Coupled channel scattering of vector and scalar charmonium resonances on the lattice

Stefano Piemonte

for the RQCD collaboration

G．Bali，S．Collins，D．Mohler，M．Padmanath，S．Prelovsek，S． Weishaeupl

Universität Regensburg

27 July 2018

Charmonium bound states and resonances on the lattice

What is the nature of charmonium $\bar{c} c$ resonances and exotic "XYZ" states near decay-threshold?

Our first study is focused on the 1^{--}and 0^{++}channels. In the 0^{++}channel the interest is on the first excited state of the $\chi_{c 0}\left(X^{*}(3860)\right.$?) and on the $X(3915)$.

Figure: Spectrum of the charmonium states including exotic resonances. [Picture from hep-ex/1511.01589]

The scalar charmonium meson sector

The scalar charmonium meson sector beyond the ground state is puzzling:

1. $X^{*}(3860)$: discovered by Belle (2017) is a possible candidate for an excited state of the $\chi_{c 0}$. [Phys. Rev. D 95, 112003 (2017)]
2. $X(3915)$: discovered by Belle (2004) in $J / \psi \omega$ decays, later confirmed by BaBar (2007). [Phys. Rev. Lett. 94(2005), 182002; Phys. Rev. Lett. 101 (2008) 082001; Phys. Rev. Lett. 104(2010) 092001]

- Possible alternative interpretation of experimental data as 2^{++} state [Phys. Rev. Lett. 115, 022001 (2015)]
- OZI rule allows decays for an excited $\bar{c} c$ state in $\bar{D} D$ (not seen) but not in $J / \psi \omega$. [Phys. Rev. D 86 (2012), 091501, Phys. Rev. D 91(2015), 057501]
- Possible $\bar{D}_{s} D_{s}$ molecule: not seen in $\eta \eta_{c}$ channel. [Phys. Rev. D 91, 114014 (2015)]
- Possible csc̄̄̄ tetraquark: decays to $J / \psi \omega$ explained in terms of the $\omega-\phi$ mixing. [Eur. Phys. J. C77 (2017) 78]

3. Other possible resonances?

Lattice and distillation methods

We study the charmonium spectrum on the U101 and H105 CLS ensembles, $m_{\pi}=280 \mathrm{MeV}, m_{K}=467 \mathrm{MeV}, a=0.0854 \mathrm{fm}$ and $V=24^{3} \times 128$ and $V=32^{3} \times 96$. We employ full (U101) and stochastic (H105) distillation method [Phys. Rev. D 80: 054506 (2009)].

Charm quark mass: we use $\kappa_{c}=0.123147$, corresponding to a D meson mass m_{D} equal to $1966(8) \mathrm{MeV}$, and $\kappa_{c}=0.12522$ corresponding to $m_{D}=1789(6) \mathrm{MeV}$.

Charmonium spectrum determined in rest and moving frames (lattice directions $\hat{n}=\{0,0,0\},\{1,0,0\},\{1,1,0\}$), from single meson and multi-hadron correlators. Diagrams with disconnected charm loops neglected.

Spin identification of lattice energy levels

On the lattice, the spin J is not a good quantum number: states with many possible J can contribute to a given lattice irreducible representation. We identify the continuum spin by studying the spectrum of $\bar{c} c$-operators with up to two covariant derivatives transforming in different lattice discrete groups.

A state is identified according to the criteria [Phys. Rev. D 82034508 (2010),
Phys Rev. D 85014507 (2012)]:
A Degeneracies of energies: states with a certain J^{P} are expected to appear in different irreps and corresponding energies should be to be nearly degenerate.
B Relative magnitude and close degeneracy of Z factors: a state $\left|J^{P}\right\rangle$ is expected to have similar Z-factors for a given operator $O^{J, P}$ subduced to different irreps.

Spin identification of lattice energy levels

Charmonium spectrum in rest and moving frames:

- J = 0: black
- $J=3$: green
- $J=1$: red
- $J=2$: blue

Lüscher formula

The scattering properties are encoded in the phase shift, that can be computed from the energy levels dependence on the size L of the lattice box.

In the continuum case, a system of two non-interacting identical particles has energy

$$
E=2 \sqrt{m^{2}+p^{2}} .
$$

The momentum p is quantized in units of $2 \pi / L$ as \hat{n}

$$
\hat{n}=\left\{n_{x}, n_{y}, n_{z}\right\}
$$

In the interacting case a similar relation holds, but the quantization of momentum is related to the phase shift by the Lüscher formula. [M. Lüscher, Signatures of unstable $-\pi<\arg \left(n^{2}-q^{2}\right) \leqslant \pi$ is adopted). An efficient way to evaluate the zeta functions numerically is described in ref. [2], appendix C.
A. 2 DISCUSSION OF THE ANGLE $\phi(q)$

For all $q \geqslant 0$, the angle $\phi(q)$ is determined by

$$
\tan \phi(q)=-\frac{\pi^{3 / 2} q}{\mathscr{I}_{00}\left(1 ; q^{2}\right)}, \quad \phi(0)=0
$$

The vector channel

In the vector channel, we expect two bound states, the J / ψ and the $\psi(2 S)$, and a resonance just above the $\bar{D} D$ decay threshold, the $\psi(3770)$.

In the elastic approximation, we fit our energy levels to a polynomial form

$$
\frac{p^{3} \cot (\delta)}{\sqrt{s}}=c_{0}+c_{1} s+c_{2} s^{2}
$$

chosen to describe the presence of a bound state and a resonance.

We use the package TwoHadronsInBox for fitting our energy levels to the Lüscher formula [Nucl. Phys. B924, 477-507 (2017)].

The vector channel

The fits in the elastic scattering approximation are performed for each ensemble independently. The lowest energy level, corresponding to the J / ψ, is excluded from the fits.

The points correspond to 0-2 \rightarrow Rest frame, 3-6 $\rightarrow \mathrm{P}=100$ moving frame, $7-9 \rightarrow P=110$ moving frame.

The vector channel

A bound state appears as a pole of the T matrix on the real axis below the scattering threshold in the first Riemann sheet. Such a pole appears if the condition

$$
\begin{equation*}
p^{3} \cot (\delta)=-k^{2} \sqrt{-k^{2}} \tag{1}
\end{equation*}
$$

is fulfilled.

(g) U101, $k_{c}=0.12522$
(h) $\mathrm{H} 105, k_{c}=0.12522$

Exponentially suppressed finite volume effects are not negligible in the U101!

The vector channel

The T matrix in the s-complex plane has two complex conjugated pairs of poles in the second sheet corresponding to the $\psi(3770)$ resonance.

(i) $\mathrm{H} 105, k_{c}=0.12522$

(j) $\mathrm{H} 105, k_{c}=0.12522$

The scalar channel

In the scalar channel, the experimental situation above the $\bar{D} D$ scattering threshold is still not completely clear.

The resonances which have been predicted/observed are close to many different thresholds, we therefore need to consider the coupled channel Lüscher formalism. The $\bar{D} D$ and $\bar{D}_{s} D_{s}$ coupled
 channel in s-wave is considered, therefore T and K are 2×2 matrices.
A possible parametrization for the \tilde{K}-matrix could be for instance:

$$
\tilde{K}^{-1}=\left[\begin{array}{cc}
c_{11} s+b_{11} & b_{12} \\
b_{12} & b_{22}
\end{array}\right]
$$

The scalar channel

Fit of the energy levels using the determinant-residual method.
First check: are the predicted energy levels from the box-quantization condition matching without extra-levels the number of our observed energy levels?

Figure: Ω function for $\kappa_{c}=0.12315$

The scalar channel

Very preliminary plots of the T matrix in the s-complex planes for $k_{c}=0.12522:$

(a) sheet $(1,1)$

(c) sheet $(2,2)$

(b) sheet $(2,1)$

(d) sheet $(1,2)$

Conclusions

- The properties of the resonance $\psi(3770)$ can be extracted in the elastic approximation from our 32^{3} lattice box
- Coupled channel analysis required for the study of the scalar resonances.
- Coupled channel fits are able to capture well the structure of our observed lattice energy levels.
- Preliminary plots of the T matrix show a rich structure in the complex plane in the scalar sector.
\rightarrow Stay tuned, new results will be coming soon!

