Nucleon electromagnetic form factors at high- Q^{2} from Wilson-clover fermions

Christos Kallidonis

Department of Physics and Astronomy
Stony Brook University
$\star|\mid$ Stony Brook
University
with
M. Engelhardt, J.Green, S. Meinel, J. Negele, A. Pochinsky, S. Syritsyn

The 36th Annual International Symposium on Lattice Field Theory
Michigan State University East Lansing, MI, USA

Outline

- Introduction - Motivation
- Lattice setup and methodology
- Form factor results
- Summary and outlook

Motivation

Nucleon electric and magnetic form factors are important probes of its internal structure

High-momentum transfer calculation from first principles:

- test validity of pQCD predictions, quark models and phenomenology
- required for DVCS measurements (EIC@BNL), probing GPDs
- nucleon FFs: good framework to test high-momentum region on the lattice

Rich experimental activity

- Super-BigBite Spectrometer at JLab Hall A s.B.S Program, updated 12-GeV CEBAF accelerator @ Jab
- elastic ep scattering experiments up to $Q^{2} \sim 18 \mathrm{GeV}^{2}$
- G_{E} / G_{M} dependence
- scaling of F_{1} / F_{2} at $Q^{2} \rightarrow \infty$
- individual contributions from up- and down-quarks
- finalized/published results in $\sim 5 y r$

Simulation details

- two Nf=2+1 Wilson-clover ensembles, produced by JLab lattice group
- different lattice volumes, similar lattice spacing

D5-ensemble: $\beta=6.3, a=0.094 \mathrm{fm}, a^{-1}=2.10 \mathrm{GeV}$		
$32^{3} \times 64, L=3.01 \mathrm{fm}$	$a \mu_{l}$	-0.2390
	$a \mu_{s}$	-0.2050
	κ	0.132943
	$C_{\text {sw }}$	1.205366
	m_{π} (MeV)	280
	$m_{\pi} L$	4.26
	Statistics	86144
D6-ensemble: $\beta=6.3, a=0.091 \mathrm{fm}, a^{-1}=2.17 \mathrm{GeV}$		
$48^{3} \times 96, L=4.37 \mathrm{fm}$	$a \mu_{l}$	-0.2416
	$a \mu_{s}$	-0.2050
	κ	0.133035
	$C_{\text {sw }}$	1.205366
	$m_{\pi}(\mathrm{MeV})$	170
	$m_{\pi} L$	3.76
	Statistics	50176

- Computational resources: BNL Institutional Cluster, USQCD 2017 allocation
- Calculation: Qlua interface: QUDA-MG for propagators, contractions on GPU

Form factor decomposition

Matrix element of the vector current: $\quad \mathcal{V}_{\mu}(x)=\bar{\psi}(x) \gamma_{\mu} \psi(x)$

$$
\left\langle N\left(p^{\prime}, s\right)\right| \mathcal{V}_{\mu}|N(p, s)\rangle=\sqrt{\frac{m_{N}^{2}}{E_{N}\left(\vec{p}^{\prime}\right) E_{N}(\vec{p})}} \bar{u}_{N}\left(p^{\prime}, s\right)\left[\begin{array}{c}
\left.\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}\left(q^{2}\right)\right] u_{N}(p, s) \\
\downarrow \\
\text { Dirac } \\
\text { form factor }
\end{array} \begin{array}{c}
\text { Pauli } \\
\text { form factor }
\end{array}\right.
$$

Sachs Electric and Magnetic form factors:
$G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \quad G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)$

On the lattice:

Three-point correlation function

- seq. propagators: inversion through sink
- $\left(t_{s}-t_{0}\right) \sim 0.55 \mathrm{fm}-0.95 \mathrm{fm}$
- consider only connected contributions

$$
G_{\mu}\left(\Gamma, \vec{p}^{\prime}, \vec{q}, t_{s}, t_{\text {ins }}\right)=\sum_{\vec{x}_{s}, \vec{x}_{\text {ins }}} e^{-i \vec{p}^{\prime} \cdot\left(\vec{x}_{s}-\vec{x}_{0}\right)} e^{i \vec{q} \cdot\left(\vec{x}_{\text {ins }}-\vec{x}_{0}\right)} \Gamma_{\beta \alpha}\left\langle\mathcal{N}_{\alpha}\left(\vec{x}_{s}, t_{s}\right) \mathcal{V}_{\mu}\left(\vec{x}_{\text {ins }}, t_{\text {ins }}\right) \overline{\mathcal{N}}_{\beta}\left(\vec{x}_{0}, t_{0}\right)\right\rangle
$$

Two-point correlation function

$$
C\left(\vec{p}^{\prime}, t_{s}\right)=\sum_{\vec{x}_{s}} e^{-i \vec{p}^{\prime} \cdot\left(\vec{x}_{s}-\vec{x}_{0}\right)}\left(\Gamma_{4}\right)_{\beta \alpha}\left\langle\mathcal{N}_{\alpha}\left(\vec{x}_{s}, t_{s}\right) \overline{\mathcal{N}}_{\beta}\left(\vec{x}_{0}, t_{0}\right)\right\rangle
$$

Form factor decomposition

Ratio of 2 pt and 3 pt functions

$$
R^{\mu}\left(\Gamma, \vec{q}, \vec{p}^{\prime} ; t_{s}, t_{\mathrm{ins}}\right)=\frac{G_{\mu}\left(\Gamma, \vec{p}^{\prime}, \vec{q}, t_{s}, t_{\mathrm{ins}}\right)}{C\left(\vec{p}, t_{s}-t_{0}\right)} \times \sqrt{\frac{C\left(\vec{p}, t_{s}-t_{\mathrm{ins}}\right) C\left(\vec{p}^{\prime}, t_{\mathrm{ins}}-t_{0}\right) C\left(\vec{p}^{\prime}, t_{s}-t_{0}\right)}{C\left(\vec{p}, t_{s}-t_{\mathrm{ins}}\right) C\left(\vec{p}, t_{\mathrm{ins}}-t_{0}\right) C\left(\vec{p}, t_{s}-t_{0}\right)}}
$$

1. Plateau method: $R^{\mu} \xrightarrow[t_{s}-t_{\text {ins }} \gg 1]{t_{\text {ins }}-t_{0} \gg 1} \Pi^{\mu}(\Gamma, \vec{q})$

2. Two-state fit method:

$$
\begin{aligned}
& C\left(\vec{p}, t_{s}\right) \simeq e^{-E(\vec{p}) t_{s}}\left[c_{0}(\vec{p})+c_{1}(\vec{p}) e^{-\Delta E_{1}(\vec{p}) t_{s}}\right] \\
& G_{\mu}\left(\Gamma, \vec{p}, \vec{p}, t_{s}, t_{\text {ins }}\right) \simeq e^{-E_{0}\left(\vec{p} \vec{p}^{\prime}\right)\left(t_{s}-t_{\text {ins }}\right)} e^{-E_{0}(\vec{p})\left(t_{\text {ins }}-t_{0}\right)} \times \\
& \times\left[A_{00}\left(\vec{p}, \vec{p}^{\prime}\right)\right.+A_{01}(\vec{p}, \vec{p}) e^{-\Delta E_{1}(\vec{p})\left(t_{\text {ins }}-t_{0}\right)}+ \\
&+A_{10}(\vec{p}, \vec{p}) e^{-\Delta E_{1}(\vec{p})\left(t_{s}-t_{\text {ins }}\right)}+ \\
&\left.+A_{11}(\vec{p}, \vec{p}) e^{-\Delta E_{1}(\vec{p})\left(t_{s}-t_{\text {ins }}\right)} e^{-\Delta E_{1}(\vec{p})\left(t_{\text {ins }}-t_{0}\right)}\right]
\end{aligned}
$$

$$
c_{n}\left(\vec{p}^{\prime}\right)=\left|\left\langle\mathcal{N} \mid n, \vec{p}^{\prime}\right\rangle\right|^{2} / 2 E_{n}\left(\vec{p}^{\prime}\right)
$$

$$
A_{n m}\left(\vec{p}, \vec{p}^{\prime}\right)=\left\langle\mathcal{N} \mid n, \vec{p}^{\prime}\right\rangle\langle m, \vec{p} \mid \mathcal{N}\rangle\left\langle n, \vec{p}^{\prime}\right| \mathcal{V}_{\mu}|m, \vec{p}\rangle /\left[2 \sqrt{E_{n}(\vec{p}) E_{n}\left(\vec{p}^{\prime}\right)}\right]
$$

$$
\left\langle 0, \vec{p}^{\prime}\right| \mathcal{V}_{\mu}|0, \vec{p}\rangle=\frac{A_{00}\left(\vec{p}, \vec{p}^{\prime}\right)}{\sqrt{c_{0}(\vec{p}) c_{0}\left(\vec{p}^{\prime}\right)}}
$$

$$
\begin{gathered}
\Pi^{0}\left(\Gamma_{4}, \vec{q}\right)=C \frac{E_{N}+m_{N}}{2 m_{N}} G_{E}\left(Q^{2}\right) \quad \Pi^{i}\left(\Gamma_{4}, \vec{q}\right)=C \frac{q_{i}}{2 m_{N}} G_{E}\left(Q^{2}\right) \\
\Pi^{i}\left(\Gamma_{k}, \vec{q}\right)=C \frac{\epsilon_{i j k} q_{j}}{2 m_{N}} G_{M}\left(Q^{2}\right) \\
\mathcal{S}=\sum_{n}^{N} \frac{\left(\sum_{m=E, M} A_{n m} G_{m}-\Pi^{n}\right)^{2}}{\sigma_{n}^{2}}
\end{gathered}
$$

$$
\begin{gathered}
C=\sqrt{\frac{2 m_{N}^{2}}{E_{N}\left(E_{N}+m_{N}\right)}} \\
Q^{2} \equiv-q^{2}
\end{gathered}
$$

Projectors:
unpolarized $\Gamma_{4}=\frac{1+\gamma_{4}}{4}$
polarized $\Gamma_{k}=i \gamma_{5} \gamma_{k} \Gamma_{4}$

Kinematics: Accessing the Breit Frame

we incorporate boosted nucleon states for increased signal in the high- Q^{2} region

$$
\mathcal{N}_{\alpha}\left(\vec{p}^{\prime}, t\right)=\sum_{\vec{x}} \epsilon^{a b c}\left[u_{\mu}^{a}(x)\left(C \gamma_{5}\right)_{\mu \nu} d_{\nu}^{b}(x)\right] u_{\alpha}^{c}(x) e^{-i \vec{p}^{\prime} \cdot \vec{x}}
$$

$$
Q^{2}=\left(\vec{p}-\vec{p}^{\prime}\right)^{2}-\left(E-E^{\prime}\right)^{2}
$$

$$
\text { Breit frame: } \vec{p}=-\vec{p}^{\prime}, E=E^{\prime} \longrightarrow Q^{2}=4 \vec{p}^{2}
$$

- diagonal boosting in $x-y$ plane

$$
\text { D5 } \longrightarrow \vec{P}^{\prime}=(-4,0,0) \rightarrow Q^{2} \sim 10.9 \mathrm{GeV}^{2}
$$

$$
\text { D5 } \longrightarrow \vec{P}^{\prime}=(-3,-3,0) \rightarrow Q^{2} \sim 12.2 \mathrm{GeV}^{2}
$$

D6 $\longrightarrow \vec{P}^{\prime}=(-5,0,0) \rightarrow Q^{2} \sim 8.1 \mathrm{GeV}^{2}$
D5

Still to be analyzed!

Gaussian "momentum" smearing:

$$
\begin{gathered}
\vec{k}_{b}=0.5 \vec{p}^{\prime} \\
\mathcal{S}_{\vec{k}_{b}} \psi(x) \equiv \frac{1}{1+6 \alpha}\left[\psi(x)+\alpha \sum_{\mu= \pm 1 \ldots}^{3} U_{\mu}(x) e^{i \vec{k}_{b} \cdot \hat{\mu}} \psi(x+\hat{\mu})\right] \\
\text { G. Bati et al. [arXiv: 1602.05525] }
\end{gathered}
$$

Effective Energy

- two-state fits to our lattice data are of good quality
- horizontal line: continuum dispersion relation using lattice value of m_{N}
- ground state energy slightly overestimates cont. dispersion relation
- excited states faint after $\sim t_{s} / a=9$

Form Factor Results I: F_{2} / F_{1} Ratio

W. M. Alberico et al. [arXiv: 0812.3539]

- Q^{2} - dependence compares well with exp. data and phenom. parametrization
- $Q^{2} F_{2}^{p} / F_{1}^{p}\left(Q^{2}\right) \sim \log \left[Q^{2} / \Lambda\right]$ scaling reproduced A.V. Belitsky et al. [arXiv: hep-ph/0212351]
- consistency between on-axis / x-y diagonal boost momentum for D5

Form Factor Results II: G_{E} / G_{M} Ratio

- consistency between our lattice data
- good agreement with experiment / phenomenology for proton up to $Q^{2} \sim 6 \mathrm{GeV}^{2}$
- lattice data support smoother approach towards zero

Form Factor Results II: G_{E} / G_{M} Ratio

- neutron: out lattice data underestimate experiment / phenomenology
- same qualitative behavior

Form Factor Results III: F_{1}, F_{2}

- shallow trend towards phenom. with increasing source-sink separation
- similar qualitative behavior, overestimation of phenom. prediction

Form Factor Results III: F_{1}, F_{2} : Two-state fits

Form Factor Results III: F_{1}, F_{2} : Two-state fits

- discrepancies for individual form factors
- a thorough investigation is needed

Form Factor Results III: $F_{1}, F_{2}:$ u,d quarks

- discrepancies observed for form factors of up- and down- quarks
- high- Q^{2} on the lattice: feasible, but need to control systematics, noise-to-signal ratio
- our lattice results overestimate phenom. Q^{2}-dependence for F_{1}, F_{2}
- however: good agreement with experiment for F_{2} / F_{1} and G_{E} / G_{M} ratios up to $Q^{2} \sim 6 \mathrm{GeV}^{2}$
- consistent results between $m_{\pi}=170 \mathrm{MeV}$ (D5), $m_{\pi}=280 \mathrm{MeV}$ (D6): small pion mass and volume effects

To-do:

- understand/resolve disagreement for individual form factors F_{1}, F_{2}
- complete investigation of excited state effects (perhaps larger t_{s} ?)
- consider other systematic effects
- $\mathcal{O}(a)$ improvement
- continuum extrapolation
- physical pion mass
- disconnected diagrams

Bonus!

Bonus: Systematics I: Momentum discretization

Naive: $\vec{p}=\vec{\kappa}, \vec{\kappa}=\frac{2 \pi}{L} \vec{n}, n_{x}, n_{y}, n_{z}=\frac{1}{a}\left[-\frac{L}{2}, \frac{L}{2}\right)$

- take appropriate traces and ratios of two-point function to isolate momentum components

$$
\begin{aligned}
& C(\vec{p}, t) \stackrel{t \gg 1}{=}|Z(\vec{p})|^{2} \mathcal{S}(\vec{p}) e^{-E(\vec{p}) t} \quad \mathcal{S}(\vec{p})=\frac{-i \not p+m}{2 E(\vec{p})} \\
& \operatorname{Im}\left\{\operatorname{Tr}\left[\gamma_{k} \mathcal{S}(\vec{p})\right]\right\}=-4 p_{k} \rightarrow R_{x y}(\vec{p}, t) \equiv \frac{\operatorname{Im}\left\{\operatorname{Tr}\left[\gamma_{x} C(\vec{p}, t)\right]\right\}}{\operatorname{Im}\left\{\operatorname{Tr}\left[\gamma_{y} C(\vec{p}, t)\right]\right\}} \xrightarrow{\text { cont. }} \frac{p_{x}}{p_{y}}
\end{aligned}
$$

$$
n_{x}=6 \rightarrow \kappa_{x}=3 \pi / 8 a
$$

lattice momentum form:

- $\vec{p} \stackrel{?}{=} \vec{\kappa}$
- $\vec{p} \stackrel{?}{=} \vec{\kappa}-\frac{1}{6} \vec{\kappa}(a \vec{\kappa})^{2}$
- $\vec{p} \stackrel{?}{=} \frac{1}{a} \sin (a \vec{\kappa})$

effect due to anisotropic quark (boosted) smearing??

Bonus: Systematics II: Parity mixing for boosted states

- At non-zero momentum, correlators projected with $\Gamma^{ \pm} \equiv \frac{1}{2}\left(\mathbb{1}+\gamma_{4}\right)$ include $\mathcal{O}((E-m) / 2 E)$ parity contaminations
- need to make sure that correlators from states at non-zero momentum correspond to the same zero-momentum states
F. M. Stokes et al. [arXiv: 1302.4152]

Parity-Expanded Variational Analysis (PEVA): Isolates parity of boosted hadron states
expand operator basis of correlation matrix $C_{i j}(\Gamma ; \vec{p}, t)=\operatorname{Tr}\left[\Gamma \sum_{\vec{x}}\left\langle\phi^{i}(x) \bar{\phi}^{j}(0)\right\rangle e^{-i \vec{p} \cdot \vec{x}}\right]$

$$
\Gamma_{p} \equiv \frac{1}{4}\left(\mathbb{1}+\gamma_{4}\right)\left(\mathbb{1}-i \gamma_{5} \gamma_{k} \hat{k}_{k}\right)
$$

$$
\begin{aligned}
\phi_{p}^{i} & \equiv \Gamma_{p} \phi^{i} \\
\phi_{p}^{i^{\prime}} & \equiv \Gamma_{p} \gamma_{5} \phi^{i}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{G}_{i j}(\vec{p}, t) & =C_{i j}\left(\Gamma_{p} ; \vec{p}, t\right) \\
\mathcal{G}_{i j^{\prime}}(\vec{p}, t) & =C_{i j}\left(-\gamma_{5} \Gamma_{p} ; \vec{p}, t\right) \\
\mathcal{G}_{i^{\prime} j}(\vec{p}, t) & =C_{i j}\left(\Gamma_{p} \gamma_{5} ; \vec{p}, t\right) \\
\mathcal{G}_{i^{\prime} j^{\prime}}(\vec{p}, t) & =C_{i j}\left(-\gamma_{5} \Gamma_{p} \gamma_{5} ; \vec{p}, t\right)
\end{aligned}
$$

$$
\left(\begin{array}{cccc:cccc}
0 \overline{0} & 0 \overline{1} & 0 \overline{2} & 0 \overline{3} & 0 \overline{0}^{\prime} & 0 \overline{1}^{\prime} & 0 \overline{2}^{\prime} & 0 \overline{3}^{\prime} \\
1 \overline{0} & 1 \overline{1} & 1 \overline{2} & 1 \overline{3} & 1 \overline{0}^{\prime} & 1 \overline{1}^{\prime} & 1 \overline{2}^{\prime} & 1 \overline{3}^{\prime} \\
2 \overline{0} & 2 \overline{1} & 2 \overline{2} & 2 \overline{3} & 2 \overline{0}^{\prime} & 2 \overline{1}^{\prime} & 2 \overline{2}^{\prime} & 2 \overline{3}^{\prime} \\
3 \overline{0} & 3 \overline{1} & 3 \overline{2} & 3 \overline{3} & 3 \overline{0}^{\prime} & 3 \overline{1}^{\prime} & 3 \overline{2}^{\prime} & 3 \overline{3}^{\prime} \\
\hdashline 0^{\prime} \overline{0} & 0^{\prime} \overline{1} & 0^{\prime} \overline{2} & 0^{\prime} \overline{3} & 0^{\prime} \overline{0}^{\prime} & 0^{\prime} \overline{1}^{\prime} & 0^{\prime} \overline{2}^{\prime} & 0^{\prime} \overline{3}^{\prime} \\
1^{\prime} \overline{0} & 1^{\prime} \overline{1} & 1^{\prime} \overline{2} & 1^{\prime} \overline{3} & 1^{\prime} \overline{0}^{\prime} & 1^{\prime} \overline{1}^{\prime} & 1^{\prime} \overline{2}^{\prime} & 1^{\prime} \overline{3}^{\prime} \\
2^{\prime} \overline{0} & 2^{\prime} \overline{1} & 2^{\prime} \overline{2} & 2^{\prime} \overline{3} & 2^{\prime} \overline{0}^{\prime} & 2^{\prime} \overline{1}^{\prime} & 2^{\prime} \overline{2}^{\prime} & 2^{\prime} \overline{3}^{\prime} \\
3^{\prime} \overline{0} & 3^{\prime} \overline{1} & 3^{\prime} \overline{2} & 3^{\prime} \overline{3} & 3^{\prime} \overline{0}^{\prime} & 3^{\prime} \overline{1}^{\prime} & 3^{\prime} \overline{2}^{\prime} & 3^{\prime} \overline{3}^{\prime}
\end{array}\right)
$$

GEVP: $\mathcal{G}(\vec{p}, t+\Delta t) \boldsymbol{u}^{\alpha}(\vec{p})=e^{-E_{\alpha}(\vec{p}) \Delta t} \mathcal{G}(\vec{p}, t) \boldsymbol{u}^{\alpha}(\vec{p})$

Bonus: Systematics II: Parity mixing for boosted states

Investigation:

- two-point functions from nucleon interpolating operators at four different values of Gaussian smearing \longrightarrow different overlap with nucleon ground state
- perform PEVA analysis for various sets of operators
- D5 ensemble, 240cfg x 32src statistics
effect due to parity mixing is negligible within our statistics
$\left(\begin{array}{cccc:cccc}0 \overline{0} & 0 \overline{1} & 0 \overline{2} & 0 \overline{3} & 0 \overline{0}^{\prime} & 0 \overline{1}^{\prime} & 0 \overline{2}^{\prime} & 0 \overline{3}^{\prime} \\ 1 \overline{0} & 1 \overline{1} & 1 \overline{2} & 1 \overline{3} & 1 \overline{0}^{\prime} & 1 \overline{1}^{\prime} & 1 \overline{2}^{\prime} & 1 \overline{3}^{\prime} \\ 2 \overline{0} & 2 \overline{1} & 2 \overline{2} & 2 \overline{3} & 2 \overline{0}^{\prime} & 2 \overline{1}^{\prime} & 2 \overline{2}^{\prime} & 2 \overline{3}^{\prime} \\ 3 \overline{0} & 3 \overline{1} & 3 \overline{2} & 3 \overline{3} & 3 \overline{0}^{\prime} & 3 \overline{1}^{\prime} & 3 \overline{2}^{\prime} & 3 \overline{3}^{\prime} \\ \hdashline 0^{\prime} \overline{0} & 0^{\prime} \overline{1} & 0^{\prime} \overline{2} & 0^{\prime} \overline{3} & 0^{\prime} \overline{0}^{\prime} & 0^{\prime} \overline{1}^{\prime} & 0^{\prime} \bar{'}^{\prime} & 0^{\prime} \overline{3}^{\prime} \\ 1^{\prime} \overline{0} & 1^{\prime} \overline{1} & 1^{\prime} \overline{2} & 1^{\prime} \overline{3} & 1^{\prime} \overline{0}^{\prime} & 1^{\prime} \overline{1}^{\prime} & 1^{\prime} \overline{2}^{\prime} & 1^{\prime} \overline{\overline{3}}^{\prime} \\ 2^{\prime} \overline{0} & 2^{\prime} \overline{1} & 2^{\prime} \overline{2} & 2^{\prime} \overline{3} & 2^{\prime} \overline{0}^{\prime} & 2^{\prime} \overline{1}^{\prime} & 2^{\prime} \overline{2}^{\prime} & 2^{\prime} \overline{3}^{\prime} \\ 3^{\prime} \overline{0} & 3^{\prime} \overline{1} & 3^{\prime} \overline{2} & 3^{\prime} \overline{3} & 3^{\prime} \overline{0}^{\prime} & 3^{\prime} \overline{1}^{\prime} & 3^{\prime} \overline{2}^{\prime} & 3^{\prime} \overline{3}^{\prime}\end{array}\right)$

Bonus: Form Factors F_{1}, F_{2}, plateau values

- consistent results across D5, D6 and sink boost momentum
- small effect from on-axis / x - y diagonal boost momentum
- source-sink separation $t_{s} \sim 0.9 \mathrm{fm}$ is shown

Bonus: Form factor ratios, plateau values

Bonus: Form factor ratios, plateau values

Bonus: Some more 3pt/2pt function ratios

