Short Range Operator Contributions to $0\nu\beta\beta$ decay from LQCD

Henry Monge-Camacho^{1,2}

¹ College of William & and Mary ²LBNL

36th International Symposium on Lattice Field Theory July 24, 2018

Motivation

Neutrino oscillation between three generations

 $\begin{array}{l} 0\nu\beta\beta \text{ Half life}\\ \frac{1}{\mathcal{T}_{1/2}}=\mathcal{G}(\mathcal{Q}_{\beta\beta},\mathcal{Z})|\mathcal{M}|^2\eta_{\beta\beta}\end{array}$

Experiments focused on $0^+ \rightarrow 0^+$

 $\begin{array}{c} \eta_{\beta\beta} \\ \text{Light neutrino} & \text{Heavy neutrino} \\ \frac{1}{m_e} \sum U_{el} m_l & m_N \sum U_{eh}/m_h \end{array}$

B. C. Tiburzi, M. L. Wagman, F. Winter, E. Chang, Z. Davoudi,
W. Detmold, K. Orginos, M. J. Savage, and P. E. Shanahan (2017). In: *Phys. Rev.* D96.5, p. 054505. arXiv: 1702.02929 [hep-lat]

Contributing Diagrams

G. Prezeau, M. Ramsey-Musolf, and P. Vogel (2003). In: *Phys. Rev.* D68, p. 034016. arXiv: hep-ph/0303205 [hep-ph] used Effective Field Theory to Integrate out heavy modes and obtain the contributing operators are found to be:

Contributing Diagrams

G. Prezeau, M. Ramsey-Musolf, and P. Vogel (2003). In: *Phys. Rev.* D68, p. 034016. arXiv: hep-ph/0303205 [hep-ph] used Effective Field Theory to Integrate out heavy modes and obtain the contributing operators are found to be:

Contributing Diagrams

G. Prezeau, M. Ramsey-Musolf, and P. Vogel (2003). In: *Phys. Rev.* D68, p. 034016. arXiv: hep-ph/0303205 [hep-ph] used Effective Field Theory to Integrate out heavy modes and obtain the contributing operatorsare found to be:

Decay Operators

$$\begin{split} & \mathfrak{O}_{1+}^{++} = (\bar{q}_L \tau^+ \gamma^\mu q_L) (\bar{q}_R \tau^+ \gamma^\mu q_R) \\ & \mathfrak{O}_{2\pm}^{++} = (\bar{q}_R \tau^+ q_L) \ (\bar{q}_R \tau^+ q_L) + (\bar{q}_L \tau^+ q_R) (\bar{q}_L \tau^+ q_R) \\ & \mathfrak{O}_{3\pm}^{++} = (\bar{q}_L \tau^+ q_L) (\bar{q}_L \tau^+ q_L) + (\bar{q}_R \tau^+ q_R) (\bar{q}_R \tau^+ q_R) \\ & \mathfrak{O}_{4\pm}^{+\pm} = (\bar{q}_L \tau^+ \gamma^\mu q_L \mp \bar{q}_R \tau^+ \gamma^\mu q_R) (\bar{q}_L \tau^+ q_R - \bar{q}_R \tau^+ q_L) \\ & \mathfrak{O}_{5\pm}^{++} = (\bar{q}_L \tau^+ \gamma^\mu q_L \pm \bar{q}_R \tau^+ \gamma^\mu q_R) (\bar{q}_L \tau^+ q_R + \bar{q}_R \tau^+ q_L) \end{split}$$

$$\langle \overline{d}\gamma^5 u | \overline{u} \Gamma^1 d \overline{u} \Gamma^2 d | \overline{d}\gamma^5 u \rangle$$

$\pi^- \rightarrow \pi +$

A. Nicholson et al. (2018). In: arXiv: 1805.02634 [nucl-th]

These matrix elements become inputs for nucleon potentials. For example:

$$V_i^{nn\to pp}(|\mathbf{q}|) = -O_i \frac{g_A^2}{4F_\pi^2} \tau_1^+ \tau_2^+ \frac{\sigma_1 \cdot \mathbf{q} \sigma_2 \cdot \mathbf{q}}{(|\mathbf{q}|^2 + m_\pi^2)^2}$$

Non-perturbative Renormalization

A. Nicholson et al. (2018). In: arXiv: 1805.02634 [nucl-th]
C. C. Chang et al. (2018). In: Nature 558.7708, pp. 91-94. arXiv: 1805.12130
[hep-lat]

TABLE II. Resulting matrix elements extrapolated to the physical point, renormalized in RI/SMOM and $\overline{\rm MS}$, both at μ = 3 GeV.

	RI/SMOM	MS
$O_i [\text{GeV}]^4$	$\mu = 3 \text{ GeV}$	$\mu = 3 \text{ GeV}$
O_1	$-1.96(14) \times 10^{-2}$	$-1.94(14) \times 10^{-2}$
O'_1	$-7.21(53) \times 10^{-2}$	$-7.81(57) \times 10^{-2}$
O_2	$-3.60(30) \times 10^{-2}$	$-3.69(31) \times 10^{-2}$
O'_2	$1.05(09) \times 10^{-2}$	$1.12(10) \times 10^{-2}$
O_3	$1.89(09) \times 10^{-4}$	$1.90(09) \times 10^{-4}$

Method RI-SMOM:¹

Three Lattice spacings:0.09,0.12,0.15fm

Projectors: γ and q show agreement after \overline{MS} conversion

Step scaling functions are used to handle reduced renormalization windows (0.15)

¹C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C. Sachrajda, and A. Soni (2009). In: *Phys. Rev.* D80, p. 014501. arXiv: 0901.2599 [hep-ph]

Renormalization Constants Running

Renormalization Group \Rightarrow cont. running $\Sigma(\mu_1, \mu_2) = Z(\mu_1)Z(\mu_2)^{-1}$

In the Lattice: $\Sigma(\mu_1, \mu_2, a) = \Sigma(\mu_1, \mu_2)_{cont} + \Delta a^2$

Fit assuming smooth μ dependence to obtain $\Sigma(\mu_1, \mu_2)_{cont}$

R. Arthur and P. A. Boyle (2011). In: *Phys. Rev.* D83, p. 114511. arXiv: 1006.0422 [hep-lat]

Four-quark Feynman-Hellman Method: $\pi^- ightarrow \pi^+$

Analog of method implemented for baryons and bilinear currents ² $\partial_{\lambda}E_{\lambda} = \langle n | H_{\lambda} | n \rangle$ $S_{\lambda} = \lambda \int d^{4}x \bar{\psi}\Gamma^{1}\psi \bar{\psi}\Gamma^{2}\psi$

$\partial_{\lambda}E_{\lambda}$

For a meson effective mass:

$$\frac{\partial m_{eff}}{\partial_{\lambda}}\Big|_{\lambda=0} = -\frac{\partial_{\lambda}C(t+\tau) + \partial_{\lambda}C(t-\tau) - 2\cosh(m_{eff}\tau)\partial_{\lambda}C(t)}{2\tau C(t) \sinh(m_{eff}\tau)}$$

For long enough t
$$\left.\frac{\partial m_{eff}}{\partial_{\lambda}}\right|_{\lambda=0} \approx \left.\frac{\mathcal{J}_{00}}{2E_0^2}\right|_{\lambda=0}$$

$\partial_{\lambda}C(t)$

Matrix element is pulled down with ∂_{λ}

$$\mathsf{V}(t) = \int d^4x \left\langle \Omega | \mathcal{T}\mathcal{O}(t)\mathcal{J}(x)\mathcal{O}^{\dagger}(0)|\Omega \right\rangle$$

²C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, and A. Walker-Loud (2017). In: *Phys. Rev.* D96.1, p. 014504. arXiv: 1612.06963 [hep-lat]

Lattice Implementation:

Brute force calculation on small Lattice:

$$\int d^4 x \left\langle \Omega | T \mathcal{O}(t) \mathcal{J}(x) \mathcal{O}^{\dagger}(0) | \Omega \right\rangle = \sum_{y_0 \in V} \pi^+$$

Hubbard-Stratanovich Transformation:

$$e^{-\lambda^2 \int d^4 x (\overline{\psi} \Gamma \psi)^2} = \alpha \int_{-\infty}^{\infty} d\sigma e^{-\int d^4 x \{\frac{\sigma^2}{4} + \lambda i \sigma(\overline{\psi} \Gamma \psi)\}}$$

D. J. Gross and A. Neveu (1974). In: *Phys. Rev.* D10, p. 3235 R. L. Stratonovich (1957). In: *Doklady Akad. Nauk S.S.S.R.* 115, p. 1097, J. Hubbard (1959). In: *Phys. Rev. Lett.* 3, pp. 77–80

Lattice Implementation:

Four-quark is recovered after σ integration:

Numerical implementation:

Reproduce $\pi^- \to \pi^+$ calculation with the new method Implement calculation using the Hubbard-Stratanovich transformation Apply method to $nn \to pp$ calculation

W&M and LLNL: David Brantley BNL: Enrico Rinaldi F71: Evan Berkowitz JLab: Bálint Jóo Liverpool Univ.: Nicolas Garron LLNL: Pavlos Vranas, Arjun Gambhir NERSC: Thorsten Kurth UNC: Amy Nicholson nVidia[.] Kate Clark Funded by: Nuclear Theory for Double-Beta Decay and Fundamental Symmetries (DBD Collaboration, D

LBNL: Chia Cheng Chang, André Walker-Loud,

