Simulating Quantum Chromodynamics coupled with Quantum Electromagnetics on the lattice

Yuzhi Liu
Indiana University
liuyuz@indiana.edu

Fermilab Lattice and MILC Collaborations

The 36th Annual International Symposium on Lattice Field Theory
East Lansing, MI, USA
July 22-28, 2018

Motivation

- Many lattice-QCD calculations are now reaching a precision for which electromagnetic (EM) and isospin-breaking effects may enter near the level of current lattice uncertainties.
- Current dominant errors for the calculation of the hadronic contributions to the muon anomalous magnetic moment ($\mathrm{g}-2$) are from omission of EM and isospin breaking, and from quark-disconnected contributions.
(HPQCD, PRD 96(2017) no.3, 034516)
- The calculation of EM and isospin-violating effects in the kaon and pion systems is a long-standing problem and is crucial for determining the light up- and down-quark masses. (MILC, arXiv:1807.05556, and Fermilab Lattice, MILC, and TUMQCD Collaborations arXiv:1802.04248)

QCD + QED action

In the continuum, the QCD Lagrangian density (in Minkowski space) for one spin- $1 / 2$ field without interacting with the EM field is

$$
\begin{equation*}
\mathcal{L}_{\mathrm{QCD}}=\mathcal{L}_{\mathrm{QCD}_{F}}+\mathcal{L}_{\mathrm{QCD}_{G}}=\sum_{f} \bar{\psi}_{i}^{f}\left(i \gamma_{\mu} D_{i j}^{f \mu}-M^{f}\right) \psi_{j}^{f}-\frac{1}{4 g^{2}} G_{\mu \nu}^{a} G_{a}^{\mu \nu} \tag{1}
\end{equation*}
$$

The Euclidean QCD + QED Lagrangian density is

$$
\begin{equation*}
\mathcal{L}=\sum_{f} \bar{\psi}_{i}^{f}\left(\gamma_{\mu} D_{i j}^{f \mu}+M^{f}\right) \psi_{j}^{f}+\frac{1}{4 g^{2}} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu} \tag{2}
\end{equation*}
$$

with

$$
\begin{align*}
D_{\mu}^{f} & =\partial_{\mu}+i A_{\mu}(x)+i q^{f} A_{\mu}^{\prime}(x) \tag{3}\\
q^{f} & =2 / 3 \quad \text { for u quark, } \quad e \approx \sqrt{4 \pi / 137} \tag{4}\\
G_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}(x)-\partial_{\nu} A_{\mu}^{a}(x)+f_{a b c} A_{\mu}^{b}(x) A_{\nu}^{c}(x) \tag{5}\\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}^{\prime}(x)-\partial_{\nu} A_{\mu}^{\prime}(x) \tag{6}
\end{align*}
$$

The QCD + QED action becomes

$$
\begin{equation*}
S=\int d x^{4} \mathcal{L}=S_{F}+S_{G_{Q C D}}+S_{G_{Q E D}} \tag{7}
\end{equation*}
$$

QCD + QED action

- The lattice QCD $(S U(3))$ gauge action $S_{G_{Q C D}}$ is a function of
- the link variable $U_{\mu}(n)=e^{i A_{\mu}(n)}$ and the QCD coupling g.
- The lattice QED $(U(1))$ gauge action $S_{G_{Q E D}}$ is a function of
- the link variable $U_{\mu}^{\prime q}(n)=e^{i q A_{\mu}^{\prime}(n)}$ for compact QED;
or
- the real valued vector potential of an EM field $A_{\mu}^{\prime}(x)$ for non-compact QED.
and
- the QED coupling e.
- The lattice fermion action S_{F} is a function of
- the link variables $U_{\mu}(n)$ and $U_{\mu}^{\prime q}(n)$ (i. e., S_{F} has both $\mathrm{SU}(3)$ and $\mathrm{U}(1)$ components).

QCD + QED action

- The naive QCD+QED lattice fermion action is

$$
\begin{equation*}
S_{F}^{\text {naive }}=\sum_{x, y} \bar{\psi}(x)\left[M\left(U^{\mathrm{eff}}\right)\right]_{x y} \psi(y) \tag{8}
\end{equation*}
$$

where $\psi(x)$ is the charged spin $1 / 2$ particle field.

- The staggered fermion classical Hamiltonian is obtained by changing the $\psi(x)$ field to the staggered field $\chi(x)$, introducing the pseudo-fermion filed Φ (on even sites only) and the canonical momentum h and h^{\prime} conjugate to A_{μ} and A_{μ}^{\prime},

$$
\begin{equation*}
\mathcal{H}\left[\Phi_{e}^{q} ; A^{\prime} ; U ; U^{\prime q} ; g ; e\right]=\sum_{i} \frac{1}{2} h_{i}^{2}+\sum_{i} \frac{1}{2}{h_{i}^{\prime}}_{i}^{2}+S_{P F}+S_{G_{Q C D}}+S_{G_{Q E D}} \tag{9}
\end{equation*}
$$

- The staggered pseudo-fermion action with n_{f} degenerate fermion flavors is

$$
\begin{gather*}
S_{P F}=\langle\Phi|\left[M^{\dagger}\left[U^{\text {eff }}\right] M\left[U^{e f f}\right]\right]^{-n_{f} / 4}|\Phi\rangle \tag{10}\\
M_{x, y}\left[U^{\text {eff }}\right]=2 m \delta_{x, y}+D_{x, y}\left[U^{\text {eff }}\right]=2 m \delta_{x, y}+\sum_{\mu} \eta_{x, \mu}\left(U_{x, \mu}^{\text {eff }} \delta_{x, y-\mu}-U_{x-\mu, \mu}^{\text {eff } \dagger} \delta_{x, y+\mu}\right) \tag{11}
\end{gather*}
$$

Non-compact QED

- The non-compact $U(1)$ lattice gauge action is defined as

$$
\begin{align*}
S_{G_{Q E D}}^{N C}\left(A_{\mu}^{\prime}(n)\right) & =\frac{1}{4 e^{2}} \sum_{n, \mu, \nu} F_{\mu \nu}^{2}(n), \tag{12}\\
& =\frac{1}{2 e^{2}} \sum_{n, \mu<\nu} F_{\mu \nu}^{2}(n)=\frac{\beta_{u 1}}{2} \sum_{n, \mu<\nu} F_{\mu \nu}^{2}(n), \tag{13}
\end{align*}
$$

with

$$
\begin{equation*}
F_{\mu \nu}(n)=\left[A_{\mu}^{\prime}(n)+A_{\nu}^{\prime}(n+\hat{\mu})-A_{\mu}^{\prime}(n+\hat{\nu})-A_{\nu}^{\prime}(n)\right] \tag{14}
\end{equation*}
$$

- The $U(1)$ momentum is defined via

$$
\begin{equation*}
\frac{d U_{\mu}^{\prime q}(n)}{d \tau}=i \dot{A}_{\mu}^{\prime}(n) q^{f} U_{\mu}^{\prime q}(n) \equiv i H_{\mu}^{\prime q}(n) U_{\mu}^{\prime q}(n) \tag{15}
\end{equation*}
$$

with

$$
\begin{align*}
U_{\mu}^{\prime q}(n) & =e^{i q A_{\mu}^{\prime}(n)} \tag{16}\\
H^{\prime q}{ }_{\mu}(n) & =h_{\mu}^{\prime}(n) q^{f} . \tag{17}
\end{align*}
$$

Since $\dot{A}^{\prime}{ }_{\mu}(n)=h_{\mu}^{\prime}(n), h_{\mu}^{\prime}(n)$ is a conjugate field to $A^{\prime}{ }_{\mu}(n)$, we can consider $A^{\prime}{ }_{\mu}(n)$ as coordinate and $h_{\mu}^{\prime}(n)$ as momentum conjugate to the corresponding coordinate.

- The kinetic part of the Hamiltonian can then be written as

$$
\begin{equation*}
\sum_{n, \mu} \frac{1}{2}{h^{\prime}}_{\mu}^{2}(n)=\frac{1}{2 q^{f^{2}}} \sum_{n, \mu}\left[H^{\prime}{ }_{\mu}(n)^{2}\right] \tag{18}
\end{equation*}
$$

Non-compact QED: gauge force

- $\mathrm{U}(1)$ gauge field update:

Since $\dot{A}^{\prime}{ }_{\mu}(n)=h^{\prime}{ }_{\mu}(n)$, the A^{\prime} should be updated according to

$$
\begin{equation*}
A^{\prime} \rightarrow A^{\prime}+h^{\prime} d \tau \tag{19}
\end{equation*}
$$

- $\mathrm{U}(1)$ momentum update:

The $U(1)$ gauge force contributing to the $U(1)$ momentum change is

$$
\begin{equation*}
\frac{d h^{\prime}}{d \tau}=-\frac{d S_{G_{Q E D}}^{N C}}{d A^{\prime}} \tag{20}
\end{equation*}
$$

with

$$
\begin{align*}
d S_{G_{Q E D}}^{N C} / d A_{\mu}^{\prime}(n)= & \frac{1}{e^{2}} \sum_{\nu}\left[\left[A_{\mu}^{\prime}(n)+A_{\nu}^{\prime}(n+\mu)-A_{\mu}^{\prime}(n+\nu)-A_{\nu}^{\prime}(n)\right]\right. \\
& \left.-\left[A_{\mu}^{\prime}(n-\nu)+A_{\nu}^{\prime}(n-\nu+\mu)-A_{\mu}^{\prime}(n)-A_{\nu}^{\prime}(n-\nu)\right]\right] \tag{21}\\
= & \beta_{u 1} \sum_{\nu}\left[F_{\mu \nu}(n)-F_{\mu \nu}(n-\nu)\right] . \tag{22}
\end{align*}
$$

Fermion forces

- The fermion force has contributions from both $\mathrm{SU}(3)$ and $\mathrm{U}(1)$.
- Taking the MC simulation time τ derivative of the Hamiltonian and requring it to be zero, one gets the $\mathrm{SU}(3)$ and $\mathrm{U}(1)$ fermion forces.
- The $\operatorname{SU}(3)$ contribution (QCD force) is

$$
\begin{align*}
i \dot{H}_{\mu}(n)= & {\left[U_{\mu}(n) \frac{\partial S}{\partial U_{\mu}(n)}-\frac{\partial S}{\partial U_{\mu}^{\dagger}(n)} U_{\mu}^{\dagger}(n)\right] } \\
& -\frac{1}{N_{c}} \operatorname{Tr}\left[U_{\mu}(n) \frac{\partial S}{\partial U_{\mu}(n)}-\frac{\partial S}{\partial U_{\mu}^{\dagger}(n)} U_{\mu}^{\dagger}(n)\right], \tag{23}\\
= & 2\left[U_{\mu}(n) \frac{\partial S}{\partial U_{\mu}(n)}\right]_{A T}, \tag{24}
\end{align*}
$$

where the operation $A T$ stands for taking the anti-Hermitian and traceless part of the matrix

$$
\begin{equation*}
M_{A T}=\frac{1}{2}\left(M-M^{\dagger}\right)-\frac{1}{2 N_{c}} \operatorname{Tr}\left(M-M^{\dagger}\right) . \tag{25}
\end{equation*}
$$

Fermion forces

- The fermion force has contributions from both $\mathrm{SU}(3)$ and $\mathrm{U}(1)$.
- Taking the MC simulation time τ derivative of the Hamiltonian and requring it to be zero, one gets the $\operatorname{SU}(3)$ and $\mathrm{U}(1)$ fermion forces.
- The $U(1)$ contribution (QED force) is

$$
\begin{equation*}
i \dot{h}_{\mu}^{\prime}(n)=\sum_{q} q^{f} \operatorname{Tr}\left[U_{\mu}(n) \frac{\partial S}{\partial U_{\mu}(n)}-\frac{\partial S}{\partial U_{\mu}^{\dagger}(n)} U_{\mu}^{\dagger}(n)\right], \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
{\dot{h^{\prime}}}_{\mu}(n)=2 \sum_{q^{f}} q^{f} \operatorname{Im} \operatorname{Tr}\left[\mathrm{U}_{\mu}(\mathrm{n}) \frac{\partial \mathrm{S}}{\partial \mathrm{U}_{\mu}(\mathrm{n})}\right] . \tag{27}
\end{equation*}
$$

- In Eqs. $\left(23,24,26\right.$, and 27), $U_{\mu}(n)$ is the product of $S U(3) U_{\mu}(n)$ and $U(1) U_{\mu}^{\prime q}(n)$.

Pure gauge $\mathrm{U}(1)$ test

- The pure gauge $U(1)$ Hamiltonian is

$$
\begin{equation*}
\mathcal{H}\left[A^{\prime} ; e\right]=\sum_{i} \frac{1}{2} h_{i}^{\prime}{ }^{2}+S_{G_{Q E D}}^{N C} . \tag{28}
\end{equation*}
$$

- The non-compact $\mathrm{U}(1)$ gauge action $S_{G_{Q E D}}^{N C}$ is only a function of the dimensionality d and lattice volume V on the finite periodic lattice

$$
\begin{equation*}
S_{G_{Q E D}}^{N C}=\frac{(d-1)(V-1)}{2} \tag{29}
\end{equation*}
$$

- One can use this to check the correctness of the pure gauge $\mathrm{U}(1)$ code.

$\mathrm{U}(1)$ with fermions test

- The $\mathrm{U}(1)$ with fermion Hamiltonian is

$$
\begin{equation*}
\mathcal{H}\left[\Phi_{e}^{q} ; A^{\prime} ; U^{\prime q} ; e\right]=\sum_{i} \frac{1}{2}{h^{\prime}}_{i}^{2}+S_{P F}+S_{G_{Q E D}}^{N C} \tag{30}
\end{equation*}
$$

- Time history of the $\mathrm{U}(1)$ gauge action

$\mathrm{SU}(3)$ with fermions test

- The $\operatorname{SU}(3)$ with fermion Hamiltonian is

$$
\begin{equation*}
\mathcal{H}\left[\Phi_{e}^{q} ; A^{\prime} ; U^{\prime q} ; e\right]=\sum_{i} \frac{1}{2} h_{i}^{2}+S_{P F}+S_{G_{Q C D}} \tag{31}
\end{equation*}
$$

- Time history of the SU(3) Plaquette

$\mathrm{SU}(3)+\mathrm{U}(1)$ with fermions test

- The $\mathrm{SU}(3)+\mathrm{U}(1)$ with fermion Hamiltonian is

$$
\begin{equation*}
\mathcal{H}\left[\Phi_{e}^{q} ; A^{\prime} ; U^{\prime q} ; e\right]=\sum_{i} \frac{1}{2} h_{i}^{2}+\sum_{i} \frac{1}{2} h_{i}^{\prime}{ }^{2}+S_{P F}+S_{G_{Q C D}} \cdot+S_{G_{Q E D}}^{N C} \tag{32}
\end{equation*}
$$

- Time history of the SU(3) Plaquette

Integration algorithms

- The integration algorithm is based on decomposing the Hamiltonian in exactly integrable pieces

$$
\begin{equation*}
H(\phi, h)=H_{1}(\phi)+H_{2}(h), \tag{33}
\end{equation*}
$$

with $H_{1}(\phi)=S(\phi)$ and $H_{2}(h)=\sum_{i} h_{i}^{2} / 2$ for example.
The algorithm consists of repeated applying the following two elementary steps

$$
\begin{align*}
& I_{1}(\epsilon):(h, \phi) \rightarrow\left(h, \phi+\epsilon \nabla_{h} H_{2}(h)\right), \tag{34}\\
& I_{2}(\epsilon):(h, \phi) \rightarrow\left(h-\epsilon \nabla_{\phi} S(\phi), \phi\right) . \tag{35}
\end{align*}
$$

- The leap-frog algorithm corresponds to the following updates

$$
\begin{equation*}
I_{\epsilon}(\tau)=\left[I_{1}(\epsilon / 2) I_{2}(\epsilon) I_{1}(\epsilon / 2)\right]^{N_{s}}, \tag{36}
\end{equation*}
$$

with $\tau=N_{s} \epsilon$ the length of the trajectory. The leading violation due to the finite step-size ϵ is $\mathcal{O}\left(\epsilon^{2}\right)$.

- The Omelyan integrator

$$
\begin{equation*}
\left[I_{1}(\xi \epsilon) I_{2}(\epsilon / 2) I_{1}((1-2 \xi) \epsilon) I_{2}(\epsilon / 2) I_{1}(\xi \epsilon)\right]^{N_{s}} \tag{37}
\end{equation*}
$$

reduces the coefficient of the ϵ^{2} term and improves the scaling behavior.

- In the MILC code for the HISQ fermion related calculations, an Omelyan based "3G1F" integrator is used.
- The algorithm can be made exact by a Metropolis acceptance step: Hybrid Monte Carlo algorithm.

$S U(3)+U(1)$ with fermions test

- The change of the Hamiltonian during the trajectory is expected to scale with ϵ^{2} for the integrators used.
- Scaling of the the change of action $|\Delta H|$ with the step sizes ϵ. The upper blue points are from the leap-frog integrator and the lower red points are from the "3G1F" integrator.

$S U(3)+U(1)$ with fermions test

- The change of the Hamiltonian during the trajectory is expected to scale with ϵ^{2} for the integrators used.
- Scaling of the $\operatorname{SU}(3)$ Plaquette with the step sizes ϵ. The upper blue points are from the leap-frog integrator and the lower red points are from the "3G1F" integrator.

$S U(3)+U(1)$ with fermions test

- In principle, the Hybrid Monte Carlo algorithm can be run at any step size. The acceptance rate depends on the step sizes.
- Dependence of the acceptance rate as a function of the step-size ϵ

Summary

- Lattice QCD + QED code for staggered fermion HISQ action now exists.
- The code has been tested and compared with theoretical expectations.
- It is currently based on the MILC code and runs efficiently on conventional CPUs.
- Parts of the code can be run on GPUs and Intel Xeon Phi processors.
- Exascale MILC code projects are ongoing.

Thank You!

BACKUP

Appendix: Non-compact U(1) analytic results

- The partition function of the non-compact $\mathrm{U}(1)$ gauge action is

$$
\begin{equation*}
Z=\int\left[d A_{\mu}^{\prime}(n)\right] e^{-S_{G_{Q E D}}^{N C}} \tag{38}
\end{equation*}
$$

- The density of state is

$$
\begin{equation*}
N(E)=\int\left[d A_{\mu}^{\prime}(n)\right] \delta\left(\frac{1}{2} \sum_{n, \mu<\nu} F_{\mu \nu}^{2}(n)-\frac{d(d-1)}{2} V E\right) \tag{39}
\end{equation*}
$$

where E is the average "energy" in a d-dimensional lattice. It is defined as

$$
\begin{equation*}
S_{G_{Q E D}}^{N C}=\frac{\beta_{u 1}}{2} \sum_{n, \mu<\nu} F_{\mu \nu}^{2}(n)=\beta_{u 1} \frac{d(d-1)}{2} V\langle E\rangle \tag{40}
\end{equation*}
$$

- Sine the gauge group is non-compact, the above density of state is divergent even on a finite lattice. One can factorize the divergent part by multiplying the integrand with a Gaussian factor (i.e., introducing a photon mass term)

$$
\begin{equation*}
N(E, M)=\int\left[d A_{\mu}^{\prime}(n)\right] \delta\left[\frac{1}{2} \sum_{n, \mu<\nu} F_{\mu \nu}^{2}(n)-\frac{d(d-1)}{2} V E\right] e^{-M^{2} \sum_{n, \mu} A_{\mu(n)}^{\prime 2}} \tag{41}
\end{equation*}
$$

Appendix: Non-compact U(1) analytic results

- The gauge action is quadratic and can be diagonalized via a unitary transformation. The number of zero modes of the quadratic form is

$$
\begin{equation*}
z_{0}=V+d-1 \tag{42}
\end{equation*}
$$

- The density of state can then be written as

$$
\begin{align*}
N(E, M)= & \int \prod_{n=1}^{d V-z_{0}} d B_{n} \delta\left[\frac{1}{2} \sum_{n} \lambda_{n} B_{n}^{2}-\frac{d(d-1)}{2} V E\right] \tag{43a}\\
& \times \prod_{n} e^{-M^{2} B_{n}^{2}}\left(\int d B e^{-M^{2} B}\right)^{z_{0}} \tag{43b}
\end{align*}
$$

The integrations in Eq. (43b) are Gaussian: $\int_{\infty}^{-\infty} e^{-a x^{2}}=\sqrt{\pi / a}$ and contain all the divergence as $M \rightarrow 0$. The factor in Eq. (43a) is finite.

Appendix: Non-compact U(1) analytic results

- Using the hyper-spherical coordinates in $\left(d V-z_{0}\right)$-dimensional space, one can integrate over Eq. (43a) and get the density of state. Specifically, changing the variables B_{n} to $r \cos \theta_{1}, \cdots$

$$
\begin{align*}
& \int^{d V-z_{0}} d B_{n} \delta\left[\frac{1}{2} \sum_{n} \lambda_{n} B_{n}^{2}-\frac{d(d-1)}{2} V E\right], \tag{44a}\\
= & C_{1} \int d r^{n-1} \delta\left[r^{2}-R\right], \tag{44b}\\
= & C_{1}\left[\frac{1}{2} R^{\frac{n}{2}-1}\left(1-e^{i n \pi}\right)\right], \tag{44c}
\end{align*}
$$

with

$$
\begin{align*}
n & =d V-z_{0} \tag{45}\\
R & =\frac{d(d-1)}{2} V E \tag{46}
\end{align*}
$$

Note that when $n \equiv d V-z_{0}$ is even, the above integral is 0 .

- The density of state is then

$$
\begin{equation*}
N(E)=C E^{\frac{d V-z_{0}}{2}-1} \tag{47}
\end{equation*}
$$

Appendix: Non-compact $\mathrm{U}(1)$ analytic results

- Now we have the analytic functional form of the density of state Eq. (47). The partition function is now a one-dimensional integral

$$
\begin{align*}
Z & =\int_{0}^{\infty} d E N(E) e^{-\beta_{u 1} \frac{d(d-1)}{2} V E} \tag{48}\\
& =C \int_{0}^{\infty} d E E^{\frac{d V-z_{0}}{2}-1} e^{-\beta_{u 1} \frac{d(d-1)}{2} V E} \tag{49}\\
& \equiv C \int_{0}^{\infty} d E E^{a} e^{-b E} \tag{50}\\
& =C b^{-1-a} \Gamma(1+a) \tag{51}
\end{align*}
$$

with

$$
\begin{align*}
& a=\frac{d V-z_{0}}{2}-1, \tag{52}\\
& b=\beta_{u 1} V \frac{d(d-1)}{2} . \tag{53}
\end{align*}
$$

Again the divergence of Z is contained in the constant C.

Appendix: Non-compact U(1) analytic results

- The average Plaquette energy E is then

$$
\begin{align*}
<E> & =\frac{\int_{0}^{\infty} d E N(E) E e^{-\beta_{u 1} \frac{d(d-1)}{2}} V E}{\int_{0}^{\infty} d E N(E) e^{-\beta_{u 1} \frac{d(d-1)}{2} V E}} \tag{54}\\
& \equiv \frac{C \int_{0}^{\infty} d E E^{a+1} e^{-b E}}{C \int_{0}^{\infty} d E E^{a} e^{-b E}} \tag{55}\\
& =\frac{1}{b} \frac{\Gamma(2+a)}{\Gamma(1+a)} \tag{56}\\
& =\frac{a+1}{b} \tag{57}\\
& =\frac{1}{\beta_{u 1}} \frac{d V-z_{0}}{d(d-1) V} \tag{58}\\
& =\frac{1}{\beta_{u 1}} \frac{(d-1) V-d+1}{d(d-1) V} \tag{59}\\
& =\frac{1}{\beta_{u 1}} \frac{V-1}{d V} . \tag{60}
\end{align*}
$$

From Eq. (60), we can see that $\beta_{u 1}\langle E\rangle$ only depends on the dimensionality d and the volume V.

