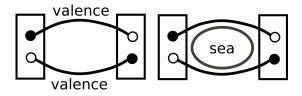

Coupling to Multihadron States with Chiral Fermions

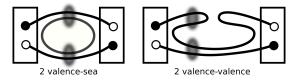
Jacob Fallica University of Kentucky


- Variational Method uses many different (single-hadron, two-hadron, etc) interpolating operators to extract energy states
- In principle, any such operator alone should go to lowest energy state in its symmetry channel
- "Why don't we see $\eta\pi$ state in scalar isovector channel, with $q\bar{q}$ -type operators?"

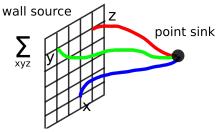
Just a matter of statistics, or is there more?

- ▶ $48^3 \times 96$ with $N_f = 2 + 1$ Domain-Wall Fermions (sea)
- ► $N_s a \approx 5.5 \, \text{fm}, \ a^{-1} \approx 1.73 \, \text{GeV} \ (a = 0.114 \, \text{fm})$
- valence quark mass corresponding to unitary and physical point occurs between am_q = 0.0024 and am_q = 0.003
 m^(sea)_π = 139.2(4) MeV
- Valence Overlap Fermions
 - ▶ 12 m_{π} values from 113 to 660 MeV, 81 configurations, 8 source times
- Valence Clover Fermions
 - ▶ 6 m_{π} values from 140 MeV to 660 MeV, 81 configurations, 1 source time

- Mixed Action
- $\int DU \mathcal{F}(M_{\text{valence}}^{-1}[U]) \det M_{\text{sea}}[U] e^{-S_g[U]}$
- Different fermions for sea (det *M* in configuration generation) and valence (*M*⁻¹ matrix inversions for quark contractions)
- Different types of quark lines contribute to correlators



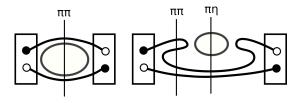
- $q\bar{q}$ -coupling to multihadron states
- Loops from sea
- ► Hairpin diagrams, or Z-graphs, from valence
- Intermediate states made from two sea, two valence, or a mix!


•
$$m_{vs}^2 = \frac{1}{2}(m_{vv}^2 + m_{ss}^2) + a^2 \Delta_{\min}$$

Orginos, Walker-Loud PRD77,094505(2008)

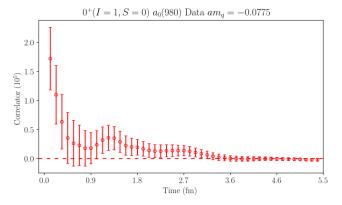
unitary point is "fuzzy"

- Wall Source
- Spatial sum supresses nonzero relative momentum
- ► (S-wave good, higher partial waves bad)

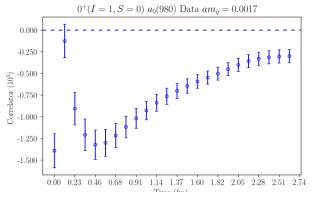


Spectral Decomposition of Correlator

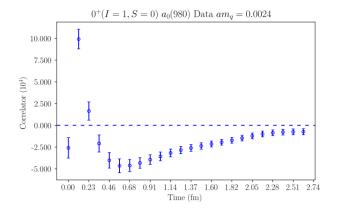
•
$$C(t) = \sum A_i e^{-E_i t}$$


• A_i unitless \Rightarrow not really a spectral weight

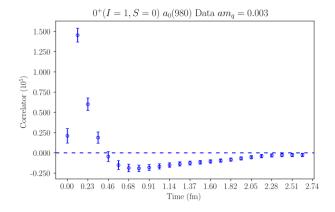
•
$$0^+$$
 ($I = 1, S = 0$) $q\bar{q}$ -coupling to $\eta\pi$


- $+\exp(-2m_{\pi}^{vs}t)$, $-\exp(-2m_{\pi}^{vv}t)$ and $+\exp(-(m_{\pi}^{vv}+m_{\eta}^{ss})t)$
- Cancellation between $2m_{\pi}$ -terms at unitary point \Rightarrow find $\eta\pi$
- Should see 2π^{vs} above, 2π^{vv} below (as a negative correlator!)
- No hairpin diagram \Rightarrow no $\eta\pi$ -state \Rightarrow no ghost!

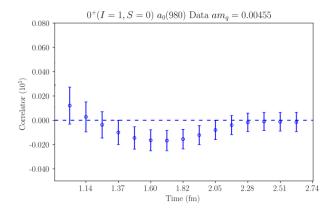
• Clover valence $q\bar{q}$ -operator in 0⁺(1,0) channel ($m_{\pi} \approx 150 \,\mathrm{MeV}$)


- Noisy data, but central values stay positive
- No ghost! \Rightarrow hairpin diagram supressed

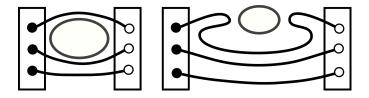
• Overlap valence $q\bar{q}$ -operator in 0⁺(1,0) channel ($m_{\pi} \approx 114 \,\mathrm{MeV}$)



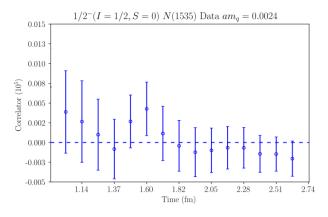
- Clearly a large ghost contribution
- Chiral fermion does not supress hairpin diagram


• Overlap valence $q\bar{q}$ -operator in 0⁺(1,0) channel ($m_{\pi} \approx 133 \,\mathrm{MeV}$)

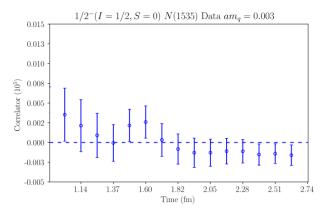
• Overlap valence $q\bar{q}$ -operator in 0⁺(1,0) channel ($m_{\pi} \approx 148 \,\mathrm{MeV}$)


• Overlap valence $q\bar{q}$ -operator in $0^+(1,0)$ channel $(m_\pi \approx 180 \,\mathrm{MeV})$

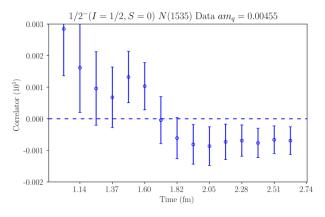
Other ghosts?


- Quenched Roper $N^+(1440)$ and $S_{11} N^-(1535)$ study
- $0^{-}(1/2,0)$ has πN below $N^{-}(1535)$

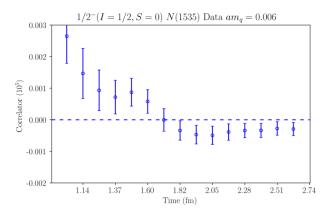
Mathur, Liu et al PLB,605(2005)


Any hint of ghosts?

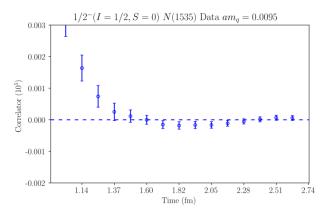
• $1/2^{-}(1/2, 0)$ channel ($m_{\pi} \approx 133 \, { m MeV}$)


Central values suggest ghost

• $1/2^{-}(1/2,0)$ channel ($m_{\pi} \approx 148 \, { m MeV}$)

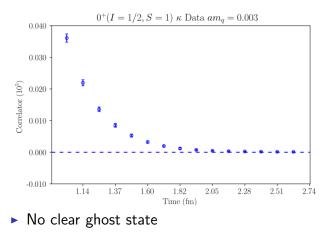

Central values still suggest ghost

• $1/2^{-}(1/2,0)$ channel ($m_{\pi} \approx 180 \, { m MeV}$)

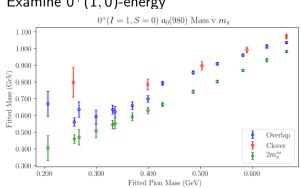


Central values and error show clear ghost

• $1/2^{-}(1/2,0)$ channel ($m_{\pi} \approx 206 \, { m MeV}$)



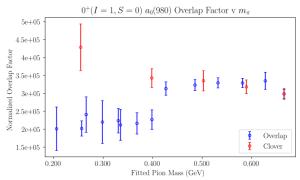
• $1/2^{-}(1/2,0)$ channel ($m_{\pi} \approx 257 \, { m MeV}$)



 Ghost contribution clear much later in time than scalar-isovector case Other ghosts?

- 0⁺(1/2, 1) κ channel (same as scalar-isovector with spectator strange quark)
- $m_{\pi} \approx 148 \,\mathrm{MeV}$

Other clover/overlap comparisons


Examine $0^+(1,0)$ -energy

- Potential $\eta\pi$ state (for lower pion masses)
- Kink at 400-420 MeV
- \triangleright Clover state not identifiable (unknown Δ_{mix} parameter)
- Could use clover-on-clover (no mixed action)

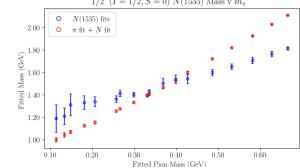
 36^{th} Annual International Symposium on Lattice Field Theory – Michigan Jacob Fallica July 26, 2018 19/22

Other clover/overlap comparisons

► Examine 0⁺(1,0)-spectral factors

- Same kink at 400-420 MeV
- Clover seems much higher than overlap
- Need clover-on-clover and better statistics

$\kappa\text{-channel plots}$ $\text{Kinks also present in } 0^+(1/2,1) \text{ channel}$ Can't resolve


state content

0.30 0.40 0.50 0.60 $0^+(I = 1/2, S = 1) \kappa$ Spectral Weight v m_{π} 4.5e+054e + 05titigg 3.5e+05 3e+05 2.5e+05 2e + 050.2 0.4 0.5 0.6 0.3 Fitted Pion Mass (GeV)

₫

Conclusions

- Chirality can be very important (e.g., a0-channel ghost)
- Exactly when is unknown (e.g., no κ -channel ghost)
- ► $q\bar{q}$ chiral fermions can have not insignificant coupling to multihadron states
- ► Chiral properties of clover seem sufficient for larger pion masses ($\approx 400 \text{ MeV}$) at this lattice spacing (0.1 fm)

 $1/2^{-}(I = 1/2, S = 0) N(1535)$ Mass v m_{π}

- Overlap fermions expensive, need better statistics
- Reuse existing propagators with new sinks to get larger plateau regions? (e.g., prony methods)
- Clover-on-clover to make comparisons more rigorous