec{p})c_0(\vec{p}')}}$$

$$C = \sqrt{\frac{2m_N^2}{E_N(E_N + m_N)}}$$
$$Q^2 \equiv -q^2$$

Projectors: unpolarized $\Gamma_4=rac{1+\gamma_4}{4}$ polarized $\Gamma_k=i\gamma_5\gamma_k\Gamma_4$

Kinematics: Accessing the Breit Frame

we incorporate **boosted** nucleon states for increased signal in the high- Q^2 region

$$\mathcal{N}_{\alpha}(\vec{p'},t) = \sum_{\vec{x}} \epsilon^{abc} \left[u_{\mu}^{a}(x) (C\gamma_{5})_{\mu\nu} d_{\nu}^{b}(x) \right] u_{\alpha}^{c}(x) e^{-i\vec{p'}\cdot\vec{x}}$$

$$Q^2 = (\vec{p} - \vec{p}')^2 - (E - E')^2$$

Breit frame: $\vec{p} = -\vec{p}'$, $E = E' \longrightarrow Q^2 = 4\vec{p}^2$

boosting in single direction

D5
$$\rightarrow$$
 $\vec{P}' = (-4, 0, 0) \rightarrow Q^2 \sim 10.9 \text{ GeV}^2$

D6
$$\longrightarrow \vec{P}' = (-5, 0, 0) \rightarrow Q^2 \sim 8.1 \text{ GeV}^2$$

D5
$$\rightarrow$$
 $\vec{P}' = (-3, 0, 0) \rightarrow Q^2 \sim 6.1 \text{ GeV}^2$

Still to be analyzed!

D5
$$\rightarrow$$
 $\vec{P}' = (-3, -3, 0) \rightarrow Q^2 \sim 12.2 \text{ GeV}^2$

Gaussian "momentum" smearing:

$$\mathcal{S}_{\vec{k}_b}\psi(x)\equiv\frac{1}{1+6\alpha}\left[\psi(x)+\alpha\sum_{\mu=\pm1...}^3U_{\mu}(x)e^{i\vec{k}_b\cdot\hat{\mu}}\psi(x+\hat{\mu})\right]$$
 G. Bali et al. [arXiv: 1602.05525]

Effective Energy

- two-state fits to our lattice data are of good quality
- horizontal line: continuum dispersion relation using lattice value of m_N
- ground state energy slightly overestimates cont. dispersion relation
- excited states faint after $\sim t_s/a = 9$

Form Factor Results I: F_2/F_1 Ratio

W. M. Alberico et al. [arXiv: 0812.3539]

- Q^2 dependence compares well with exp. data and phenom. parametrization
- $Q^2F_2^p/F_1^p(Q^2)\sim \log[Q^2/\Lambda]$ scaling reproduced A.V. Belitsky et al. [arXiv: hep-ph/0212351]
- consistency between on-axis / x-y diagonal boost momentum for D5

Form Factor Results II: G_E/G_M Ratio

- consistency between our lattice data
- good agreement with experiment / phenomenology for proton up to $Q^2 \sim 6 \text{ GeV}^2$
- · lattice data support smoother approach towards zero

Form Factor Results II: G_E/G_M Ratio

- neutron: out lattice data underestimate experiment / phenomenology
- same qualitative behavior

Form Factor Results III: F_1 , F_2

- shallow trend towards phenom. with increasing source-sink separation
- similar qualitative behavior, overestimation of phenom. prediction

W. M. Alberico et al. [arXiv: 0812.3539]

Form Factor Results III: F_1 , F_2 : Two-state fits

Form Factor Results III: F_1 , F_2 : Two-state fits

- discrepancies for individual form factors
- a thorough investigation is needed

Form Factor Results III: F_1 , F_2 : u,d quarks

discrepancies observed for form factors of up- and down- quarks

Summary

- high-Q2 on the lattice: feasible, but need to control systematics, noise-to-signal ratio
- our lattice results overestimate phenom. Q^2 -dependence for F_1, F_2
- however: good agreement with experiment for F_2/F_1 and G_E/G_M ratios up to $Q^2 \sim 6 \text{ GeV}^2$
- consistent results between m_{π} = 170 MeV (D5), m_{π} = 280 MeV (D6): small pion mass and volume effects

To-do:

- understand/resolve disagreement for individual form factors F_1, F_2
- complete investigation of excited state effects (perhaps larger t_s ?)
- consider other systematic effects
 - $\mathcal{O}(a)$ improvement
 - continuum extrapolation
 - physical pion mass
 - disconnected diagrams

Thank you

Bonus!

Bonus: Systematics I: Momentum discretization

Naive:
$$\vec{p}=\vec{\kappa}$$
 , $\vec{\kappa}=\frac{2\pi}{L}\vec{n}$, $n_x,n_y,n_z=\frac{1}{a}\left[-\frac{L}{2},\frac{L}{2}\right)$

 take appropriate traces and ratios of two-point function to isolate momentum components

$$C(\vec{p},t) \stackrel{t \gg 1}{=} |Z(\vec{p})|^2 \mathcal{S}(\vec{p}) e^{-E(\vec{p})t} \qquad \mathcal{S}(\vec{p}) = \frac{-i\not p + m}{2E(\vec{p})}$$

$$\operatorname{Im}\{\operatorname{Tr}[\gamma_k \mathcal{S}(\vec{p})]\} = -4p_k \to R_{xy}(\vec{p},t) \equiv \frac{\operatorname{Im}\{\operatorname{Tr}[\gamma_x C(\vec{p},t)]\}}{\operatorname{Im}\{\operatorname{Tr}[\gamma_y C(\vec{p},t)]\}} \xrightarrow{\operatorname{cont.}} \frac{p_x}{p_y}$$

$$n_x = 6 \rightarrow \kappa_x = 3\pi/8a$$

lattice momentum form:

$$\cdot \vec{p} \stackrel{?}{=} \vec{\kappa}$$

•
$$\vec{p} \stackrel{?}{=} \vec{\kappa} - \frac{1}{6}\vec{\kappa}(a\vec{\kappa})^2$$

•
$$\vec{p} \stackrel{?}{=} \frac{1}{a}\sin(a\vec{\kappa})$$

effect due to anisotropic quark (boosted) smearing??

Bonus: Systematics II: Parity mixing for boosted states

- At non-zero momentum, correlators projected with $\Gamma^\pm \equiv \frac{1}{2}(\mathbb{1}+\gamma_4)$ include $\mathcal{O}((E-m)/2E)$ parity contaminations
- need to make sure that correlators from states at non-zero momentum correspond to the same zero-momentum states

F. M. Stokes et al. [arXiv: 1302.4152]

Parity-Expanded Variational Analysis (PEVA): Isolates parity of boosted hadron states

expand operator basis of correlation matrix
$$C_{ij}(\Gamma; \vec{p}, t) = \text{Tr} \left[\Gamma \sum_{\vec{x}} \langle \phi^i(x) \bar{\phi}^j(0) \rangle e^{-i\vec{p}\cdot\vec{x}} \right]$$

$$\Gamma_p \equiv \frac{1}{4} (\mathbb{1} + \gamma_4) (\mathbb{1} - i \gamma_5 \gamma_k \hat{p}_k)$$

$$\phi_p^i \equiv \Gamma_p \phi^i$$

$$\phi_p^{i'} \equiv \Gamma_p \gamma_5 \phi^i$$

$$\begin{aligned}
\mathcal{G}_{ij}(\vec{p},t) &= C_{ij}(\Gamma_p; \vec{p},t) \\
\mathcal{G}_{ij'}(\vec{p},t) &= C_{ij}(-\gamma_5 \Gamma_p; \vec{p},t) \\
\mathcal{G}_{i'j}(\vec{p},t) &= C_{ij}(\Gamma_p \gamma_5; \vec{p},t) \\
\mathcal{G}_{i'j'}(\vec{p},t) &= C_{ij}(-\gamma_5 \Gamma_p \gamma_5; \vec{p},t)
\end{aligned}$$

$$\begin{pmatrix} \begin{pmatrix} 0\bar{0} & 0\bar{1} & 0\bar{2} & 0\bar{3} \\ 1\bar{0} & 1\bar{1} & 1\bar{2} & 1\bar{3} \\ 2\bar{0} & 2\bar{1} & 2\bar{2} & 2\bar{3} \\ 3\bar{0} & 3\bar{1} & 3\bar{2} & 3\bar{3} \end{pmatrix} \begin{pmatrix} 0\bar{0}' & 0\bar{1}' & 0\bar{2}' & 0\bar{3}' \\ 1\bar{0}' & 1\bar{1}' & 1\bar{2}' & 1\bar{3}' \\ 2\bar{0} & 2\bar{1} & 2\bar{2} & 2\bar{3} \\ 3\bar{0} & 3\bar{1} & 3\bar{2} & 3\bar{3} \end{pmatrix} \begin{pmatrix} 2\bar{0}' & 2\bar{1}' & 2\bar{2}' & 2\bar{3}' \\ 3\bar{0}' & 3\bar{1}' & 3\bar{2}' & 3\bar{3}' \end{pmatrix}$$

GEVP: $\mathcal{G}(\vec{p}, t + \Delta t) \mathbf{u}^{\alpha}(\vec{p}) = e^{-E_{\alpha}(\vec{p})\Delta t} \mathcal{G}(\vec{p}, t) \mathbf{u}^{\alpha}(\vec{p})$

Bonus: Systematics II: Parity mixing for boosted states

Investigation:

- perform PEVA analysis for various sets of operators
- D5 ensemble, 240cfg x 32src statistics

effect due to parity mixing is negligible within our statistics

Bonus: Form Factors F_1 , F_2 , plateau values

- consistent results across D5, D6 and sink boost momentum
- small effect from on-axis / x-y diagonal boost momentum
- source-sink separation $t_s \sim 0.9$ fm is shown

Bonus: Form factor ratios, plateau values

Bonus: Form factor ratios, plateau values

Bonus: Some more 3pt/2pt function ratios

