Z_2 gauge theory with tensor renormalization

Yusuke Yoshimura, Yoshinobu Kuramashi

Tsukuba Univ.

July 26, 2018

36th International Symposium on Lattice Field Theory (Lattice 2018) Kellogg Hotel and Conference Center

Introduction

Tensor renormalization

- A numerical renormalization method like the density matrix renormalization.
- Completely free of the sign problem.
- Z₂ gauge theory
 - Application of the tensor renormalization to LGT is a step to reach calculations in the QCD with the sign problem.
 - The pure \mathbb{Z}_2 gauge theory is suitable the first test bed.

 \Rightarrow (2+1) finite temperature Z_2 gauge theory

Tensor renormalization methods

• Tensor network formulation

$$Z = \sum_{\dots, i, j, k, l, \dots} \cdots T_{ilmn} T_{pjio} T_{qrkj} T_{kstl} \cdots$$

• dim.=2: Tensor Renormalization Group (TRG) Levin and Nave, PRL 99 120601(2007)

● dim.≥2: Higher Order TRG (HOTRG) Xie et al. PRB 86, 045139(2012)

• The partition function:

$$Z = 2^{-3N} \sum_{\{\sigma=\pm 1\}} \prod_{n,\mu>\nu} e^{-\beta\sigma_{n,\mu\nu}},$$
$$\sigma_{n,\mu\nu} = \sigma_{n,\mu}\sigma_{n+\hat{\mu},\nu}\sigma_{n+\hat{\nu},\mu}\sigma_{n,\nu}$$

- $\sigma_{n,\mu}$ is defined on the link labeled by a site n with a direction μ .
- N is the system size.
- (2+1) finite temperature gauge theory
 - We take $\mu = 0(1,2)$ as the temporal(spatial) direction(s).
 - $n = (n_0, n_1, n_2), \ 0 \le n_0 < N_T, 0 \le n_{1,2} < N_S \}.$
 - N_T corresponds the temperature.
 - At fixed N_T , It belongs to the two-dimentional Ising universality class.

Tensor network for Z_2 gauge theory $_{\rm Liu\ et\ al.\ PRD\ 88,\ 056005(2013)}$

• Expansion of the Boltzmann factors

$$e^{\beta\sigma_{n,\mu\nu}} = \cosh\beta \sum_{\substack{i,j,k,l=0,1}} B^{(n,\mu\nu)}_{ijkl} \sigma^{i}_{n,\mu} \sigma^{j}_{n+\hat{\mu},\nu} \sigma^{k}_{n+\hat{\nu},\mu} \sigma^{l}_{n,\nu},$$
$$B^{(n,\mu\nu)}_{ijkl} = (\tanh\beta)^{(i+j+k+l)/4} \delta_{i,j} \delta_{j,k} \delta_{k,l}$$

• Summation of the $\sigma_{n,\mu}$

$$\sum_{\sigma_{n,\mu}} \sigma_{n,\mu}^{i+j+k+l} = 2A_{ijkl}^{(n,\mu)},$$
$$A_{ijkl}^{(n,\mu)} = \delta_{i+j+k+l \mod 2,0}.$$

• The partition function is rewritten by

$$Z = (\cosh \beta)^{3N} \sum_{\{i\}} \prod_{n} \left(\prod_{\mu} A^{(n,\mu)} \right) \left(\prod_{\mu > \nu} B^{(n,\mu\nu)} \right).$$

5/14

Reconstruction

We classify the sites as spatial even $(n_1 + n_2 \mod 2 = 0)$ and odd sites, and gather the tensors around each even site.

- For temporal links on spatial odd sites,
 - $(n_0 > 0)$ we take the gauge fixing

$$\sigma_{n,0} = 1$$

and so can omit $A^{(n,0)}$.

•
$$(n_0 = 0)$$

 $A_{iill}^{(n,0)} = \sum \bar{A}_{iill} \bar{A}_{kllll}$

$$\bar{A}_{ijp} = \delta_{i+j+p \mod 2,0}$$

For spatial planes,

$$B_{ijkl}^{(n,21)} = \bar{B}_{ijp}\bar{B}_{klp},$$

$$\bar{B}_{ijp} = (\tanh\beta)^{(i+j)/4}\delta_{i,j}\delta_{j,p}$$

Reconstruction

• For spatial even sites, we define new tensors T on $n_0 > 0$ and S on $n_0 = 0$ by summing out the internal indices.

Reconstruction

• The partition function is written by

$$Z = (\cosh \beta)^{3N} \sum_{\{i\}} \left(\prod_{n:n_0 > 0} T^{(n)}\right) \left(\prod_{n:n_0 = 0} S^{(n)}\right)$$

Renormalization algorithm

1. Until the temporal size of T part is one, repeatably coarse-grain T by HOTRG for the temporal directon.

• The d.o.f. retained in the HOTRG is denoted D_1 .

Renormalization algorithm

2 By trace of the temporal indices and HOTRG for the temporal direction, reduce the tensor network to 2 dimensions.

- The d.o.f. retained in the HOTRG is denoted D_2 .
- 3. By TRG, coarse-grain the 2 dimensions network.
 - The d.o.f. retained in the TRG is denoted D_3 .

Numerical result

• Settings: $D_1 = 16, D_2 = 128, D_3 = 128.$

Result of

$$C = \beta^2 \frac{d^2}{d\beta^2} \ln Z$$

by numerical difference of obtained $\ln Z$.

 $N_T = 3, N_S = 32, 64, 128, 256$

 $N_S = 512, 1024, 2048, 4096$

11/14

Finite size scaling

• FSS of β_c :

$$\beta_c(N_S) = \beta_c(\infty) + cN_S^{-1/\nu}$$

The expected value $\nu = 1$

• FSS of $C(\beta_c)$: $C(\beta_c,N_S) \propto \log(N_S)$

Comparison with Monte Carlo calculation

N_T	$N_S(TN)$	$\beta_c(TN)$	$\nu(TN)$	$N_S(MC)$	$\beta_c(MC)$
2	[32,4096]	0.65610(2)	1.00(2)	4,8,16,32	0.65608(5)
3	[32,4096]	0.71116(2)	1.01(3)	24	0.71102(8)
5	[64,4096]	0.74072(6)	1.07(7)	40	0.74057(3)

MC: M.Caselle and M.Hasenbusch, Nuclear Physics B 470 [FS] (1996)

- $\nu(TN)$ consistent $\nu = 1$.
- $\beta_c(TN)$ are little larger than $\beta_c(MC)$. It may be brecause N_S of TN are bigger than MC.

Summary

- We have fomulated the tensor network of the (2+1) Z_2 FTGT.
- We have obtained the numerical results of FSS which are consistent with previous studies or theoriticaly expected values.
- In future,
 - 1. Generalization for SU(2)
 - The tensors A, B for SU(2) have already been formalized by Liu et al. PRD 88, 056005(2013).
 - 2. Caluculation in $N_T > 5$
 - 3. Formulation of Polyakov loop
 - Impure tensor formalization S.Morita and N.Kawashima, arXiv:1806.10275