

The fate of axial U(1) in 2+1 flavor QCD towards the chiral limit

Lukas Mazur

Collaborators: Edwin Laermann, Olaf Kaczmarek, Sayantan Sharma

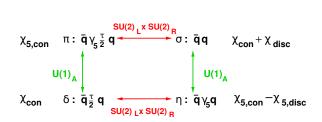
July 24, 2018

The $U_A(1)$ puzzle

- Nature of chiral phase transition for QCD with two light quark flavors is not yet completely resolved.
- Usually symmetries determine the order parameter across a phase transition.
- However, for 2 light quark flavors anomalous $U_A(1)$ may affect the nature of phase transition.
- How severely U_A(1) is broken can be answered non-perturbatively.
- We want to investigate whether or not the anomalous U_A(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry.

Observables sensitive to $U_A(1)$ breaking

- $U_A(1)$ is not an exact symmetry \Rightarrow no unique order parameter!
- Instead, look at n-point correlation functions which become degenerate upon U_A(1) rotation.
 Start with 2-point correlation functions.



[[]A. Bazavov et al.,2012]

[see also Sheng-Tai Li, Thursday 11.20h]

$U_A(1)$ breaking and QCD eigenvalue density

Observable of interest is [Shuryak, 1994]

$$\chi_{\pi} - \chi_{\delta} = \int d^4 x \left[\langle i\pi^+(x)i\pi^-(0) \rangle - \langle i\delta^+(x)i\delta^-(0) \rangle \right]$$

• Equivalently study $\rho(\lambda, m_f)$ of the Dirac operator [Cohen, 1995, Hatsuda & Lee, 1995]

$$\chi_{\pi} - \chi_{\delta} \xrightarrow{V \to \infty} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2}\rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

Possible scenarios:

▶ $\lim_{m_f \to 0} \rho(0, m_f) \to 0 \Rightarrow U_A(1)$ trivially restored.

► $\lim_{\lambda\to 0} \rho(\lambda, m_f) = \delta(\lambda) m_f^{\alpha}$ with $1 < \alpha < 2 \Rightarrow U_A(1)$ broken.

►
$$\lim_{m_f \to 0} \rho(\lambda, m_f) \sim \lambda^3 \Rightarrow U_A(1)$$
 restored.

More on the eigenvalue spectrum and $U_A(1)$ breaking

- Looking at higher n-point correlation functions is also important!
- ρ(λ, m_f) has been investigated analytically using chiral Ward identities of n-point functions of scalar and pseudo-scalar currents, assuming ρ(λ, m_f) to be analytic in m²_f

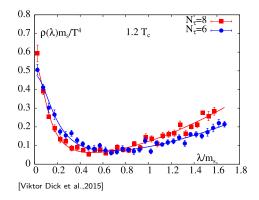
[Aoki, Fukaya & Taniguchi, 2012].

- It was shown explicitly that U_A(1) breaking is absent in upto six point correlation functions in the same scalar and pseudo-scalar sectors if ρ(λ, m_f → 0) ~ λ³.
- They found out that in the chiral limit $\rho(\lambda) \sim \lambda^n$ with n > 2.

Summary of the results till now

Previous studies at almost physical quark masses: Infrared part has both, non-analytic and analytic in λ [Sayantan Sharma et al.,2015].

•
$$\rho(\lambda, m_f) \sim \lambda^2$$
 at $T = 1.2 T_c \Rightarrow U_A(1)$ broken.



Setup

- Gauge ensembles where generated within the Highly Improved Staggered Quark discretization scheme (HISQ) with 2+1 quark flavor.
- We used the overlap Dirac operator to measure the low-lying eigenvalue spectrum.
- ▶ 98 eigenvalues per configuration.

m_s/m_l	$\mid N_s^3 \times N_{\tau}$	β	T/T_c	#conf
27	$32^3 \times 8$	6.390	0.97	78
27	$32^3 \times 8$	6.445	1.03	80
27	$32^3 \times 8$	6.500	1.09	109
40	$32^3 \times 8$	6.390	0.99	213
40	$32^3 \times 8$	6.423	1.03	103
40	$32^3 \times 8$	6.445	1.05	94

Overlap Operator

The overlap operator is given as,

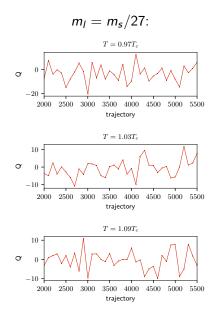
$$D_{ov} = M \left[1 + \gamma_5 \text{sgn} \left(\gamma_5 D_W (-M) \right) \right]$$

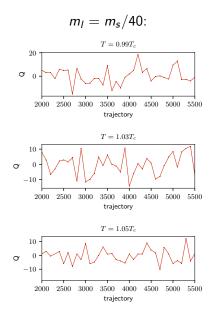
$$\operatorname{sgn}(\gamma_5 D_W(-M)) = \gamma_5 D_W(-M)/\sqrt{D_W^{\dagger}(-M)}D_W(-M)$$

where D_W is the Wilson-Dirac operator with a negative mass parameter $M \in [0, 2)$.

- Eigenvalues of D[†]_{ov}D_{ov} are computed using the Kalkreuter-Simma(KS) Ritz algorithm.
- Zero-modes were not measured. Only eigenvalues with positive or negative chirality have been measured.
- Finally we perform a tuning of the valence overlap masses to the sea HISQ masses to get the renormalized observables.

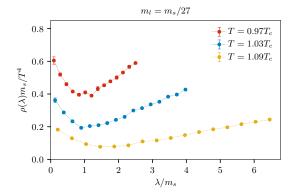
Is topological tunneling sufficient?





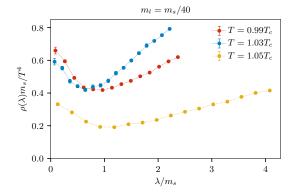
Dirac eigenvalue spectrum

- Analytic part goes as λ^{γ} with $\gamma \geq 1$.
- ► Non-analytic part reduces with temperature.
- Going towards smaller quark masses these features survive.



Dirac eigenvalue spectrum

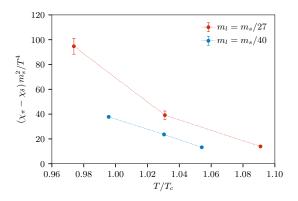
- Analytic part goes as λ^{γ} with $\gamma \geq 1$.
- ► Non-analytic part reduces with temperature.
- Going towards smaller quark masses these features survive.



Renormalized $U_A(1)$ breaking parameter as a function of quark mass

Valence overlap quark mass has been tuned to the HISQ sea quark masses by matching the renormalized quantity

$$\Delta = \frac{m_s \langle \bar{\Psi}\Psi \rangle_I - m_I \langle \bar{\Psi}\Psi \rangle_s}{T^4}$$



Conclusion

- $\rho(\lambda, m_f) \sim \lambda$ even when m_f reduces from $m_s/27$ to $m_s/40$ for $T/T_c < 1.1$.
- Non-analytic part also survives when we reduce the mass.
- Both of them contribute to the breaking of U_A(1) above T_c after proper retuning of the valence quark masses and looking at renormalized quantities.
- We are looking at even smaller quark masses to check whether our conclusions survive in the chiral limit.