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HVP contribution to muon g-2 [Blum, 2003, Lautrup et al., 1971]

+
Using lattice QCD and continuum, ∞-volume pQED

aµ(HVP) =
(α
π

)2 ∫ ∞

0
dq2 f (q2) Π̂(q2)

f (q2) is known, Π̂(q2) is subtracted HVP, Π̂(q2) = Π(q2)− Π(0), computed directly
on Euclidean space-time lattice

Πµν(q) =

∫
d4x e iqx〈jµ(x)jν(0)〉 jµ(x) =

∑

i

Qi ψ̄(x)γµψ(x)

= Π(q2)(qµqν − q2δµν)
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Time-momentum representation Bernecker-Meyer 2011

Interchange order of FT and momentum integrals

Π(q2)− Π(0) =
∑

t

(
cos qt − 1

q2
+

1

2
t2
)
C (t)

C (t) =
1

3

∑

x ,i

〈ji (x)ji (0)〉

w(t) = 2α2

∫ ∞

0

dω

ω
f (ω2)

[
cosωt − 1

(2 sinω/2)2
+

t2

2

]

aHVP
µ =

∑

t

w(t)C (t)

(note double subtraction)
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Staggered Dirac operator M

Sum of hermitian and anti-hermitian parts, so it satisfies (even-odd ordering)

M

(
no
ne

)
=

(
m Moe

Meo m

)(
no
ne

)
= (m + iλn)

(
no
ne

)
(1)

and
(

m −Moe

−Meo m

)(
m Moe

Meo m

)(
no
ne

)
= (2)

(
m2 −MoeMeo 0

0 m2 −MeoMoe

)(
no
ne

)
= (m2 + λ2n)

(
no
ne

)
(3)

Compute eigenvectors no(e), m
2 + λ2 of preconditioned Dirac operator
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Staggered Dirac operator M

Eigenvectors of preconditioned operator are eigenvectors of M with squared magnitude
eigenvalues, construct the even part from odd,

ne =
−i
λn

Meono .

eigenvalues come in ± pairs: If (no , ne) is an eigenvector with eigenvalue λ, then

(−1)xψ(x) = (−no , ne)

is also an eigenvector with eigenvalue −λ.

(
m Moe

Meo m

)(
−no
ne

)
= (m − iλn)

(
−no
ne

)
, (4)

Thus we can construct pairs of eigenvectors with ±iλ for each λ2, no!
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HVP using spectral decomposition of M−1

Use conserved current

Jµ(x) = −1

2
ηµ(x)

(
χ̄(x + µ̂)U†µ(x)χ(x) + χ̄(x)Uµ(x)χ(x + µ̂)

)

and spectral decomposition of propagator

M−1x ,y =

N(low)∑

n

〈x |n〉〈n|y〉
m + iλn

+
〈x |n−〉〈n−|y〉

m − iλn
(5)

(6)
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HVP using spectral decomposition of M−1

4Jµ(tx)Jν(ty ) =
∑

m,n

∑

~x

〈m|x + µ〉U†µ(x)〈x |n〉
λm

∑

~y

〈n|y〉Uν(y)〈y + ν|m〉
λn

+
∑

~x

〈m|x〉Uµ(x)〈x + µ|n〉
λm

∑

~y

〈n|y〉Uν(y)〈y + ν|m〉
λn

+
∑

~x

〈m|x + µ〉U†µ(x)〈x |n〉
λm

∑

~y

〈n|y + ν〉U†ν(y)〈y |m〉
λn

+
∑

~x

〈m|x〉Uµ(x)〈x + µ|n〉
λm

∑

~y

〈n|y + ν〉U†ν(y)〈y |m〉
λn

λn shorthand for m ± iλn, need to construct the matrices (meson fields)

(Λµ(t))n,m =
∑

~x

〈n|x〉Uµ(x)〈x + µ|m〉(−1)(m+n)x+m

(order eigenvectors λ0,−λ0, λ1,−λ1, . . . ,−λ2Nlow
)
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HISQ 2+1+1 physical point ensembles MILC [Bazavov et al., 2017]

mπ (MeV) a (fm) size L (fm) mπL meas (approx-corr-lma)

133 0.12224(31) 483 × 64 5.87 3.9 26-26-26
130 0.08786(26) 643 × 128 5.62 3.7 18-18-40
135 0.05662(18) 963 × 192 5.44 3.7 14-22-18
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Noise reduction: AMA+LMA RBC/UKQCD [Blum et al., 2013, Giusti et al., 2004, DeGrand and Schaefer, 2005]

All mode averaging (AMA) combined with full volume low mode averaging (LMA) can
be very effective in reducing statistical errors for HVP (C. Lehner RBC/UKQCD [Blum et al., 2018])

AMA 〈O〉 = 〈O〉exact − 〈O〉approx +
1

N

∑

i

〈Oi 〉approx

+LMA − 1

N

∑

i

〈Oi 〉LM +
1

V

∑

i

〈Oi 〉LM

〈Oi 〉approx constructed from props with Nlow exact low modes, sloppy CG

12 / 25



Noise reduction: AMA+LMA RBC/UKQCD [Blum et al., 2013, Giusti et al., 2004, DeGrand and Schaefer, 2005]

All mode averaging (AMA) combined with full volume low mode averaging (LMA) can
be very effective in reducing statistical errors for HVP (C. Lehner RBC/UKQCD [Blum et al., 2018])

AMA 〈O〉 = 〈O〉exact − 〈O〉approx +
1

N

∑

i

〈Oi 〉approx

+LMA − 1

N

∑

i

〈Oi 〉LM +
1

V

∑

i

〈Oi 〉LM

〈Oi 〉approx constructed from props with Nlow exact low modes, sloppy CG

13 / 25



Noise reduction: AMA+LMA RBC/UKQCD [Blum et al., 2013, Giusti et al., 2004, DeGrand and Schaefer, 2005]
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Bounding method RBC/UKQCD [Blum et al., 2018], BMW [Borsanyi et al., 2018]

Lower: C (t) = 0, t > T (BMW choice)
Upper: C (t) = C (T )e−E0(t−T ), E0 = 2

√
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Continuum limit at finite volume (L ≈ 5.5 fm)
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Window method RBC/UKQCD [Blum et al., 2018] comparison with DWF and R-ratio

aWµ =
∑

C (t)w(t)(Θ(t, t0,∆)−Θ(t, t1,∆)), Θ(t, t ′,∆) = 0.5(1 + tanh((t− t ′)/∆))
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Window method RBC/UKQCD [Blum et al., 2018] comparison with DWF and R-Ratio

aWµ =
∑

C (t)w(t)(Θ(t, t0,∆)−Θ(t, t1,∆)), Θ(t, t ′,∆) = 0.5(1 + tanh((t− t ′)/∆))
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Window method RBC/UKQCD [Blum et al., 2018] comparison with DWF and R-Ratio

aWµ =
∑

C (t)w(t)(Θ(t, t0,∆)−Θ(t, t1,∆)), Θ(t, t ′,∆) = 0.5(1 + tanh((t− t ′)/∆))
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Summary/Outlook

Lattice calculations of HVP important for muon g-2 SM v. Exp comparion

Physical point 2+1+1 HISQ HVP calculation on large lattices
AMA+LMA very effective for achieving small statistical error (c .f . RBC/UKQCD)
u+d quark connected contribution only

Important to compare different lattice calculations

Window method by RBC/UKQCD allows precise comparisons in continuum limit
small difference with DWF in continuum limit, R-ratio (<∼ 0.7% of total aµ)
need to understand differences
future

- improve statistics on 0.06 fm, 963 ensemble
- compare with other staggered calculations
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Light quark mass dependence of aµ FnalHpqcdMilc[Chakraborty et al., 2018]3

valence quarks. The smeared correlators have smaller
overlap with excited states than the local-local correla-
tor, and therefore improve the determination of the en-
ergies and amplitudes. We fit the correlators over the
symmetric time range [tmin, T � tmin], thereby ensuring
that the fit describes the correlator over the entire lattice
time extent T . To reduce the degrees of freedom in the
fit, in practice we average the correlator at times t and
T � t and fit only to the lattice midpoint; we also av-
erage the smeared-source, local-sink correlator with the
local-source, smeared-sink correlator. Because our lim-
ited number of configurations do not enable us to reli-
ably determine the smallest eigenvalues of the correlation
matrix, we employ singular-value-decomposition (SVD)
cuts with the values chosen to obtain stable fits with
good correlated �2 values. In practice, we replace all
eigenvalues below the cut with the value of the SVD cut
times the largest eigenvalue; this prescription increases
the variance of the eigenmodes associated with the re-
placed eigenvalues and, thus, the errors on the fit param-
eters. We choose the number of states and fit range based
on the stability of the ground-state and first-excited-state
energies and amplitudes.

For both ensembles and all valence-quark masses, we
obtain good correlated fits with stable central values and
errors using tmin/a � 3, Nstates � 3, and an SVD cut
of 0.015, which modifies about 40% of the eigenvalues
of the correlation matrix. For each of our six fits, the
contribution to the �2 from the 66 correlator data points
ranges from about 45-80. Although the lowest-energy
states in the vector-current correlators are I = 1 ⇡⇡ pairs,
we do not see any evidence of such states in our two-point
correlator fits. This is not surprising because there are
only a few ⇡⇡ states below the ⇢mass in these correlators,
and their amplitudes are suppressed by the reciprocal of
the spatial volume. The ground-state energies for the
correlators with mq = ml are E0 = 776.7(6.5) MeV and
E0 = 779.4(5.1) MeV on the Nf = 2 + 1 + 1 and Nf =
1+1+1+1 ensembles, respectively; these are statistically
consistent with the PDG average for the Breit-Wigner
mass M⇢0 = 775.26(25) MeV [25].

Following Ref. [8], we reduce the statistical errors in
aHVP

µ by replacing the correlator data at large times by
the result of the multiexponential fit. Although the fit
function is appropriate for the periodic lattice tempo-
ral boundary conditions, we correct for the finite lattice
temporal size by using the infinite-time fit function and
doubling the correlator extent to t = 2T . We use the
fitted correlator above t⇤ > 1.5 fm; with this choice,
roughly 80% of the value of aHVP

µ comes from the data

region. The values of aHVP
µ computed with Gfit(t) for

t⇤ > 1.5 fm agree within ⇠ 1� with those computed en-
tirely from data, but with more than ten times smaller
statistical errors for mq = mu.
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direct
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FIG. 2. Valence-quark-mass dependence of the light-quark-
connected contribution to aHVP

µ on the Nf = 1 + 1 + 1 + 1
ensemble without rescaling (open symbols) and with rescaling

each ⇧
(qq)
j by (E0/M⇢0)2j (closed symbols). From left to right,

the pairs of data points correspond to mu, ml = (mu+md)/2,
and md; each pair of data points is horizontally o↵set for
clarity. The values of aqq

µ include the charge factor q2
u + q2

d =
5/9 appropriate for the isospin-symmetric case.

III. ANALYSIS

We calculate aHVP
µ using the method introduced by the

HPQCD Collaboration [26], in which one constructs the
[n, n] and [n, n� 1] Padé approximants for the renormal-

ized hadronic vacuum polarization function [b⇧(q2)] from
time moments of zero-momentum vector-current correla-
tion functions. These moments are proportional to the

coe�cients ⇧j in a Taylor expansion of b⇧(q2) around
q2 = 0. The true result is guaranteed to lie between
the [n, n] and [n, n � 1] Padé approximants. We em-

ploy the [3, 3] Padé approximant for b⇧(q2) obtained from
the first six Taylor coe�cients; the values of aHVP

µ com-
puted from the [3, 2] and [3, 3] Padé approximants di↵er
by 0.1 ⇥ 10�10.

In Ref. [8], the [n, n] and [n, n� 1] Padé approximants

for b⇧(q2) are constructed from rescaled Taylor coe�-
cients ⇧j ⇥ (E0/M⇢0)2j , where E0 is the ground-state
energy obtained from the two-point correlator fits. The
rescaling was found to reduce the valence-quark-mass de-
pendence of aHVP

µ because the ⇢-meson pole dominates
the vacuum polarization. In addition, the rescaling can-
cels most of the error from the uncertainty on the lattice
scale w0, which enters via the muon mass present in the
one-loop QED integral for aHVP

µ . Figure 2 shows aHVP
µ

on (1 + 1 + 1 + 1)-flavor ensemble at the up, down, and
average light-quark masses. The valence-quark-mass de-
pendence is statistically well resolved because the three
points are strongly correlated, and is smaller after rescal-
ing.

strong isospin breaking study

mπ = 135 MeV

a = 0.15 fm

change in aµ for 130 MeV pion is
negligible ∼ −2× 10−10
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