Low T condensation and scattering data

Oliver Orasch Christof Gattringer Mario Giuliani

Lattice 2018, East Lansing, July $24^{\text {th }}$

Motivation: Particle Number vs. μ

- Typical scenario at low T (fixed) and finite $V\left(=L^{d-1}\right)$:

- Nature of condensation steps?
- Condensation thresholds $\mu_{c}^{i} \Leftrightarrow$ low energy parameters

Our approach

- We study the low temperature regime of a QFT at finite density
- For small spatial lattices particle sectors are separated by finite energy steps \Rightarrow particle condensation
- Critical chemical potentials μ_{c}^{i} of these transitions are related to the minimal N-particle energies W_{N}
- At finite volume scattering information is encoded in W_{N}
- We measure the μ_{c}^{i} with worldline simulations and extract low energy scattering parameters

The framework

- Model: complex scalar field with ϕ^{4} interaction in 2D and 4D

$$
S=\sum_{n \in \Lambda}\left(\left(2 d+m_{0}^{2}\right)\left|\phi_{n}\right|^{2}+\lambda\left|\phi_{n}\right|^{4}-\sum_{\nu=1}^{d}\left[\mathrm{e}^{\mu \delta_{\nu, d}} \phi_{n}^{*} \phi_{n+\hat{\nu}}+\mathrm{e}^{-\mu \delta_{\nu, d}} \phi_{n}^{*} \phi_{n-\hat{\nu}}\right]\right)
$$

- Sign problem $\Rightarrow \mathrm{MC}$ not possible in conventional representation
- Worldline representation with real and positive weights solves sign problem

Measuring the condensation thresholds (2D case)

Fit the steps to a logistic function $\Rightarrow \mu_{c}^{i}$ is inflection point

$$
N(\mu)=(i-1)+\left[1+e^{-k\left(\mu-\mu_{c}^{i}\right)}\right]^{-1}
$$

Interpretation of the condensation steps

- Condensation thresholds are related to the minimal N-particle energies: Bruckmann et al., PRL 115, 231601 (2015)

$$
\begin{aligned}
& W_{1}=\mu_{c}^{1} \equiv m \\
& W_{2}=\mu_{c}^{1}+\mu_{c}^{2} \\
& W_{3}=\mu_{c}^{1}+\mu_{c}^{2}+\mu_{c}^{3}
\end{aligned}
$$

- W_{N} depend on low energy parameters (LEP)
- Describe condensation thresholds in terms of LEP

Important cross-check with conventional spectroscopy

- Compute N -particle energies with connected 2 N -point functions:

$$
\begin{gathered}
\qquad\left\langle\left(\tilde{\phi}_{t}\right)^{N}\left(\tilde{\phi}_{0}^{*}\right)^{N}\right\rangle_{c} \propto e^{-t E_{N}} \\
\text { with } E_{1}=m, E_{2}=W_{2}, E_{3}=W_{3}, \ldots \\
\Rightarrow \text { fields are projected to zero momentum }
\end{gathered}
$$

- μ is absent $\Rightarrow \mathrm{MC}$ in conventional representation
- Extract the N-particle energies from the exponential decay of correlators

Spectroscopy versus WL simulations (2D case)

\Rightarrow Interpretation of condensation steps as m, W_{2}, W_{3} confirmed!

L-dependence of N -particle energies (4D case)

$$
m=m_{\infty}+\frac{A}{L^{\frac{3}{2}}} e^{-L m_{\infty}}
$$

Rummukainen \& Gottlieb 1995

$$
W_{2}=2 m+\frac{4 \pi a}{m L^{3}}\left[1-\frac{a}{L} \frac{\mathcal{I}}{\pi}+\left(\frac{a}{L}\right)^{2} \frac{\mathcal{I}^{2}-\mathcal{J}}{\pi^{2}}+\mathcal{O}\left(\frac{a}{L}\right)^{3}\right]
$$

Huang \& Yang 1957, Lüscher 1986

$$
W_{3}=3 m+\frac{12 \pi a}{m L^{3}}\left[1-\frac{a}{L} \frac{\mathcal{I}}{\pi}+\left(\frac{a}{L}\right)^{2} \frac{\mathcal{I}^{2}+\mathcal{J}}{\pi^{2}}+\mathcal{O}\left(\frac{a}{L}\right)^{3}\right]
$$

Beans et al. 2007, Hansen \& Sharpe 2014, 15, 16, Sharpe 2017

- Infinite-volume mass m_{∞}
- Scattering length a

$$
\left[\delta(k)=-a k+\mathcal{O}\left(k^{2}\right)\right]
$$

- Numerical constants $\mathcal{I}=-8.914$ and $\mathcal{J}=16.532$

Results for 4D

- $m_{\infty}=0.168(1)$ and $a=-0.078(7)$
- Good "prediction" of W_{3} except for very small $L\left(\equiv N_{s}\right)$

Scattering data in 2D

In 2D the full scattering phase shift can be determined from the periodic boundary condition: M. Lüscher, U. Wolff, Nucl. Phys. B 339, 222 (1990)

$$
e^{2 i \delta(k)}=e^{-i k L}
$$

For short-range interaction:

$$
W_{2}=2 \sqrt{m^{2}+k^{2}} \Rightarrow \delta(k)=-\frac{L}{2} \sqrt{\left(\frac{W_{2}}{2}\right)^{2}-m^{2}}
$$

Scattering data in 2D

In 2D the full scattering phase shift can be determined from the periodic boundary condition: M. Lüscher, U. Wolff, Nucl. Phys. B 339, 222 (1990)

$$
e^{2 i \delta(k)}=e^{-i k L}
$$

For short-range interaction:

$$
W_{2}=2 \sqrt{m^{2}+k^{2}} \Rightarrow \delta(k)=-\frac{L}{2} \sqrt{\left(\frac{W_{2}}{2}\right)^{2}-m^{2}}
$$

From 4D: Up to leading order W_{3} should be described by $\delta(k)$

$$
W_{3}=\sqrt{m^{2}+\left(k_{1}+k_{2}\right)^{2}}+\sqrt{m^{2}+k_{1}^{2}}+\sqrt{m^{2}+k_{2}^{2}}
$$

Results for 2D

- Very good agreement of spectroscopy and worldline results

Results for 2D

- Good prediction of W_{3} with $\delta(k)$ from W_{2}
- Condensation steps are determined by scattering phase shift $\delta(k)$

Summary

- Low temperature study of the ϕ^{4} model at finite density
- Sign problem is evaded by using a worldline representation
- For low T particle sectors are separated by finite energy steps \Rightarrow critical chemical potential/condensation thresholds μ_{c}^{i}
- The N-particle energy is the sum of the $\mu_{c}^{i}, i=1, \ldots, N$
- Cross-check of condensation steps with spectroscopy calculations
- Scattering parameters can be extracted from W_{N}
- 4D: scattering length a
- 2D: full scattering phase shift $\delta(k)$
- Condensation thresholds are determined by scattering data

Thank you for listening!

Backup slides

Simulation parameters

- Parameters for 4D simulations:

$$
\text { - } \eta=2 d+m_{0}^{2}=7.44, \lambda=1.0, N_{T}=320,640, N_{s}=3,4, \ldots, 10
$$

- Parameters for 2D simulations:

$$
\text { - } \eta=2 d+m_{0}^{2}=2.6, \lambda=1.0, N_{T}=400, N_{s}=2,4, \ldots, 16
$$

Worldline representation for the charged scalar ϕ^{4} field

- In the worldline approach the grand canonical partition sum is exactly rewritten in terms of dual link variables $k_{n, \nu} \in \mathbb{Z}$

$$
Z=\sum_{\{k\}} \mathrm{e}^{\mu \beta W_{t}[k]} B[k] C[k]
$$

- $W_{t}[k]=$ temporal winding number of the worldlines
- Real and positive weights $B[k]$
- Constraints $C[k]=\prod_{n} \delta\left(\vec{\nabla} \cdot \vec{k}_{n}\right)$

$$
\Rightarrow \quad \vec{\nabla} \cdot \vec{k}_{n}=\sum_{\nu}\left(k_{n, \nu}-k_{n-\hat{\nu}, \nu}\right)=0 \quad \forall n
$$

Interpretation of the condensation steps

Grand canonical partition sum

$$
Z=\operatorname{tr} e^{-\beta(\hat{H}-\mu \hat{Q})}=e^{-\beta \Omega(\mu)}
$$

Low T : Z will be governed by the minimal grand potential $\Omega(\mu)$ in each particle sector

$$
\Omega(\mu) \xrightarrow{T \rightarrow 0} \begin{cases}\Omega_{m i n}^{N=0}=0, & \mu \in\left[0, \mu_{c}^{1}\right) \\ \Omega_{m i n}^{N=1}=W^{(1)}-1 \mu, & \mu \in\left(\mu_{c}^{1}, \mu_{c}^{2}\right) \\ \Omega_{m i n}^{N=2}=W^{(2)}-2 \mu, & \mu \in\left(\mu_{c}^{2}, \mu_{c}^{3}\right) \\ \ldots, & \end{cases}
$$

with renormalized mass $W^{(1)} \equiv m$, minimal 2-particle energy $W^{(2)}, \ldots$

