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“PACS10” Configs @ β=1.82 in 2+1 Flavor QCD

• Wilson-clover quark action + Iwasaki gauge action
• Stout smearing with α=0.1 and Nsmear=6 
• NP CSW=1.11 determined by SF 
• β=1.82 ⇒ a−1=2.33 GeV
• Lattice size=1284 ⇒ (10.8 fm)3 spatial volume
• Hopping parameters: (κud,κs)=(0.126117,0.124902) 

⇒ mπ≈135 MeV, mπL≈7.5
• Simulation algorithm
− (MP)2DDHMC w/ active link for ud quarks, RHMC for s quark
− Block size=16�16�8�64
− MP parameters: (ρ1,ρ2)=(0.9997,0.9940)
− Multi-time scale integrator: (N0,N1,N2,N3,N4)=(8,2,2,2,22)
− trajectory length: τ=1
− NRHMC=8, [Fmin,Fmax]=[0.00025,1.85]
− Chronological inverter guess for IR parts
− Solver: mixed precision nested BiCGStab

arXiv:1807.06237
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Measurement Details with Plateau Method (1)

4

as a consequence of the axial Ward-Takahashi iden-
tity. Therefore, three form factors, FA(q2), FP (q2) and
GP (q2) are very important to verify the axial Ward-
Takahashi identity in terms of the nucleon matrix ele-
ments.
The latest lattice calculations of the nucleon struc-

ture have been carried out with increasing accuracy [8–
10, 12, 13, 24–27]. It seems that there is still a gap be-
tween experimentally known values and the lattice re-
sults, especially for the electric-magnetic nucleon radii
and the magnetic moment. Our preliminary results com-
puted with almost physical pion mass on very large vol-
ume shows agreement with experimental results [28–30].
In this paper, we present an update of our previous stud-
ies [28–30], including the three the axial-vector, induced
pseudoscalar and pseudoscalar form factors.

TABLE III. Fitted energies of the nucleon state with the
ten lowest momenta obtained from smear-local case of the
nucleon two-point function. Results for the nucleon energies
EN(n2) with nonzero momenta are averaged over all possi-
ble permutations of n = (nx, ny , nz), including both positive
and negative directions. The values of the corresponding mo-
mentum squared q2 = 2MN (EN − MN) are also tabulated.

label aEN(n) (Smear-Local) fit range q2 [(GeV)2]

Q0 0.4107(12) [8:15] 0

Q1 0.4161(12) [8:15] 0.024(1)

Q2 0.4215(12) [8:15] 0.048(2)

Q3 0.4268(13) [8:15] 0.072(2)

Q4 0.4320(13) [8:15] 0.095(3)

Q5 0.4373(14) [8:15] 0.119(4)

Q6 0.4427(15) [8:15] 0.143(5)

Q7 0.4531(18) [8:15] 0.189(7)

Q8 0.4575(21) [8:15] 0.209(8)

Q9 0.4588(20) [8:15] 0.215(8)

III. SIMULATION DETAILS

We use the 2+1 flavor QCD gauge configurations gen-
erated with the 6-APE stout-smeared O(a)-improved
Wilson-clover quark action and the Iwasaki gauge ac-
tion [31] on a lattice L3 × T = 963 × 96 at β = 1.82,
which corresponds to a lattice cutoff of a−1 ≈ 2.3 GeV
(a ≈ 0.085 fm) [11]. Periodic boundary conditions are
used for the gauge and quark fields in all four directions.
The stout smearing parameter is set to ρ = 0.1 [32].
The improvement coefficient, cSW = 1.11, is determined
nonperturbatively by the Schrödinger functional (SF)
scheme [33]. The improved factor cA for the axial-vector
current becomes very small at the nonperturbative value
of cSW and is consistent with zero within the statistical
error [33]. Therefore, we do not consider O(a) improve-
ment of quark bilinear current. The hopping parameters

for the light sea quarks (κud,κs) = (0.126117, 0.124790)
are chosen to be near the physical point. For the first
time, a simulated pion mass reaches down to mπ ≈ 146
MeV on a large spatial volume of (8.1 fm)3 in 2+1 flavor
QCD.
The degenerated up-down quarks are simulated with

the DDHMC algorithm [34, 35] using the even-odd pre-
conditioning and the twofold mass preconditioning [36,
37]. The strange quark is simulated with the UVPHMC
algorithm [38–43] where the action is UV-filtered [44, 45]
after the even-odd preconditioning without domain de-
composition. The total number of gauge configurations
reaches 200 which corresponds to 2000 trajectories af-
ter thermalization. Each measurement is separated by
10 trajectories. The results for the hadron spectrum
and other physical quantities are already presented in
Ref. [11]. We use the jackknife method with a bin size of
50 trajectories for estimating the statistical errors. Our
preliminary results of the nucleon vector form factors
with less number of measurements were first reported in
Ref. [28, 29].

A. Nucleon two-point functions

Let us first examine the nucleon rest mass and the
dispersion relation, which are obtained from the nucleon
two-point functions. In order to compute nucleon ener-
gies or matrix elements, we define the nucleon (proton)
operator as

NX(t,p)

=
∑

x,x1,x2,x3

e−ip·xεabc[u
T
a (x1, t)Cγ5db(x2, t)]uc(x3, t)

× φ(x1 − x)φ(x2 − x)φ(x3 − x), (19)

where the superscript T denotes a transposition and C is
the charge conjugation matrix defined as C = γ4γ2. The
indices abc and ud label color and flavor, respectively.
The subscript X of the nucleon operator specifies what
type of the smearing for the quark propagators. In this
study, we use two types of smearing function φ: the local
function as φ(xi − x) = δ(xi − x) (denoted as X =
L) and the exponential smearing function: φ(xi − x) =
A exp[−B|xi − x|] with A = 1.2 and B = 0.11 (denoted
as X = S). For a simplicity, x1 = x2 = x3 is chosen.
We then construct two types of the two-point function

with the exponential smearing source (the source-time
location denoted as tsrc) as

CXS(tsink − tsrc,p)

=
1

4
Tr
{

P+⟨NX(tsink,p)N̄S(tsrc,−p)⟩
}

, (20)

where X = L (local) or S (smear) stands for a type
of smearing at the sink operator (the sink-time location
denoted as tsink). A projection operator P+ = 1+γ4

2 can
eliminate contributions from the opposite-parity state for
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|p| = 0 [46, 47]. In this study, for nonzero spatial mo-
mentum, we use the nine lowest momenta: p = 2π/L×n

with a vector of integers n ∈ Z3. All choices of n are
listed in Table II.

0 4 8 12 16 20 24
t/a

0.35

0.4

0.45

0.5

smear-local
smear-smear

mN

FIG. 1. Effective mass for the nucleon from the smear-local
(squared symbols) and smear-smear (circle symbols) cases of
the nucleon two-point functions.
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FIG. 2. Check of the dispersion relation for the nucleon. The
variables p2con and p2lat appearing on the x-axis and y-axis are
defined in text. For comparison, the relativistic continuum dis-
persion relation is denoted as a dashed line.

B. Nucleon spectra and dispersion relation

In Fig. 1 we plot the nucleon effective mass with |p| = 0
for two cases: Smear-local denotes the nucleon two-point
function with the smeared source and the local sink op-
erators and smear-smear for the smeared source and the
smeared sink ones. We observe that the smear-local case
shows good plateau for t/a ≥ 6. On the other hand, the
signal becomes noisier for the smear-smear case. We also
measure the nucleon energiesEN (p) from the smear-local
case of the nucleon two-point function with the choice of
9 cases of nonzero spatial momenta. All fit results of
EN (p) obtained from the single exponential fit are tab-
ulated in Table III.
Figure 2 shows a check of the dispersion relation for the

nucleon. The vertical axis shows the momentum squared
defined through the relativistic continuum dispersion re-
lation as p2con = E2

N (p)−M2
N , while the horizontal axis is

the momentum squared given by the lattice momentum
p2lat = (2π/L)2 × |n|2 in lattice units. As can be seen
in Fig. 2, the relativistic continuum dispersion relation is
well satisfied up to |n|2 = 9.

C. Three-point correlation functions for nucleon
form factors

The nucleon form factors are extracted from the three-
point correlation functions consisting of the nucleon
source and sink operators with a given local current JO

α

(O = S, P, V,A and T ) located at the time-slice t:

CPk

O,α(t,p
′,p)

=
1

4
Tr
{

Pk⟨N(tsink,p
′)JO

α (t, q)N̄(tsrc,−p)⟩
}

, (21)

where Pk denotes an appropriate projection operator to
extract the form factors and q = p − p

′ represents the
three-dimensional momentum transfer. The local current
is given by JO

α = ū(ΓO)αd where ΓO is a Dirac matrix
appropriate for the channel O.
We then calculate the following ratio constructed from

the three-point correlation function CP
O,α with nucleon

two-point functions CXS :

Rk
O,α(t,p

′,p) =
CPk

O,α(t,p
′,p)

CSS(tsink − tsrc,p′)

√

CLS(tsink − t,p)CSS(t− tsrc,p′)CLS(tsink − tsrc,p′)

CLS(tsink − t,p′)CSS(t− tsrc,p)CLS(tsink − tsrc,p)
, (22)

which is a function of the current operator insertion time
t at the given values of momenta p and p

′ for the initial
and final states of the nucleon.

We consider only the rest frame of the final state with

p
′ = 0, which leads to q2 = 2MN(EN (q) − MN) for

the squared four-momentum transfer. Nucleon energy
EN (q) simply abbreviated as EN , hereafter. In this kine-
matics, RO,α(t,p′,p) is represented by a simple nota-
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point correlation functions consisting of the nucleon
source and sink operators with a given local current JO
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(O = S, P, V,A and T ) located at the time-slice t:

CPk
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′,p)

=
1

4
Tr
{

Pk⟨N(tsink,p
′)JO

α (t, q)N̄(tsrc,−p)⟩
}

, (21)

where Pk denotes an appropriate projection operator to
extract the form factors and q = p − p

′ represents the
three-dimensional momentum transfer. The local current
is given by JO

α = ū(ΓO)αd where ΓO is a Dirac matrix
appropriate for the channel O.
We then calculate the following ratio constructed from

the three-point correlation function CP
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Rk
O,α(t,p

′,p) =
CPk

O,α(t,p
′,p)

CSS(tsink − tsrc,p′)

√

CLS(tsink − t,p)CSS(t− tsrc,p′)CLS(tsink − tsrc,p′)
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which is a function of the current operator insertion time
t at the given values of momenta p and p

′ for the initial
and final states of the nucleon.

We consider only the rest frame of the final state with

p
′ = 0, which leads to q2 = 2MN(EN (q) − MN) for

the squared four-momentum transfer. Nucleon energy
EN (q) simply abbreviated as EN , hereafter. In this kine-
matics, RO,α(t,p′,p) is represented by a simple nota-

2-pt correlator  

3-pt correlator  

Ratio of 3-pt to 2-pt correlators 
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Measurement Details with Plateau Method (2)

• AMA is used to gain high statistical precision
• O(100) measurements/config ⇒ O(103�104) measurements so far
• 9 choices for spatial momenta:

=(1,0,0),(1,1,0),(1,1,1),(2,0,0),(2,1,0),(2,1,1),(2,2,,0),(3,0,0),(2,2,1)
minimum mom=2π/L�0.115 GeV thanks to L=10.8 fm

• Lattice size=1284 ⇒ (10.8 fm)3 spatial volume allows small q2 region 
• Exp smeared src/sink operators for 2-pt and 3-pt functions
• Src-sink separation: tsink−tsrc=10, 12, 14, 16 (�1.35 fm)
• ZA=0.9650(68)(95), ZV=0.95153(76)(1487) in SF scheme 

PoS(LATTICE2015)271

n
→
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V. PECULIARITIES AND DIFFICULTIES

A. Importance of ρ(r) at large r

From Equation (4) it follows that charge at radius
r0 generates a Fourier component in Ge(q) of type
sin(qr0)/(qr0); for large r0 it produces a curvature of
Ge(q) at low q0 ∼ π/(2ro). The curvature of G(q2) —
the deviation from linearity in q2 — affects R when the
radius is determined via extrapolation from q > qmin,
where data are available and sensitive to R, to q=0.

FIG. 2: (a) Density (dotted = exponential, solid = realistic)
as function of r. (b) R(rcut)/R as a function of rcut/R. The
result for a heavy nucleus is shown for comparison.

.

The charge density of the proton has a shape that is
very different from the typical Woods-Saxon type shapes
encountered for heavier nuclei. The proton form factor
is roughly described by the dipole shape

GD(q) = 1/(1 + q2R2
D/12)2. (7)

The density corresponding to this form factor has the
shape of an exponential

ρD(r) ∝ e−
√
12 r/RD . (8)

Such a density exhibits a long tail towards large radii
which contributes appreciably to the rms-radius. In Fig-
ure 2a we show the density corresponding to a dipole
form factor (dotted) and a more realistic one (solid) re-
sulting from the fit to the electron scattering data. In
Figure 2b we show the partial integral

R(rcut) =

[

∫ rcut

0

ρ(r) r4 dr

/
∫ ∞

0

ρ(r) r4 dr

]1/2

(9)

with the rms-radius given by R=R(rcut=∞). To get 98%
ofR, one has to integrate out to 2.7fm, where the density
has dropped to ∼ 10−4 of the central value!
The effect of ρ(r > 2.7fm) upon Ge(q) at low q is

explored in Figure 3 where we show the form factor Ge(q)
for 3 cases:

1. Dipole form factor (exponential density).

2. Form factor corresponding to exponential density
truncated at rcut = 2.7fm.

3. Form factor corresponding to truncated density,
renormalized to agree best with the Dipole form
factor for momentum transfers above the minimum
momentum transfer of the data; this renormaliza-
tion corresponds to the standard renormalizations
of data applied in most analyses.

FIG. 3: Form factor corresponding to (1) full density (green),
(2) truncated density (black), and (3) truncated density,
renormalized to best agree with (1) (red).

The difference between case 1 and 3 is less than 0.12% of
G(q), which is much smaller than the uncertainties most
experimentalists would claim to be able to achieve. Due
to the renormalization one would miss the curvature of
Ge(q) and the contribution to R from the larger-r density
which, for the example chosen, amounts to 2%. The same
argument could be extended to a cut at 2.4fm, yielding
a 4% deviation of R. We will come back to this point

7

How Large Spatial Size is Necessary?

Integration up to rcut=2.7fm ⇒ Only 98% of charge RMS radius

Charge density

Charge RMS radius
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available over a large range of θ. This separation is diffi-
cult at low q where Ge dominates, and at large q where
Gm dominates. This produces large uncertainties for the
sub-dominant form factor. During the last decade, it
also became feasible to measure the polarization trans-
fer in scattering of longitudinally polarized electrons; the
ratio of transverse and longitudinal polarization of the
recoil proton yields the ratio Ge/Gm, which particularly
at large q helps to more accurately determine Ge.
Equation (1) is valid in the one-photon exchange limit

(PWIA). Two-photon exchange comes from two sources:
Coulomb distortion (exchange of an additional soft pho-
ton) is important mainly at low electron energies and
changes the cross section by a few percent. Inclusion of
the correction leads to an increase of R by ∼ 0.01fm,
as calculated in [8, 9]. The exchange of a second hard
photon is mainly important at very large q, and was cal-
culated by e.g. Blunden et al.[10]. The main effect of
the latter is to remove the discrepancy between values
of Ge(q) at very large q resulting from determinations
via Rosenbluth separation and polarization transfer, re-
spectively. For a recent review see [11], for experiments
checking upon the two photon exchange see [12–14].
As the two-photon corrections to the cross section are

reasonably small, the standard procedure is to remove
the calculated 2-photon contribution from the cross sec-
tion and then analyze the data in terms of the PWIA-
expression, Equation (1).
Traditionally, the form factors Ge and Gm were deter-

mined by analyzing cross sections and analyzing powers
at given q and variable θ from individual experiments.
A better approach, used most often today, does not de-
pend on cross sections measured at exactly the same q’s
and yields more accurate form factors. The entire set
of world cross section and polarization transfer data is
fit with parameterized expressions for the two form fac-
tors [15]. The fit then yields values for Ge and Gm, by
error propagation one can obtain realistic values for the
uncertainties δGe and δGm.

III. CHARGE RADIUS AND DENSITY

The topic of this review is the charge-rms radius R
defined in terms of the charge density ρ(r) via

R2 ≡
∫ ∞

0

ρ(r) r4 4π dr, (3)

with ρ(r) normalized to 1.
In the non-relativistic limit, with velocity of the recoil

proton v≪c, the charge density is related to the electric
form factor via

Ge(q) =
4π

q

∫ ∞

0

ρ(r) sin(qr) r dr, (4)

an equation that can be inverted to read

ρ(r) =
1

2π2r

∫ ∞

0

Ge(q) sin(qr) q dq. (5)

This equation normally is not exploited directly, for two
reasons.
First, extension of the integral to q=∞ is not feasible,

as the data stop at typically qmax ∼ 12fm−1. As a
consequence, one postulates a model for ρ(r) or Ge(q),
the parameters of which are fit to the data on Ge(q).
Or, better, the parameters are fit directly to the cross
section+polarization transfer data. This is the standard
approach used for nuclear mass numbers A≥2.
Secondly, Equations (5,4) require relativistic correc-

tions to account for the fact that the velocity of the re-
coiling proton in not ≪ c. These corrections are of two
types:
a. The dominant correction to the non-relativistic

Equation (5) results from the fact that the coordinate
system relevant in the scattering process is the Breit
frame, not the nucleon rest-frame. Licht and Pagna-
menta [16] showed that this Lorentz contraction can be
corrected for by changing q2 in Ge(q2) to q̃2 = q2 (1 +
q2/4m2).
b. For composite systems the boost operator in some

theories depends in addition on the interaction among the
constituents. Different models [16–19] yield an additional
correction multiplying G(q). These factors are all of the
type (1+q2/4m2)λ with, for the charge form factor, λ=0
or 1.

FIG. 1: Densities obtained from Ge(q) of [20] before (red) and
after (blue, green) application of the relativistic corrections.

These corrections can be incorporated if a quantitative
density is desired. In Figure 1 we show the charge density
derived from a parameterized Ge(q) fit to the world data
[20], before and after the replacement of q by q̃ and use
of the multiplicative factor. The main change occurs for
small r, where the density is appreciably reduced. This
reduction has a desirable effect: while densities calcu-
lated non-relativistically from typical form factors often
lead to a kink at r=0 — the dipole form factor with the
corresponding exponential density is the prime example
— the density determined after relativistic corrections is
close to flat, as it must be. At r > 1fm the shape of the
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Improvements from Our Previous Work

Lattice 2018 arXiv:1807.03974

Volume 1284 (10.8 fm)4 964 (8.1 fm)4

Minimum q2 0.013 GeV2 0.024 GeV2

mπ 135 MeV (physical) 146 MeV

Measurement to 
increase statistics w/ AMA w/o AMA

ts=|tsink-tsrc| 
dependence ts=10, 12, 14, 16 ts=15
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Nucleon Effective Mass 

Good plateau is observed from small time slice

Effective mass

3

Exp func. Gauss func.

src�exp
sink�local

src�exp
sink�exp
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Isovector Electric Form Factor (1)

Good plateau for ts=10, 12, 14, 16 

Electric form factor (Iso-vector)

4

Exp func.
Gauss func.

Ratio of 3-pt to 2-pt correlators as a function of t (location of V)  
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Isovector Electric Form Factor (2)

Seems to prefer μH experiment
⇒ Possibility to distinguish two experimental values

2.4 Isovector electric and magnetic Sachs form factors

The Dirac and Pauli form factors F1(q2) and F2(q2) are related to the electric GE(q2) and
magnetic GM(Q2) Sachs form factors as

GE(q
2) = F1(q

2)− q2

4m2
N

F2(q
2)

GM(q2) = F1(q
2) + F2(q

2)

which are directly measured from two-types of three-point functions (V4 current with a
projection 1+γ4 and V1,2 current with a projection (1+γ4)γ5γ3). The isovector form factor
is given by a difference between the proton and neutron form factors as Gv

k(q
2) = Gp

k(q
2)−

Gn
k(q

2) (k = E or M). (See details in Phys. Rev. D 78, 014510 (2008) [arXiv:0709.3150].)

0 0.1 0.2 0.3 0.4 0.5
Q2 [(GeV)2]

0

0.2

0.4

0.6

0.8

1

1.2

G
E(Q

2 )/G
E(0

)

Experiment (dipole form)
m
π
=0.145 GeV (preliminary)

Figure 6: The isovector electric GE form factor. The experimental curves are given by a

dipole form with the root mean squared radius:
√
⟨(rvE)2⟩=0.939(5) fm.

• Signal of electric type of the three-point functions is less noisy

• In a good agreement with the experimental curve especially for low Q2.

5

6

Electric charge radius (Iso-vector)

Exp func.
Gauss func.

7

Electric charge radius (Iso-vector)

6.1 RMS

The root mean squared radius (rms),
√
⟨r2⟩, can be determined by the form-factor slope

as

GE(Q2) = 1 − ⟨r2
E⟩
6

Q2 + O(Q4).

Thus, the mean square radius is given by

⟨r2
E⟩ = −6

dGE

dQ2

∣∣∣∣∣
Q2=0

From three different fits, rms is given by

•
√
⟨r2

E⟩ =
√
−12a1 for dipole fit

•
√
⟨r2

E⟩ =
√
−6d2

d0
for quadratic fit

•
√
⟨r2

E⟩ =
√
−6 c1

c0
1

4tcut
for z-form fit with t0 = 0

z-fit expt.
dipole fit quadratic fit kmax = 2 kmax = 3 kmax = 8 ep scatt. µ-H

rms [fm] 0.906(71) 0.917(68) 0.988(97) 0.944(128) 0.950(123) 0.9413(49) 0.9073(12)

Table 2: Results of (isovector) electric rms obtained from various fits. Experimental values
of isovector mean square radius is given by ⟨r2⟩ = ⟨r2

p⟩ − ⟨r2
n⟩ with ⟨r2

n⟩ = −0.1161(22)
fm2. For proton mean square radius, there are two values; ⟨r2

p⟩ = 0.88611(926) fm2 from
ep scattering and ⟨r2

p⟩ =0.82316(22) fm2 from µ-H atom spectroscopy.

9



12

Isovector Magnetic Form Factor

Consistent with μM and √<rM
2> within 2σ error  

2.4 Isovector electric and magnetic Sachs form factors

The Dirac and Pauli form factors F1(q2) and F2(q2) are related to the electric GE(q2) and
magnetic GM(Q2) Sachs form factors as

GE(q
2) = F1(q

2)− q2

4m2
N

F2(q
2)

GM(q2) = F1(q
2) + F2(q

2)

which are directly measured from two-types of three-point functions (V4 current with a
projection 1+γ4 and V1,2 current with a projection (1+γ4)γ5γ3). The isovector form factor
is given by a difference between the proton and neutron form factors as Gv

k(q
2) = Gp

k(q
2)−

Gn
k(q

2) (k = E or M). (See details in Phys. Rev. D 78, 014510 (2008) [arXiv:0709.3150].)

0 0.1 0.2 0.3 0.4 0.5
Q2 [(GeV)2]

0

0.2

0.4

0.6

0.8

1

1.2

G
E(

Q
2 )/G

E(
0)

Experiment (dipole form)
m
π
=0.145 GeV (preliminary)

Figure 6: The isovector electric GE form factor. The experimental curves are given by a

dipole form with the root mean squared radius:
√
⟨(rvE)2⟩=0.939(5) fm.

• Signal of electric type of the three-point functions is less noisy

• In a good agreement with the experimental curve especially for low Q2.

5

9

Magnetic form factor (Iso-vector)

Exp func.
Gauss func.

10

Magnetic form factor (Iso-vector)

11

Magnetic form factor (Iso-vector)

GM(Q2=0)

√<rM
2>



15

Axial form factor (Iso-vector)

14

Axial form factor (Iso-vector)

13

Axial Form Factor

gA is consistent with experiment being independent of ts
√<rA

2> is also consistent with experiment 

gA

√<rA
2>

13

Axial form factor (Iso-vector)

Exp func.
Gauss func.

Two form factors FA and FP

for axial vector current

1.289(48)@ts=14
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Induced Pseudoscalar Form Factor FP

Clear ts dependence for FP ⇒ Excited state contributions 

� ChPT analysis by Bär, Wed�14:00[HIS]

Q2 dependence of 2MNFP

18

Ps form factor (Iso-vector)
Exp func.

Gauss func.

17

Ps form factor (Iso-vector)
ts dependence of FP
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Generalized Goldberger-Treiman (GT) Relation

FA and FP are not independent

⇒ Check Generalized GT relation with GP

3

TABLE I. Summary of simulation parameters in 2+1 flavor QCD simulations. See Ref. [11] for further details.

β L3 × T CSW κud κs a [fm] a−1 [GeV] (La)3 mπ [MeV] Nconf

1.82 963 × 96 1.11 0.126117 0.124790 0.0846(7) 2.333(18) ∼ (8.1 fm)3 ≈ 146 200

TABLE II. Choices for nonzero spatial momenta: q = π/48 × n. The bottom raw denote the degeneracy of n due to the
permutation symmetry between ±x, ±y, ±z directions.

label Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

n (0,0,0) (1,0,0) (1,1,0) (1,1,1) (2,0,0) (2,1,0) (2,1,1) (2,2,0) (3,0,0) (2,2,1)

|n|2 0 1 2 3 4 5 6 8 9 9

degeneracy 1 6 12 8 6 24 24 12 6 24

given by the isovector combination of the Dirac (Pauli)
form factors of the proton and neutron as

F v
1,2(q

2) = F p
1,2(q

2)− Fn
1,2(q

2), (10)

where individual form factors FN
1,2 (N = p, n) are defined

by

⟨N(P ′)|jemα (x)|N(P )⟩

= ūN(P ′)

(

γαF
N
1 (q2) + σαβ

qβ
2MN

FN
2 (q2)

)

uN (P )eiq·x.

(11)

Experimental data from elastic electron-nucleon scat-
tering is usually described in terms of the electric GE(q2)
and magnetic GM (q2) Sachs form factors, which are re-
lated to the Dirac and Pauli form factors:

GN
E (q2) = FN

1 (q2)−
q2

4M2
N

FN
2 (q2), (12)

GN
M (q2) = FN

1 (q2) + FN
2 (q2). (13)

Their normalizations at q2 = 0 are given by the proton’s
(neutron) electric charge and magnetic moment [62].
Therefore, one finds

FV (0) = F v
1 (0) = Gv

E(0) = 1, (14)

2MNFT (0) = F v
2 (0) = Gv

M (0)− 1 = 3.70589, (15)

where Gv
E (Gv

M ) represents the isovector combination of
the electric (magnetic) form factors of the proton and
neutron.
The q2 dependence of the Sachs form factors GN

E (q2)
and GN

M (q2) are experimentally known that the standard
dipole parameterization GD(q2) = Λ2/(Λ2 + q2)2 with
Λ2 = 0.71 [(GeV)2] (or Λ = 0.84 [GeV]) describes well
the magnetic form factors of both the proton and neu-
tron and also the electric form factor of the proton, at
least, in the low q2 region. In general, if there is no sin-
gularity around q2 = 0 for a given form factor G(q2), the
normalized form factor can be expanded in powers of q2.

G(q2) = G(0)

(

1−
1

6
⟨r2⟩q2 +

1

120
⟨r4⟩q4 + · · ·

)

, (16)

where the first coefficient determines the mean squared
radius ⟨r2⟩, which is a typical size in the coordinate space.
For the dipole form, the root-mean-square (RMS) radius

R is given as R =
√

⟨r2⟩ =
√
12
Λ by the dipole mass

parameter Λ.
For the axial-vector part of weak processes, the axial-

vector form factor at zero momentum transfer, namely,
the axial-vector coupling gA = FA(0), is precisely deter-
mined by measurements of the beta asymmetry in neu-
tron decay. The value of gA = 1.2723(23) is quoted in
the 2016 PDG [4]. The reason why gA deviates from
the corresponding vector coupling gV = FV (0) = 1 is
that the axial-vector current is strongly affected by the
spontaneous chiral symmetry breaking in the strong in-
teraction [14, 15]. In this sense, this particular quantity
allows us to perform a precision test of lattice QCD in
the baryon sector.
The q2 dependence of the axial-vector form factor

FA(q2) has also been studied in experiments, where the
dipole form FA(q2) = FA(0)/(q2 + M2

A)
2 is a good

description for low and moderate momentum transfer
q2 < 1 [(GeV)2] [16, 17]. Recently, the axial mass param-
eter MA is much paid attention to by neutrino oscillation
studies [18, 19].
Although the induced pseudoscalar form factor FP (q2)

is less well known experimentally [20, 21], it is theoreti-
cally known that two form factors FA(q2) and FP (q2) in
the axial-vector channel are not fully independent. It is
because the axial Ward-Takahashi identity: ∂αA+

α (x) =
2m̂P+(x) leads to the generalized Goldberger-Treiman
(GT) relation among three form factors [22, 23]:

2MNFA(q
2)− q2FP (q

2) = 2m̂GP (q
2), (17)

where m̂ = mu = md is a degenerate up and down quark
mass and the pseudoscalar nucleon form factor GP (q2) is
defined in the pseudoscalar nucleon matrix element

⟨p|P+(x)|n⟩ = ūp

(

γ5GP (q
2)
)

une
iq·x (18)

with a local pseudoscalar density, P+(x) ≡ ū(x)γ5d(x).
Therefore, the q2 dependences of three form factors,
FA(q2), FP (q2) and GP (q2) are constrained by Eq. (17)
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Pseudoscalar Form Factor GP (1)

Mound like shape ⇒ Signal of excited state contributions 

Ratio of 3-pt to 2-pt correlators as a function of t (location of P)  

Ps form factor from P (Iso-vector)

20

Exp func.
Gauss func.
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Pseudoscalar Form Factor GP (2)

mAWI(GT) becomes closer to mAWI(PCAC) for larger ts

Q2 dependence of GP

ts dependence of  mAWI(GT)

21

Ps form factor from P (Iso-vector)
Exp func.

Gauss func.
AWI and mass

22

17

0 0.05 0.1 0.15 0.2
z

0.6

0.7

0.8

0.9

1

1.1

F A(z
)/F

A(0
)

z-Exp fit (kmax=2)

0 0.05 0.1 0.15 0.2
z

0.6

0.7

0.8

0.9

1

1.1

F A(z
)/F

A(0
)

z-Exp fit (kmax=3)

0 0.05 0.1 0.15 0.2
z

0.6

0.7

0.8

0.9

1

1.1

F A(z
)/F

A(0
)

z-Exp fit (kmax=8)

FIG. 17. Results for z-Exp fit of FA with kmax = 2 (left), 3 (middle) and 8 (right) using all 10 data points.

TABLE X. Results of axial radius
√

⟨r2A⟩ obtained by the various fits.

z-Exp fit Experimental value

Observable dipole fit quadratic fit kmax = 2 kmax = 3 kmax = 8
√

⟨r2A⟩ [fm] 0.40(12) 0.22(49) 0.46(11) 0.46(11) 0.46(11) 0.67(1)

χ2/dof 3.45/8 2.60/7 4.00/7 4.00/6 4.00/1 —

0 0.05 0.1 0.15 0.2 0.25
q2 [(GeV)2]

0.7

0.8

0.9

1

1.1

F A(q
2 )/F

A(0
)

dipole fit
quadratic fit
z-Exp fit

FIG. 18. Results of FA with three types of the fitting form
ansatz: dipole (red), quadratic (blue) and z-Exp (green) fits.
All fits are performed with all 10 data points.

other form factors. We next plot the bare pseudo-scalar
form factorGP (q2), which is not renormalized, in Fig. 20.
The measured q2 dependence of GP (q2) resembles that
of FP (q2), where the relatively strong q2 dependence ap-
pears in the lower q2 region as was expected from the
pion-pole contribution.
In the PPD model, the pion-pole dominance holds even

in GP (q2). Combined with Eq. (17) and Eq. (45), a naive
pion-pole dominance form GPPD

P (q2) is given as

2m̂GPPD
P (q2) = 2MNFA(q

2)
m2

π

q2 +m2
π

. (46)

Thus one may realize that the ratio of the PPD forms,
GPPD

P and FPPD
P does not depend on q2 and gives the

low-energy constant B0 as

GPPD
P (q2)

FPPD
P (q2)

= B0 (47)

with a help of the Gell-Mann-Oakes-Renner (GMOR) re-
lation for the pion mass: m2

π = 2B0m̂.
As shown in Fig. 21, the ratio of GP (q2)/F ren

P (q2) in-
deed exhibits a flat q2 dependence at lower q2. We then
estimate the low-energy constant B0 by a constant fit to
the plateau value using six data points at the lower mo-
mentum transfer. We then get the bare value of the low-
energy constant as B0 = 3.10(25) [GeV], which is repre-
sented by blue solid line with a shaded band in Fig. 21.
This value is fairly consistent with the one evaluated by
the GMOR relation with the simulated pion mass and
a (bare) quark mass (amPCAC = 0.001577(10)) obtained
from the pion two-point correlation functions with the
PCAC relation [11, 50]. This observation strongly indi-
cates that the GP (q2) form factor shares a similar pion-
pole structure with the F ren

P (q2) form factor and the ratio
of their residues is highly constrained by the GMOR re-
lation.

3. Test for the axial Ward-Takahashi identity

In order to verify the axial Ward-Takahashi identity in
terms of the nucleon matrix elements, we define the fol-
lowing ratio inspired by the generalized GT relation (17)

mAWTI =
2MNF ren

A (q2)− q2F ren
P (q2)

2GP (q2)
(48)

with the simulated nucleon mass MN . If the ratio reveals
a q2 independent plateau in the entire q2 region, mAWTI

should be regarded as an alternative (bare) quark mass.

Generalized GT relation
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Summary 

• 2+1 flavor QCD simulation at the physical point on (10.8 fm)4 lattice 

− Large spatial volume allows investigation at small Q2 region

• ts dependence is systematically investigated

− GE, GM and FA show no ts dependence 

− Clear ts dependence is observed for FP and GP

• Results for GE, GM and FA are consistent with experiment including gA

• Violation of Generalized GT relation diminishes as ts increases 
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