

Nucleon form factors on a (10.8fm)⁴ lattice at the physical point in 2+1 flavor QCD

Y.Kuramashi for PACS Collaboration U. of Tsukuba

July 26, 2018 @ MSU

Plan of talk

- PACS Collaboration Members
- "PACS10" Configs with Physical Volume over (10 fm)⁴
- Improvements from Previous Work (arXiv:1807.03974)
- Results for Form Factors
 - Vector Current
 - Axial Vector Current
 - Generalized Goldberger-Treiman Relation
 - \Rightarrow Pseudoscalar Density
- Summary

PACS Collaboration Members

N.Ishizuka, Y.Kuramashi, Y.Namekawa, Y.Taniguchi, N.Ukita, T. Yamazaki, T.Yoshié

Y.Nakamura, E.Shintani

K.-I.Ishikawa

N.Tsukamoto, S.Sasaki

T.Izubuchi

Tsukuba

RIKEN-CCS

Hiroshima

Tohoku

BNL

"PACS10" Configs @ β =1.82 in 2+1 Flavor QCD

arXiv:1807.06237

- Wilson-clover quark action + Iwasaki gauge action
- Stout smearing with α =0.1 and N_{smear}=6
- NP C_{SW} =1.11 determined by SF
- β =1.82 \Rightarrow a⁻¹=2.33 GeV
- Lattice size= $128^4 \Rightarrow (10.8 \text{ fm})^3$ spatial volume
- Hopping parameters: (κ_{ud},κ_s)=(0.126117,0.124902)
 ⇒ m_π≈135 MeV, m_πL≈7.5
- Simulation algorithm
 - (MP)²DDHMC w/ active link for ud quarks, RHMC for s quark
 - Block size= $16 \times 16 \times 8 \times 64$
 - MP parameters: $(\rho_1, \rho_2) = (0.9997, 0.9940)$
 - Multi-time scale integrator: $(N_0, N_1, N_2, N_3, N_4) = (8, 2, 2, 2, 2, 2)$
 - trajectory length: τ=1
 - N_{RHMC}=8, [F_{min},F_{max}]=[0.00025,1.85]
 - Chronological inverter guess for IR parts
 - Solver: mixed precision nested BiCGStab

Measurement Details with Plateau Method (1)

2-pt correlator

$$C_{XS}(t_{\text{sink}} - t_{\text{src}}, \boldsymbol{p}) = \frac{1}{4} \text{Tr} \left\{ \mathcal{P}_+ \langle N_X(t_{\text{sink}}, \boldsymbol{p}) \bar{N}_S(t_{\text{src}}, -\boldsymbol{p}) \rangle \right\}$$

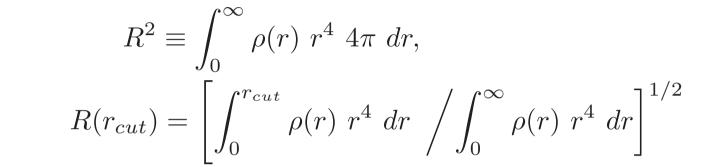
3-pt correlator

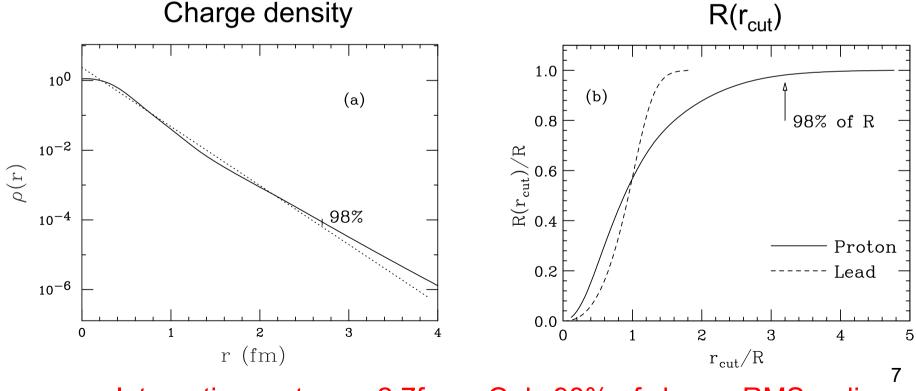
$$C_{O,\alpha}^{\mathcal{P}_{k}}(t,\boldsymbol{p}',\boldsymbol{p}) = \frac{1}{4} \operatorname{Tr} \left\{ \mathcal{P}_{k} \langle N(t_{\mathrm{sink}},\boldsymbol{p}') J_{\alpha}^{O}(t,\boldsymbol{q}) \bar{N}(t_{\mathrm{src}},-\boldsymbol{p}) \rangle \right\}$$

Ratio of 3-pt to 2-pt correlators

$$\mathcal{R}_{O,\alpha}^{k}(t,\boldsymbol{p}',\boldsymbol{p}) = \frac{C_{O,\alpha}^{\mathcal{P}_{k}}(t,\boldsymbol{p}',\boldsymbol{p})}{C_{SS}(t_{\mathrm{sink}}-t_{\mathrm{src}},\boldsymbol{p}')} \sqrt{\frac{C_{LS}(t_{\mathrm{sink}}-t,\boldsymbol{p})C_{SS}(t-t_{\mathrm{src}},\boldsymbol{p}')C_{LS}(t_{\mathrm{sink}}-t_{\mathrm{src}},\boldsymbol{p}')}{C_{LS}(t_{\mathrm{sink}}-t,\boldsymbol{p}')C_{SS}(t-t_{\mathrm{src}},\boldsymbol{p})C_{LS}(t_{\mathrm{sink}}-t_{\mathrm{src}},\boldsymbol{p})}}$$

Measurement Details with Plateau Method (2)


- AMA is used to gain high statistical precision
- O(100) measurements/config \Rightarrow O(10³~10⁴) measurements so far
- 9 choices for spatial momenta: n=(1,0,0),(1,1,0),(1,1,1),(2,0,0),(2,1,0),(2,1,1),(2,2,0),(3,0,0),(2,2,1) minimum mom=2π/L~0.115 GeV thanks to L=10.8 fm
- Lattice size=128⁴ \Rightarrow (10.8 fm)³ spatial volume allows small q² region
- Exp smeared src/sink operators for 2-pt and 3-pt functions
- Src-sink separation: $t_{sink} t_{src} = 10, 12, 14, 16 (\sim 1.35 \text{ fm})$
- Z_A=0.9650(68)(95), Z_V=0.95153(76)(1487) in SF scheme PoS(LATTICE2015)271

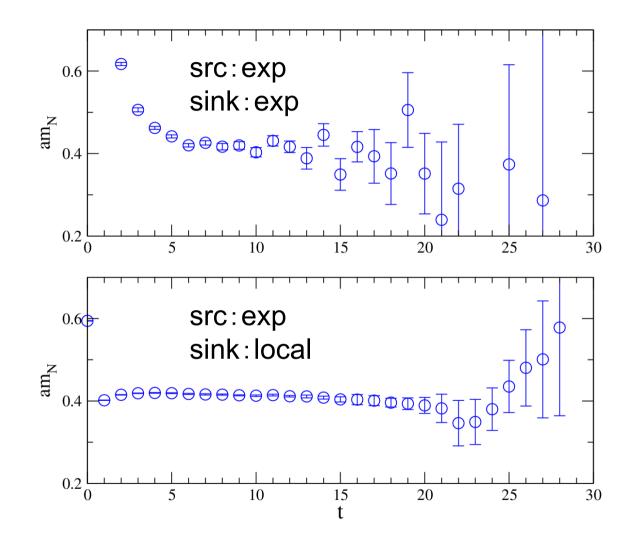

How Large Spatial Size is Necessary?

Sick, Atoms 6(2018)2

Charge RMS radius

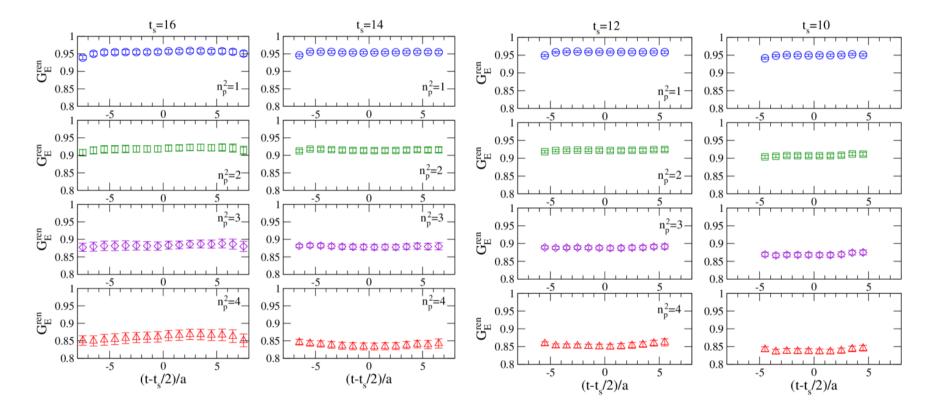
Charge density

Integration up to r_{cut} =2.7fm \Rightarrow Only 98% of charge RMS radius

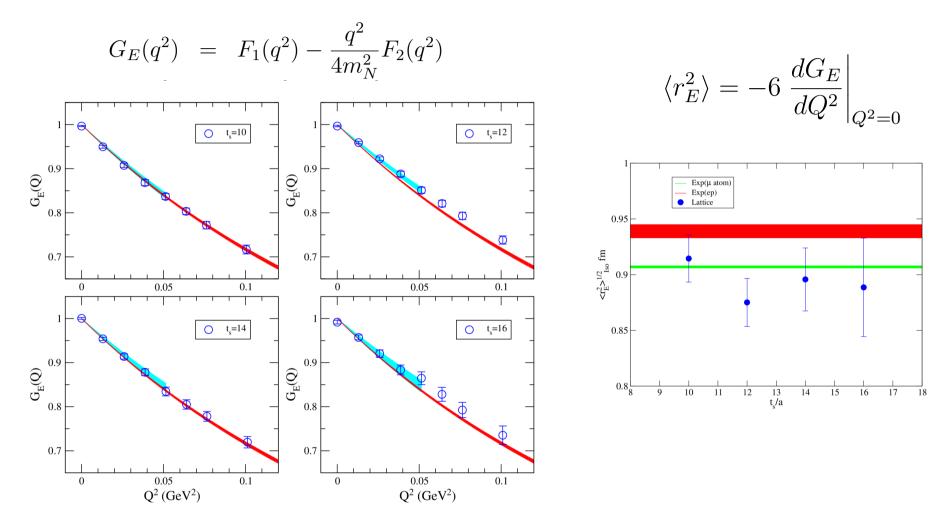


Improvements from Our Previous Work

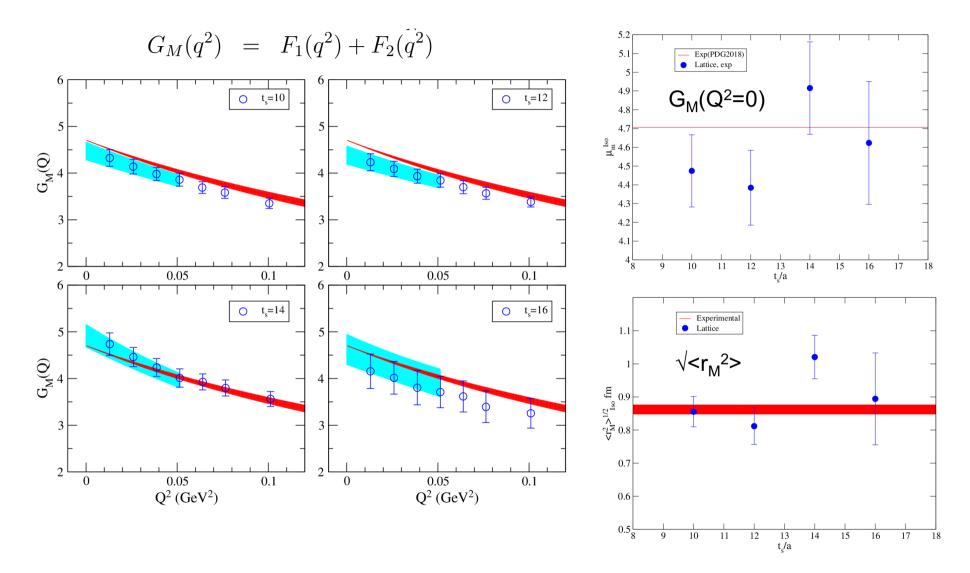
	Lattice 2018	arXiv:1807.03974
Volume	128 ⁴ (10.8 fm) ⁴	96 ⁴ (8.1 fm) ⁴
Minimum q ²	0.013 GeV ²	0.024 GeV ²
m _π	135 MeV (physical)	146 MeV
Measurement to increase statistics	w/ AMA	w/o AMA
t _s = t _{sink} -t _{src} dependence	t _s =10, 12, 14, 16	t _s =15


Nucleon Effective Mass

Good plateau is observed from small time slice

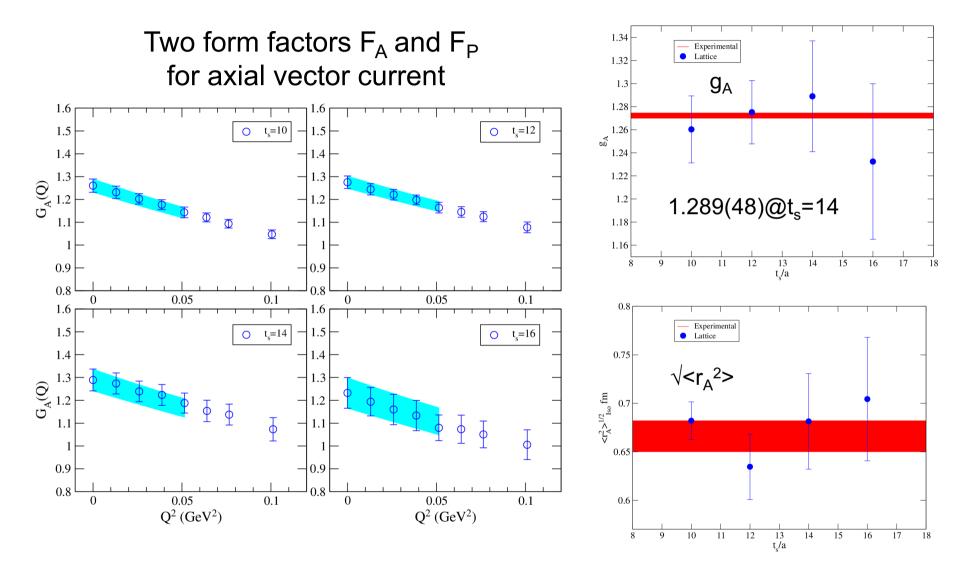

Ratio of 3-pt to 2-pt correlators as a function of t (location of V)

Good plateau for t_s =10, 12, 14, 16


Isovector Electric Form Factor (2)

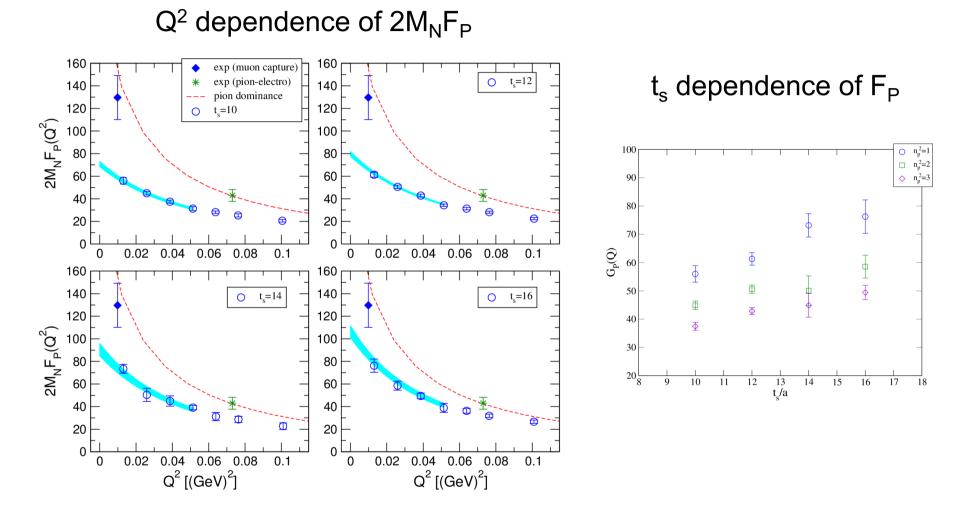
Seems to prefer μ H experiment \Rightarrow Possibility to distinguish two experimental values

Isovector Magnetic Form Factor



Consistent with μ_M and $\sqrt{\langle r_M^2 \rangle}$ within 2σ error

12


Axial Form Factor

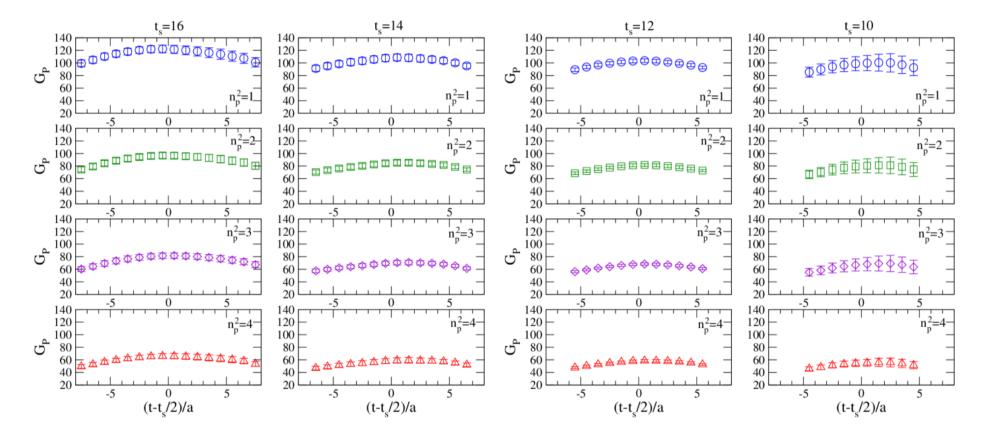
 g_A is consistent with experiment being independent of t_s $\sqrt{\langle r_A^2 \rangle}$ is also consistent with experiment

Induced Pseudoscalar Form Factor F_P

Clear t_s dependence for $F_P \Rightarrow$ Excited state contributions

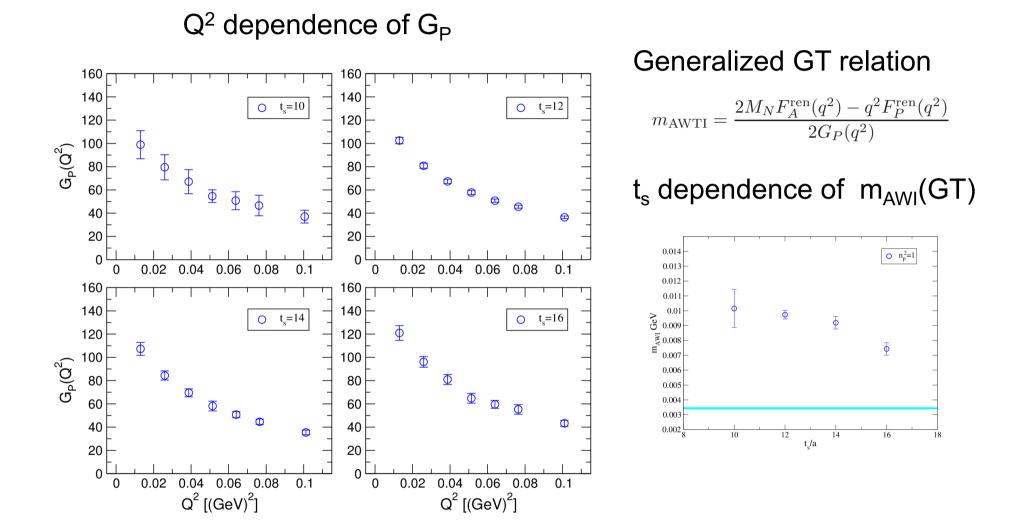
X ChPT analysis by Bär, Wed 14:00[HIS]

 F_A and F_P are not independent


$$2M_N F_A(q^2) - q^2 F_P(q^2) = 2\hat{m}G_P(q^2)$$

 \Rightarrow Check Generalized GT relation with G_P

Pseudoscalar Form Factor $G_P(1)$


Ratio of 3-pt to 2-pt correlators as a function of t (location of P)

Mound like shape \Rightarrow Signal of excited state contributions

Pseudoscalar Form Factor $G_P(2)$

 $m_{AWI}(GT)$ becomes closer to $m_{AWI}(PCAC)$ for larger t_s

17

Summary

- 2+1 flavor QCD simulation at the physical point on (10.8 fm)⁴ lattice
 - Large spatial volume allows investigation at small Q² region
- t_s dependence is systematically investigated
 - G_E , G_M and F_A show no t_s dependence
 - Clear t_{s} dependence is observed for F_{P} and G_{P}
- Results for G_E , G_M and F_A are consistent with experiment including g_A
- Violation of Generalized GT relation diminishes as t_{s} increases

BACKUP