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First and foremost…

• Thanks to the organizers for giving me the opportunity to give this 
review. 

• Many thanks to the speakers/authors who sent me information and 
presentation materials. 

• My apologies for any omissions due to time.  All mistakes are my own. 
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Computational Steps of Lattice QCD

1. Gauge Ensemble Generation
• Markov Chain Monte Carlo techniques are 
used to generate ensembles of gauge fields 
according to the Euclidean QCD path integral

2. Quark Propagators
• M x = b is solved for each spin and color, 
where M is the Dirac matrix and b is the 
source for the quark propagator 

3. Contractions
• Quark propagators are contracted together 
with proper operators for the desired physical 
observables to create correlation functions. 

4. Data Analysis
• Correlation functions are analyzed to 
extract physical quantities (masses, form 
factors, etc.) 

quarks'

gluons'
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other components of lattice qcd

! Numerical algorithms
! Monte Carlo sampling: Metropolis, Heatbath, ...
! Molecular Dynamics (combined with Monte Carlo → Hybrid Monte Carlo)
! Linear equation solvers: �t = #
! Eigenvalue solvers: �t = λt

! Physics applications
! Actions: discretization schemes for the quarks and gluons
! Measurements: evaluation of Feynman diagrams.
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Lattice simulations with eight flavors of domain wall 
fermions in SU(3) gauge theory 

T. Appelquist, R. C. Brower, M. I. Buchoff, M. Cheng, S. D. Cohen, G. T. Fleming, J. Kiskis, M. F. Lin, E. T. Neil,  
J. C. Osborn, C. Rebbi, D. Schaich, C. Schroeder, S. Syritsyn, G. Voronov, P. Vranas, and J. Wasem  

Presenter: Meifeng Lin (Argonne National Laboratory)  
meifeng@alcf.anl.gov 

Abstract 

With the discovery of a Higgs-like boson at the Large Hadron Collider, the imminent task for the study of the 
beyond Standard Model theories is to find the candidate theories that may produce a light scalar particle to be 
consistent with the experimental observation. In the context of non-perturbative lattice gauge theory simulations, 
one of the first steps is to find possible non-QCD like behaviors in these theories. Over the past few years, the 
Lattice Strong Dynamics (LSD) Collaboration has worked extensively on the SU(3) gauge theories with many 
flavors of degenerate domain wall fermions, and found some interesting behaviors in theories of 6 and 10 
flavors. Here we will present some latest results by the LSD collaboration from lattice simulations with 8 flavors 
of domain wall fermions in the SU(3) fundamental representation.  

Simulation Setup 

a mf β L3 × T  Ls  MP L a mres (×10-3) 
0.010 1.95 323 × 64 16 5.9(6) 2.859(5) 
0.015 1.95 323 × 64 16 7.2(2) 2.939(3) 
0.020 1.95 323 × 64 16 8.3(4) 3.014(5) 
0.025 1.95 323 × 64 16 9.4(3) 3.104(8) 
0.030 1.95 323 × 64 16 10.5(3) 3.210(6) 

! We use the domain wall fermion formulation for its 
good chiral symmetry.  

! The residual chiral symmetry breaking parameter, 
amres  is determined to be much smaller than the 
input quark masses.  

! The total effective quark mass is given by           
amq = amf + amres  

! The Iwasaki gauge action is used. The gauge 
coupling β was chosen to have a UV cutoff scale (if 
the theory is confining) to be roughly 5 times the 
vector meson mass.  

! Setup is similar to previous Nf=2, 6, 10 simulations. 

Hadron Spectrum 

! We computed the hadron two-point correlators using Point (P) and Coulomb gauge fixed Wall (W) sources, 
and constructed all four combinations, W-P, P-P, W-W and P-W.  

! Combined fits were performed to all four correlators, using fit ranges appropriate for each correlator.  

! The measurements were done every 10 MD trajectories, with 2 source locations, tsrc = 0 and 32, on each 
configuration.  

! Number of configurations used for measurements ranges from 75 to 150.  

! Standard jackknife procedure was used in the analysis, with block size of 5 measurements, equivalent to 50 
trajectories to partially account for autocorrelations. Autocorrelations may be as long as 150 trajectories, so 
our errors may be underestimated by 70%. Improved error analysis is ongoing.  

Representative Effective Masses.   

! We determined the masses and decay constants for the pseudoscalar, vector and axialvector mesons, to see 
if the behavior of the spectrum is different from QCD.  

!  If the theory is QCD-like, the fermion mass dependence of the spectrum can be described by Chiral 
Perturbation Theory(ChPT), provided that pseudoscalar meson mass is small compared to the chiral 
symmetry breaking scale. Our masses are too heavy to apply ChPT. We resort to empirical polynomial forms: 

!  If the theory is approximately scale-invariant (conformal), deformed only by the fermion mass, the mass 
dependence is governed by the anomalous dimension at the fixed point, γ*.  

MP
2 = bPmf + cPmf

2 +...
MV ,A = aM + bMmf +...
FP,V ,A = aF + bFmf +...

MP
2 =CPmf

2/(1+γ*) +...

MV ,A =CMmf
1/(1+γ*) +...

FP,V ,A =CFmf
1/(1+γ*) +...

If theory is QCD-like If theory has approximate 
scale invariance  

Polynomial Fits vs. Conformal Fits 

! As the lightest point may suffer from large finite volume effect, we exclude it from the fits. 
! For the QCD-like fits, including the quadratic term for MP

2 keeps the d.o.f same as others.  
! We exclude FA from the analysis due to its large statistical errors.  

State C γ* 
P 2.7(2) 0.63(4) 
V 2.5(2) 0.91(6) 
A 3.3(2) 0.91(6) 

State C γ* 
P 0.26(11) 1.0(5) 
V 0.17(4) 2.1(6) 

Polynomial/Linear Fit 

Linear Fit 

Power-law Fit 

Power-law Fit 

! The quality of fits is comparable between the polynomial fits and the power-law fits, except for the 
pseudoscalar, which favors the polynomial fit. 

! The results for the anomalous dimension γ* from individual fits are consistent with 1, except for the 
pseudoscalar, which favors a smaller value.  

! The distinct characteristic of the pseudoscalar may be an indication of spontaneous chiral symmetry 
breaking.  

! The universality of γ* in other channels resembles conformal behavior.  

! The theory may be chirally broken, and walking?  

Chiral Condensate 

Acknowledgments 

This project is supported by the US Department of Energy and National Science Foundation. M.L. is 
supported by the US SciDAC-3 grant and Argonne Leadership Computing Facility.  

! A large chiral condensate (relative to the electroweak symmetry breaking scale F) is needed in the 
composite Higgs theories to generate large-enough quark masses and satisfy the constraint from the 
flavor-changing neutral currents. 

! From GMOR relation, there are three ratios that 
give rise to <ψψ>/F3 in the chiral limit: 

! Each of the ratios is divided by the corresponding 
ratio with Nf  = 2, to see the condensate 
enhancement compared to QCD. 

! The 8-flavor results (middle) are qualitatively similar 
to the 6-flavor results (left):  
! All three ratios converge at light quark masses. 
! The ordering of the ratios is the same.  

! The 10-flavor results are qualitatively different, with 
the three ratios converging at heavy masses and 
diverge at light masses.  
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Computational Steps of Lattice QCD

1. Gauge Ensemble Generation
• Markov Chain Monte Carlo techniques are 
used to generate ensembles of gauge fields 
according to the Euclidean QCD path integral

2. Quark Propagators
• M x = b is solved for each spin and color, 
where M is the Dirac matrix and b is the 
source for the quark propagator 

3. Contractions
• Quark propagators are contracted together 
with proper operators for the desired physical 
observables to create correlation functions. 

4. Data Analysis
• Correlation functions are analyzed to 
extract physical quantities (masses, form 
factors, etc.) 

quarks'

gluons'
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Computational challenges

Lattice QCD is at a point where we can simulate directly at the physical quark masses, on 
fine lattices and with a large volume. 

• Going to continuum limit: 

•  The typical correlation length goes as 1/a          harder to generate independent gauge 
configurations

• Critical slowing down                needs better HMC algorithms

• Going to light/physical quark mass:  

• Dirac matrix is ill-conditioned

affects both HMC and quark propagator calculations. 

• Need improved solvers

low-mode deflation, multigrid, block CG, … 

• Growing noise-to-signal                                                

Then there are also challenges presented by the machines available to us.

 8
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Top 20 of TOP 500 (June 2018)
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Data from top500.org

Rank Name Architecture Site
1 Summit IBM Power9 + NVIDIA GPUs DOE/SC/Oak Ridge National Laboratory
2 Sunway TaihuLight Sunway National Supercomputing Center in Wuxi
3 Sierra IBM Power9 + NVIDIA GPUs DOE/NNSA/LLNL
4 Tianhe-2A Intel Xeon + Matrix National Super Computer Center in Guangzhou
5 AI Bridging Cloud Infrastructure (ABCI)Intel Xeon + NVIDIA GPUs National Institute of Advanced Industrial Science and Technology (AIST)
6 Piz Daint Intel Xeon + NVIDIA GPUs Swiss National Supercomputing Centre (CSCS)
7 Titan AMD + NVIDIA GPUs DOE/SC/Oak Ridge National Laboratory
8 Sequoia BQC DOE/NNSA/LLNL
9 Trinity Intel Xeon Phi DOE/NNSA/LANL/SNL

10 Cori Intel Xeon Phi DOE/SC/LBNL/NERSC
11 Nurion Intel Xeon Phi Korea Institute of Science and Technology Information
12 Oakforest-PACS Intel Xeon Phi Joint Center for Advanced High Performance Computing
13 HPC4 Intel Xeon + NVIDIA GPUs Eni S.p.A.
14 Tera-1000-2 Intel Xeon Phi Commissariat a l'Energie Atomique (CEA)
15 Stampede2 Intel Xeon Phi Texas Advanced Computing Center/Univ. of Texas
16 K Computer SPARC RIKEN Advanced Institute for Computational Science (AICS)
17 Mira BQC DOE/SC/Argonne National Laboratory
18 Marconi Intel Xeon Phi Intel Xeon Phi CINECA
19 TSUBAME3.0 Intel Xeon + NVIDIA GPUs GSIC Center, Tokyo Institute of Technology
20 Intel Xeon United Kingdom Meteorological Office

• Top 500 list has a blend of GPU-based and multi/many-core based architectures. 
• In heterogeneous configurations, host CPUs are dominantly Intel Xeon CPUs. 
• Several Intel Xeon Phi-based systems made it to the Top 20. 

http://top500.org


The race to exascale

• China, EU, Japan and US are all developing exascale supercomputers. 
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Future Pre-Exascale and Exascale Systems in the US
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LLNL
IBM/NVidia 

P9/Volta
Secure

Relevant Pre-Exascale and Exascale Systems for ECP

NERSC-9

Crossroads

Frontier

El Capitan

Pre-Exascale Systems Exascale Systems

Argonne
IBM BG/Q

Open

Argonne
Intel/Cray KNL

Open

ORNL
Cray/NVidia K20

Open

LBNL
Cray/Intel Xeon/KNL

Unclassified

LBNL
TBD
Open

LANL/SNL
TBD

Secure

Argonne
Intel/Cray TBD

Open

ORNL
TBD
Open

LLNL
TBD

Secure

LANL/SNL
Cray/Intel Xeon/KNL

Secure

2013 2016 2018 2020 2021-2022

Summit

Sierra

ORNL
IBM/NVidia 

P9/Volta
Open

LLNL
IBM BG/Q

Secure

Sequoia

CORI

A21

Trinity

Theta

Mira

Titan

Doug Kothe and Stephen Lee, ECP update @ ASCAC 2017

• Architectures on these future systems are still unknown



What we learn from existing supercomputers
• New and upcoming machines may increasingly feature 

“fat nodes” - a compute node that is capable of many 
floating point operations. 

• Take for example Summit at ORNL: 
• 6 NVIDIA Volta GV100s connected with 

NVLink
• Dual-socket IBM Power 9 CPUs
• Peak Flops per node ~ 95 Tflops (GPU, 

single-precision)  
• Interconnect: 

• dual-rail Mellanox EDR infiniband, 
• peak bandwidth 50 GBytes/s bidirectional

• Lattice QCD computational intensity is ~1 flop/byte. 
• Weak and strong scalings will be severely affected by the 

much slower growth of interconnect bandwidth. 
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Image from: Oak Ridge National Lab

See Mathias Wagner’s talk (next) for 
more in-depth discussions about 
modern GPUs for lattice QCD. 



Weak Scaling on Summit
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Scaling on SUMMIT at ORNL 4/25
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Figure 2: Half precision Möbius domain wall fermion CG weak
scaling with local volume of 16⇥ 123 ⇥ 12. 6 NVIDIA Volta GPUs
on each compute node. Numbers provided by Chulwoo Jung.

Ideal weak scaling

Actual

Plot by Jiqun Tu
Data from Chulwoo Jung

• While on single GPU, we can achieve ~20% peak using QUDA, scaling to 
1024 nodes results in a factor of >10X loss in performance



To improve the scaling

We can do two things:
1. Reducing message size between compute nodes

• Reduced precision in data being transferred 

• Data compression

• Communication-avoiding algorithms 

2. Maximizing delivered bandwidth

• If your application is bandwidth bound as opposed to latency bound, 
it is important to make sure that your achieved bandwidth is close 
to the line bandwidth.

• Not a given! Software stack and environment can affect actual 
delivered bandwidth.
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Boyle, Chuvelev, Cossu, Kelly, Lehner, Meadows, arXiv:1711.04883

https://arxiv.org/abs/1711.04883


2. Algorithms
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Gauge ensemble generation

• Recall in lattice QCD we compute ensemble average of the physical 
observable in the Euclidean path integral formulation, 

• Calculating the fermion determinant directly is prohibitive     

• Pseudofermion (bosonic) fields are introduced to trade the determinant 
calculations with matrix inversions. 
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⟨O⟩ =
1
Z ∫ [dU]O[U]∏

f

det(D[U] + mf )e−Sg[U]

Z = ∫ [dU]∏
f

det(D[U] + mf )e−Sg[U]

Z = ∫ [dU][dϕ†][dϕ]e−ϕ†(MM†)−1ϕ−Sg[U]

quarks'

gluons'

O(V3)

P[U]

M = D[U] + mf



MCMC and HMC
• To generate the gauge field configurations with the probability distribution P[U], 

Markov Chain Monte Carlo (MCMC) algorithms are used. 
• MCMC algorithms should satisfy the following properties: 

• Detailed balance: 
• Ergodicity: there should be zero probability of a particular gauge configuration never appearing. 

• Hybrid Monte Carlo (HMC):  [Duane, Kennedy, Pendleton, Roweth, 1987]
• Couples Molecular Dynamics (MD) update, with Metropolis accept/reject step
• Exact algorithm: the Metropolis step makes it free of integration errors. 
• Keep the change in Hamiltonian small to obtain good acceptance rate: reduce force 

contributions or decrease the step size (which means more force calculations).
• Fermion force term calculations involve Dirac matrix inversions: expensive!  
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Starting 
{U} Config

New 
Proposed 

Config

δτ

p[U′� ← U]P[U] = p[U ← U′�]P[U′�]
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Molecular Dynamics Algorithm

The molecular dynamics (MD) algorithm is commonly used in lattice QCD to update

the gauge configurations. It begins with the introduction of a fictitious conjugate

momentum πµ(x), which is a traceless hermitian matrix. We then formally define a

Hamiltonian

H =
1

2
π2 + Spf + Sg, (5.10)

where π2 =
∑

x,µ Trπ2
µ(x). In this case, the gauge links Uµ(x) are in analogy to spatial

coordinates in classical mechanics. Each gauge link and its conjugate momentum are

updated according to Hamilton’s equations of motion, which can be formally written

as [64]:

U̇µ(x) = iUµ(x)πµ(x), (5.11)

π̇µ(x) = −i

[

Uµ(x)
∂Seff

∂Uµ(x)

]

TA

≡ −i [Fµ(x)]TA , (5.12)

with Seff = Spf [φ,φ†] + Sg[U ]. Here ż indicates the time derivative for the variable

z, and the subscript TA means the traceless anti-hermitian part of the matrix. Fµ(x)

in Eq.(5.12) is the force term analogous to that in a classical mechanics system. It

has contributions from both the pseudofermion action, Spf , and the gauge action, Sg,

which are referred to as the fermion force and gauge force, respectively. For Nf = 2,

the fermion force can be written as

Fµ,pf (x) = Uµ(x)

[

φ†D−1 ∂D
∂Uµ(x)

D−1φ

]

, (5.13)

which, as we can see, involves a matrix inversion at each calculation. It is the domi-

nant cost in the updating process for the gauge fields.
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quantity, and its direct computation is numerically expensive. One solution is to set

the fermion determinant in the partition function to be 1, leaving

Z =

∫

[dU ] e−Sg . (5.6)

Now the probability distribution is just e−Sg [U ], which involves only the gauge field

and is relatively easy to calculate. This is the so-called quenched approximation [17].

In perturbation theory, it is equivalent to ignoring the internal fermion loops to all

orders, which is unphysical and can introduce uncontrollable systematic errors [63].

To evaluate the correct full path integral while avoiding the direct calculation of

the determinant, one can also introduce pseudofermion fields, φ(x) and φ†(x), which

obey bosonic statistics, to simplify the evaluation of P [U ]. Making use of the identity

for a positive definite matrix M ,
∫

[dφ][dφ†]e−φ†Mφ ≡
1

det M
, (5.7)

we can rewrite the partition function as

Z =

∫

[dU ][dφ][dφ†]e−Spf−Sg (5.8)

where Spf = φ†D−1φ is the action for the pseudofermion fields, given D is hermitian

and positive definite. At this point it is useful to note that the lattice Dirac operator

D is not necessarily hermitian, hence its eigenvalues are not all real. And e−Spf−Sg

can not be treated as a probability measure. The solution is to use the hermitian

operator D = D†D instead, which describes two degenerate fermions. For a theory

with Nf flavors, the partition function becomes

Z =

∫

[dU ][dφ][dφ†]e−φ†D−αφ−Sg , . (5.9)

where α = Nf/2.



Lattice QCD has made remarkable progress in dynamical fermion simulations. 

• HMC:  [Duane, Kennedy, Pendleton, Roweth, 1987]
• Suitable for even numbers of fermion determinants 
• Various acceleration techniques have been developed:

• Polynomial HMC [Frezzotti & Jansen, 1997]
• Hasenbusch mass preconditioning [Hasenbusch, 2001] 
• Domain decomposition/Schwarz preconditioning [Luscher, 2004]

• One-flavor HMC: 

• R algorithm (inexact) [Gottlieb et al., 1987]

• Rational HMC [Clark & Kennedy, 2003]

• Various improved integrators

The Evolution of HMC

 18
Quiz:  What’s quenching?
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rithm is that it can only deal with an even number of fermions (the above discussion

assumes Nf = 2), because the second step in the above can only be applied when

the fermion matrix D can be decomposed into D†D. Since we are very interested in

simulations with 2 degenerate light quarks and 1 strange quark, we need an algorithm

which is capable of simulating an odd number of fermions.

R Algorithm

An alternative to the pseudofermion method [64] is to replace the fermion determinant

in the path integral with a trace of the fermion matrix. For Nf flavors, α = Nf/2,

and

detDα = exp(αTr lnD). (5.24)

Now the effective action is Seff = αTr lnD−Sg. Once again, the molecular dynamics

integration for the Hamilton’s equations can be applied to update the gauge config-

urations. However, due to the presence of the trace, the differentiation with respect

to the gauge field (the force term) in Eq.(5.12) can not be done exactly. Instead, a

noise estimator is introduced to evaluate it stochastically. As a result, the updating

process is irreversible, and the standard Metropolis algorithm can not be applied to

remove the integration errors. Of course, the R algorithm does not have restrictions

on the number of fermions in question. For this reason, it has been used for a long

time to do simulations with an odd number of fermions. However, due to the lack of

Metropolis step at the end of each trajectory, the algorithm has a finite step size error

of O(δτ)2, which makes it inexact. In principle simulations with different values of δτ

should be performed and an extrapolation to δτ → 0 should be done to remove the

finite step size error. This is of course very computationally expensive. A common

59

practice is to choose a finite step size which is small enough to make finite step size

errors small compared to other statistical and systematic errors of the simulation.

RHMC Algorithm

Another approach to simulating an arbitrary number of fermions is to rewrite Eq.(5.9)

as

Z =

∫

[dU ][dφ][dφ†]e−φ†r2(D)φ−Sg , (5.25)

where r2(x) = x−α/2. r(D) is a rational function of the Dirac operator D, which

approximates D−α/4 to the desired precision. When applied to a source vector φ, it

can be written as

r(D)φ = α0

∏n
i=1 D + γi

∏d
i=1 D + βi

φ, (5.26)

where n and d are the degrees of approximation for the numerator and denominator,

respectively, which are often chosen to be identical. In this case, the above rational

function can be further expressed in terms of partial-fraction expansions [24]

r(D)φ =

[

α0 +
d

∑

i=1

αi

D + βi

]

φ. (5.27)

The shifts βi are found to be all positive and real, which allows us to use the multi-

shift solver [68] which computes the matrix inversions (D + βi)−1φ for different βi’s

simultaneously. Thus the rational approximation does not incur much additional cost

to the matrix inversions [24] compared to the standard HMC algorithm.

In the RHMC algorithm, the gauge configurations are updated through the fol-

lowing steps:

1. Heatbath update for the conjugate momentum according to the distribution

P [π] ∝ exp(−π2/2);



Exact One-flavor Fermion Algorithm (EOFA)
• For simulations with odd numbers of flavor, such as 2+1-flavor simulations to include strange 

quark, or 2+1+1-flavor simulations to include charm quark, RHMC can be used. 
• RHMC approximates the fractional fermion determinant with rational functions of D 

• Needs multi-shift CG solver and can be expensive. Also memory intensive due to additional 
pseudofermion vectors. 

• For domain wall fermions, the Pauli-Villar fields are needed as regulators. For 2+1+1 flavor, 
the determinants can be rewritten as  

• EOFA: Use Schur determinant identity to factorize

 19
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r(D)φ = α0

∏n
i=1 D + γi

∏d
i=1 D + βi

φ, (5.26)

where n and d are the degrees of approximation for the numerator and denominator,

respectively, which are often chosen to be identical. In this case, the above rational

function can be further expressed in terms of partial-fraction expansions [24]

r(D)φ =

[

α0 +
d

∑

i=1

αi

D + βi

]

φ. (5.27)

The shifts βi are found to be all positive and real, which allows us to use the multi-

shift solver [68] which computes the matrix inversions (D + βi)−1φ for different βi’s

simultaneously. Thus the rational approximation does not incur much additional cost

to the matrix inversions [24] compared to the standard HMC algorithm.

In the RHMC algorithm, the gauge configurations are updated through the fol-

lowing steps:

1. Heatbath update for the conjugate momentum according to the distribution

P [π] ∝ exp(−π2/2); det ( D(m1)
D(m2) ) =

1
det(H1)

⋅
1

det (H2)

TWQCD, Phys. Lett.B738 (2014)

2018-7-25
T.W. Chiu,  Simulation of dynamical  (u,d,s,c)  

overlap/DW quarks at the physical point 
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2+1+1 = 2+2+1
For domain-wall fermions

11

2‐flavor 2‐flavor 1‐flavor

  For the one-flavor, use the exact pseudofermion action for one-flavor DWF x
[Y.C. Chen & TWC, Phys. Lett. B738 (2014) 55;  TWC, Phys. Lett. B744 (2015) 95]

  For the 2-flavor part, use the two-flavors algorithm for DWF x
[TWC, T.H. Hsieh, Y.Y. Mao, Phys. Lett. B702 (2012) 131]

Ting-Wai CHIU on 25 Jul 2018 at 5:10 PM

Rational Hybrid Monte Carlo (RHMC) and the Exact One Flavor Algorithm (EOFA)

Standard lattice trick: replace D with Hermitian M = D
†
D in path integral

M describes two (four) degenerate quark flavors with periodic BC (GPBC)
Reduce to desired number of flavors by rooting: det(D) = [det(M)]1/n = det(M1/n)
RHMC: Form rational approximation x

1/n
¥ –0 +

q
k

–k/(x + —k) and compute

det
3

D(m1)
D(m2)

4
=

5
det

3
D

†
D(m1)

D†D(m2)

461/n

,

Ë!
D

†
D

"1/n
È

„ ¥

A
–0 +

Nÿ

k=1

–k

D†D + —k

B
„

Multishift CG allows D
†
D + —k to be inverted for all k simultaneously

I Generally more expensive than CG due to extra linear algebra at each iteration
I Some acceleration techniques — Hasenbusch preconditioning, forecasting initial CG

guesses, restarted solvers, . . . — are not applicable
EOFA: Use Schur determinant identity applied to spin structure of D to factorize

det
3

D(m1)
D(m2)

4
= 1

det (H1) ·
1

det (H2)

with H1 and H2 Hermitian and positive-definite [TWQCD, Phys. Lett. B738 (2014)]

EOFA action: SEOFA = „
† #

≠ kP≠�†
≠ [H(m1)]≠1 �≠P≠ + kP+�†

+
[H(m2) ≠ �+P+]≠1 �+P+

$
„

Naively expect EOFA to be faster, since no need for multishift CG
July 16, 2018 1 / 16



EOFA - II
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TWQCD, arXiv:1412.0819
163 × 32 × 16

EOFA versus RHMC Yu-Chih Chen
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Figure 2: The maximum forces of the gauge field and the pseudofermion fields versus the trajectory in the
HMC of one-flavor QCD: (a) EOFA, (b) RHMC.

They are all in good agreement with the condition hexp(�DH)i = 1 which follows from the area-
preserving property of HMC.

In Fig. 2, we plot the maximum force (averaged over all links) in each trajectory, for the
gauge field, the heavy fermion field, and the light fermion field respectively. For both EOFA and
RHMC, the fermion forces behave smoothly in all trajectories. However, the fermion forces of
EOFA are substantially smaller than their counterparts in RHMC. The averages of the maximum
fermion forces are:

EOFA RHMC
(Ff1)light (Ff2)light (Ff1)heavy (Ff2)heavy (F)light (F)heavy

Conventional DWF 0.0046(1) 0.0331(2) 0.0609(1) 0.1318(2) 0.1076(1) 0.2855(1)

Optimal DWF 0.0009(2) 0.0139(2) 0.0487(1) 0.1810(1) 0.0695(3) 0.3534(1)

Note that for EOFA, the fermion forces of f1 are much smaller than their counterparts of f2.
This immediately implies that f1 and f2 can be updated at two different time scales. This will be
exploited in the tests on the 163 ⇥32⇥16 lattice.

For tests of Nf = 1 QCD on the 83 ⇥ 16⇥ 16 lattice, we set the multiple-time scales as fol-
lows. With the length of the HMC trajectory equal to one, three different time scales are set to
{k0,k1,k2}= {1,1,10}, and the fields are updated according to the following assignment:

k0 : Uµ(gauge field),

k1 : f1(EOFA, heavy fermion),f2(EOFA, heavy fermion),f(RHMC, heavy fermion),

k2 : f1(EOFA, light fermion),f2(EOFA, light fermion),f(RHMC, light fermion).

5

• EOFA generates smaller fermion forces, allowing for larger step sizes.
• Overall numerical cost can be reduced.   
• Being used in TWQCD’s 2+1+1 flavor evolution at physical quark masses. 

Ting-Wai CHIU on 25 Jul 2018 at 5:10 PM



EOFA - III
RBC-UKQCD is using EOFA for the generation of 2+1-flavor DWF with period or G-parity boundary 

conditions (for K to pi pi studies). [Jung, Kelly, Mawhinney & Murphy, PRD97, 054503 (2018)]

 21

32ID-G Evolution Benchmark

Light Quark Action Integrator Light Hasenbusch Masses �t rMD Ntraj Acceptance E�ciency
RHMC Omelyan 0.007 0.0625 10≠8 850 88% —

EOFA FG 0.0058, 0.0149, 0.059, 0.1667 10≠7 850 93% 4.20.177, 0.45

Table: Fully tuned RHMC and EOFA schemes. �t is the outermost time step, rMD is the MD CG
tolerance, and e�ciency is the speed-up in the total job time relative to the RHMC scheme.

RHMC
Omelyan integrator (⁄ = 0.22)
One light quark Hasenbusch mass
Multishift CG with single precision
/D but accumulating solution and
search vectors in double precision,
coupled with reliable update to
correct residual
Even-odd preconditioning

EOFA
Force gradient integrator
Five light quark Hasenbusch masses
Mixed precision defect correction CG
Even-odd preconditioning
Cayley preconditioning
Force gradient forecasting
Heatbath forecasting
Heatbath CG tolerance tuning

Figure: Comparison of RHMC and EOFA integration schemes.

July 16, 2018 4 / 16

David Murphy

323 × 64 × 16



RHMC with Block Solvers and Multiple Pseudofermions
As a way to speed up regular 2-flavor HMC 
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Multiple Pseudofermions: smaller forces

Multiple pseudofermions: det
⇥
M†M

⇤
= det

h�
M†M

�1/npfinpf

Dramatically reduces the mean and the variance of the RHMC

pseudofermion force term:
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This allows a larger integrator step size, and hence fewer Dirac

operator inversions are required.

Philippe de Forcrand, Liam Keegan ETH Zurich RHMC with Multiple Pseudofermions and Block Solvers

Block Solvers: fewer Dirac operator calls

Need to invert the Dirac operator on npf pseudofermion vectors.

Block solvers do this simultaneously for all vectors, and can

converge with significantly fewer iterations.
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Philippe de Forcrand, Liam Keegan ETH Zurich RHMC with Multiple Pseudofermions and Block Solvers

Block Fields: faster Dirac operator

Applying the Dirac operator to a block of pseudofermion

vectors at each site is more computationally e�cient

Higher computational intensity (flops/bytes):

only need to load gauge links once per npf vectors.
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Philippe de Forcrand, Liam Keegan ETH Zurich RHMC with Multiple Pseudofermions and Block Solvers

Multiple Pseudofermions + Block Solvers

RHMC with multiple pseudofermions and block solvers has three

cumulative advantages over plain RHMC:

Multiple npf : larger integrator step size ) fewer inversions

Block CG: fewer Dirac operator calls per inversion

Block vectors: faster Dirac operator calls

1 2 3 4 5 6
npf

1
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6

RHMC speedup over HMC vs npf

Block Multishift CG

Multishift CG

Philippe de Forcrand, Liam Keegan ETH Zurich RHMC with Multiple Pseudofermions and Block Solversde Forcrand & Keegan, arXiv:18??.????? Liam Keegan



Critical Slowing Down
• Ongoing efforts by the US QCD ECP team. 
• Looking for ways to reduce critical slowing down in HMC. 
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• Fourier-acceleration: based on the notion that the HMC evolution step 
sizes should be chosen to depend on the Fourier modes.  [Batrouni et al. 
1985]
• Fourier acceleration, the HMC algorithm and renormalizability

Norman CHRIST, Monday, 2:00PM
• Testing a new gauge-fixed Fourier acceleration algorithm

Yidi ZHAO, Monday, 2:20PM
• Ensemble Quasi-Newton HMC

Xiaoyong JIN, Monday, 2:40PM



Solvers

• The computational intensive part of LQCD is to solve Ax=b. 

• Needed for both  fermion force calculations in HMC and in quark propagators.  

• Condition number of A grows as 1/m2: iterative solvers such as CG converge 
much slower as m    0. 

• Low-mode deflation: project out the low eigenmodes and solve in the 
reduced subspace      needs efficient eigenvector solvers.  

• Adaptive Multigrid

• Block solvers

 24

(x, t)

(x’, t’)
M−1

→

→



Staggered Multigrid
• Staggered MG has been known to be hard due to the non-Hermitian structure of the staggered Dirac 

operator
• New staggered MG formulation exploits staggered’s 2d block structure. 
• 2D: Brower, Clark, Strelchenko & Weinberg, arXiv:1801.07823
• 4D: Presented by Kate CLARK on 25 Jul 2018 at 4:10 PM

 25
!25

HISQ MG ALGORITHM

First “coarsening" is transformation to 
block-preconditioned system 

Staggered has 4-fold degeneracy 
• Need 4x null space vectors (Nv=24 -> 96) 
• Much more memory intensive

HISQ

Block-preconditioned 
system

First real coarse grid

B = 24, Nv=24 
dof preserving

Nv=96

Nv=96

Kate Clark



Staggered Multigrid
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Kate Clark

• 4D HISQ MG algorithm is implemented in QUDA. 
• # of MG-GCR iterations independent of quark masses.
• Initial speedup seen for small quark masses. 
• Further speedup in time-to-solution will need reduced setup cost and better coarse-

grid solvers. 

Lower is betterLower is better



DDalphaAMG on K Computer

Poster by Issaku KANAMORI on 24 Jul 2018 at 6:45 PM
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baseline: well tuned solver for K [efficiency: 22%]
   mixed precision FBiCGstab sovler, where the single precision solver uses Domain          
decomposition.  The solver inside the domain is an even odd preconditioned SSOR. 
          cf. K.-I.Ishikawa et al [PACS collaboration]., PoS LATTICE2015(2016) 075

AMG(before tuning) [efficiency 3.0%]
  cf. A.Frommer et al.,  SIAM J.Sci. Comput. 36 (2014) A1581;https://github.com/DDalphaAMG

AMG: tuned [efficency 5.3%]   
  cf. https://github.com/i-kanamori/DDalphaAMG/tree/K/ 

Configuration: n
f
=2+1 clover, 964 lattice, m_pi=146 MeV, 1/a=2.33 GeV [PACS]

even with poor efficiency, throughput  is better than the well tuned traditional solver (light quark)
For strange quark, the traditional one is faster on K 

light quark strange quark

Algebraic Multigrid Solver (DDalphaAMG) on K Comupter

THIS WORK

Lower 
is 

better



Multisplitting Preconditioned CG for Mobius DWF

• On machines like Summit, off-node communications are expensive compared to local arithmetics. 
• Trade communication with local flops

 28

Jiqun TU on 23 Jul 2018 at 4:10 PM

Guo, Mawhinney & Tu, arXiv:1804.08593

Multisplitting Algorithm 7/25

For reference see [D. O’leary 1985].

Ax = b : Alxl + Asxs + Arxr = bs

Al As Ar

xr

xs

xl

bs

× =

A × x = b

[O’Leary, 1985]

1. Solve the block-diagonal term iteratively:  

Multisplitting Algorithm 8/25

Solve

Alxl + Asxs + Arxr = bs,

Rearrange into an iterative form

Asx
(k+1)
s = bs � Alx

(k)
l � Arx

(k)
r

= bs �
�
Ax(k) � Asx

(k)
s

�

= r(k) + Asx
(k)
s ⌘ b̂(k)s

For each cycle,

• use communication to calculate the right-hand-side b̂s.

• solve Asx
(k+1)
s = b̂(k)s locally.

• the updated solution x(k+1)
s will be used to ready the next

cycle.

Get As for each node by chopping o↵ all o↵-block-diagonal

terms: applying zero Dirichlet boundary condition.

Local

2. Use as a preconditioner for outer CG
As a Preconditioner 14/25

r0 = b� Ax0

z0 = M�1r0
p0 = z0
k = 0
while have not converged do

↵k = hrk, zki/hpk, Apki
xk+1 = xk + ↵kpk
rk+1 = rk � ↵kApk

zk+1 = M�1rk+1  Asx
(k+1)
s = r(k) + Asx

(k)
s

only first cycle, zero initial guess, iterate a fixed number of times

�k = hzk+1, rk+1i/hzk, rki
pk+1 = zk+1 + �kpk
k = k + 1

end while

http://arxiv.org/abs/arXiv:1804.08593


Multisplitting Preconditioned CG for Mobius DWF
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Jiqun TU on 23 Jul 2018 at 4:10 PM

Guo, Mawhinney & Tu, arXiv:1804.08593

Result: 802 ⇥ 96⇥ 192 20/25
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Figure 6: MSPCG solve on a 802 ⇥ 96⇥ 192 lattice
(a�1 = 3.00 GeV) with physical pion mass. Test performed on
CORI at NERSC with 1024 KNL nodes.

Result: 643 ⇥ 128 19/25
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Figure 5: MSPCG solve on a 643 ⇥ 128 lattice (a�1 = 2.36 GeV)
with physical pion mass. Plain CG takes 18092 iterations to
converge to the same precision(10�10). KNL at CORI.

• Solving inner CG sloppily with 3-6 iterations can already reduce the number of outer CG 
iterations by 2-3x.   

• If local flops are fast enough for the inner CG to be faster than off-node communications, we 
gain overall. 

• Could benefit strong scaling greatly which is needed for gauge evolution. 

http://arxiv.org/abs/arXiv:1804.08593


Split Grid and Block Lanczos for DWF
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SplitGrid andBlockLanczosAlgorithm forEfficient
EigenpairGeneration

Yong-Chull Jang (ypj@bnl.gov) and Chulwoo Jung (chulwoo@bnl.gov)

Introduction
Imbalance between the internode bandwidth
and the computational capability of each node is
increasingly limiting the amount of flops which
can be efficiently deployed on a single job. Even
when “Embarrassingly parallel” approach is ap-
plicable, the need for memory for intermediate
data (propagators, A2A vectors...) often forces
users to run on more than optimal number of
nodes, or rely heavily on Disk I/O.
Implicitly Restarted Lanczos(IRL, Sorenson and
Lehoucq) has been used by RBC/UKQCD col-
laborations (adopted for DWF by T.Blum, T.
Izubuchi) to generate lowest-lying exact eigen-
vectors effectively and allowed a significant re-
duction in necessary flops for subsequent cal-
culations in combination with AMA, A2A te-
chiniques. However, the need for memory for
all the eigenvectors negatively affects the per-
formance of IRL on many machines. Here we
explore combining the Split Grid technique with
Block Lanczos to overcome this difficulty.

Contractions, LinAlg ..  ! Dop..

Block Lanczos Timings
ALCF Theta (KNL 7230, 64 cores/node +Cray XC40)
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Factor of ⇠ 3 improvement seen. Further optimization in GS can give another factor of 2.

Convergence of Block Lanczos on DWF 2+1f ensemble (24ID)
243 ⇥ 64⇥ 12 zMobius , a ⇠0.2fm. Nstop = 1000, Nk = 1024, Np = 320

Nu = 4
Nr 1 2 3

Nconv 96 832 1056

Nu = 16
Nr 1 2 3

Nconv 0 576 1024

Nu = 32
Nr 1 2 3 4

Nconv 0 128 864 1056
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Summary & Discussion
• Block Lanczos(BL) in combination with Split Grid achieves a significant speed-up compared

with IRL. Number of Dirac operator application needed for convergence does not increase for
up to Nu = 16 for existing DWF ensembles.

• Further optimization is possible, especially in Gram-Schmidt. Optimization is ongoing.
• The change in the Krylov space

KnNu(A, y0) = span{y0, Ay0, · · ·AnNu�1
y0}! span{y0, · · · , yNu�1, Ay0, · · ·An�1

yNu�1}
eventually forces BL to require more iterations than IRL. Further tuning of acceleration poly-
nomial could improve the convergence for larger Nu.

• BL has been implemented in a local branch of Grid (https://github.com/paboyle/Grid).

Block Lanczos(BL)
To calculate lowest eigenvalues of Cheby-
shev accelerated precondition Dirac matrix
A = Tn(Mpc), BL starts with Nu orthonormal
vectors Y0 = {y0, · · · yNu�1}.

n 1, Nr  1
1: Ỹn = AYn�1

2: Ỹn = Ỹn � Yn�2�
†
n�2(n > 1)

3: ↵n�1 = Y
†
n�1Ỹn

4: Ỹn = Ỹn � Yn�1↵n�1

5: Orthonormalize Ỹn: Ỹn = Yn�n�1

(Orthogonalize Ỹn against {Y1, · · ·Yn�1} for
numerical stability )
6: n n+ 1,
repeat 1-5 until n = (Nk +Nr ⇥Np)/Nu

7: Calculate eigenvector �
0
i of matrix

Hn�1 =

2

6666666664

↵0 �†
0 · · · 0

�0 ↵1 �†
1 · · ·

0 �1 ↵2 �†
2

...
...

...
...

...
...

0 · · · �n�3 ↵n�2 �†
n�2

0 · · · 0 �n�2 ↵n�1

3

7777777775

7: Construct approx. eigenvectors �i from �
0
i.

8: Check for convergence.
If less than Nstop( Nk) eigenvectors converged,
Nr  Nr + 1,
While it is also possible to use Implicitly
Restarted BL (IRBL, Baglama, Calvetti, Re-
ichel and Ruttan), similar to IRL, Only Np/Nu

shift is possible instead of Np, which makes it
less effective.

Jang and Jung combine split-grid and block lanczos 
to generate eigen pairs for DWF efficiently. 

Poster by Chulwoo JUNG



Other Topics

• Studies of reversibility violations in HMC 

• SU(2), Urbach, arxiv:1710.07526

• SU(3), Urbach, in preparation

• Multi-level integration for meson propagators 
•   Presented by Dr. Alessandro NADA on 23 Jul 2018 at 3:00 PM

• Multi-level integration for meson propagators: disconnected contributions 
•  Presented by Dr. Tim HARRIS on 23 Jul 2018 at 3:20 PM
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3. Machines/Software
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Software Considerations

• Performance Portability

• How much tradeoff do you want to make between performance and portability? 

• Is it possible to design your software to be portable and at the same time reasonably 
performant? 

• Programming Models

• What programming models do you want to use c.f. performance portability? 

• OpenMP, OpenACC, OpenCL, CUDA, Kokkos, etc. 

• Programming Languages

• Probably a very personal choice, but may affect usability, extensibility and performance.  

• Data Layout

• Important since LQCD computations are bandwidth bound. 

• Need to maximize data reuse and coalescence (GPU). 
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Given the diversity of current and upcoming HPC architectures, you may want 
to design your software with following considerations: 



Intel Many/Multi-Core Processors
• Surprising news at SC17: Intel discontinued the successor to Intel “Knights 

Landing”.

• In Q3, 2017, Intel released the new Xeon Scalable Processors (formerly 
code-named “Skylake”). 
• Support Intel Advanced Vector Extension 512 (AVX-512)
• 2 hyper threads per core
• No MCDRAM. Has fast L3 cache. 
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Edition Number of Cores AVX512 FMA units Maximum number 
of sockets 

Platinum Up to 28 2 8

Gold Up to 22 1-2 4

Silver/Bronze Up to 12 1 2



LQCD Software for KNL/Skylake
• Four ways to vectorization:

• Leave it to the compilers
• Use compiler directives: #pragma omp simd
• Use compiler intrinsics
• Write assembly

• LQCD software that supports AVX512: 

• OpenQCD: intrinsics
• Bridge++: intrinsics
• Stephan Durr’s Fortran code: OpenMP 
• Grid: intrinsics/assembly
• QPhiX: intrinsics (https://github.com/JeffersonLab/qphix)
• There may be others…  
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KNL code should also work on Skylake with the core-avx512 instruction set. 

https://github.com/JeffersonLab/qphix


AVX512 Extension to OpenQCD

• OpenQCD (http://luscher.web.cern.ch/luscher/openQCD/) mainly supports O(a)-improved Wilson fermion.
• V1.6 has support for SSE and AVX2
• Authors added support for AVX512 by using intrinsics [Bennett, Dawson, Mesiti & Rantaharju, arXiv:1806.06043]
• Paying particular attention to register memory use and cache use
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Jarno RANTAHARJU on 25 Jul 2018 at 4:50 PM

Single Core PerformanceSingle Core Performance

Against vanilla baseline

single Precision Double Precision

9

Skylake

http://github.com/sa2c/OpenQCD-AVX512

http://luscher.web.cern.ch/luscher/openQCD/


AVX512 Extension to OpenQCD

• Going to multi-core/multi-node suffers from memory bandwidth bottleneck
• Overall gain over vanilla code: 

• 5%-10% on Skylake
• 20%-40% on KNL
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Jarno RANTAHARJU on 25 Jul 2018 at 4:50 PM

Skylake
Strong Scaling on a Skylake ClusterStrong Scaling on a Skylake Cluster

V=243x48 V=243x48

10

http://github.com/sa2c/OpenQCD-AVX512



Bridge++
• Object-oriented C++ LQCD library (http://bridge.kek.jp/Lattice-code/).
• For AVX512, experimented with two different SIMD data layouts. 
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Fig. 4. Data layout dependence: performance of the Wilson matrix multiplication with-
out prefetch on a single KNL node.

Since our target lattice sizes assume more than O(10) KNL nodes, the advan-
tage of manual prefetch is not manifest compared to involved tuning effort. In the
following, we nonetheless use the code with manual prefetches. The performance
without manual prefetch may be estimated based on the result in Fig. 5.

For reference, here we quote the effect of communication overhead for a single
MPI process case on a single node. As noted above, even in such a case the copy
of packed boundary data is performed. By removing the redundant boundary
data packing and copy, the performance changes as follows: 378 → 453 GFlops
(layout 1) and 345 → 361 GFlops (layout 2) for the Wilson matrix, and 430 →
497 GFlops (layout 1) and 388 → 440 GFlops (layout 2) for the clover matrix
multiplication.

Comparison to Other Codes. Now we compare our performance of the Wil-
son and clover matrix multiplication to other codes under the condition of a
single process on a single KNL node. The QPhiX library achieves 587 GFlops
for single precision [5] on a 323×96 lattice. The Grid library [7] provides a bench-
mark of the Wilson matrix that we can run on the same environment as this
work. On a 323 ×64 lattice, based on v0.7.0, it gives the best performance with
one thread/core and amounts to 340 GFlops that is comparable to our result.
According to Ref. [11], the Grid achieves 960 GFlops with multiple right hand
sides, that has an advantage in reuse of data. While our result is not as fast as
QPhiX, it shows that large fraction of performance can be achieved with rather
simple prescriptions. An approach keeping the array of structure data layout and
inserting pragmas [10] gives 225 GFlops (245 GFlops after correcting the differ-
ence in clock cycle). In our previous report [4], which corresponds to the layout 2
without redundant boundary data packing/copy, the best performance on single
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Fig. 2. The site index ordering for the layout 1 (left) and 2 (right) in the double
precision case. We use a three-dimensional analogues of the right panel for the layout
2 in single precision.

Data Layout. It is important to choose a proper data layout to attain high
affinity to the SIMD vector registers. As a 512-bit register corresponds to 8 or
16 floating point numbers in double and single precision, respectively, we rear-
range the date in these units. We implement the code in C++ template classes
and instantiate them for the double and float data types individually. There are
several ways in ordering the real and imaginary parts of complex variables. Con-
sidering the number of SIMD registers and the number of the degree of freedom
on each site, we decide to place the real and imaginary parts as consecutive data
on the memory. The color and spinor components are distributed to separate reg-
isters. Instead several sites are packed into a SIMD vector; complex variables of
float (double) type on eight (four) sites are processed simultaneously. To allocate
the data on the memory, we use std::vector in the standard C++ template
library with providing an aligned allocator.

There is still flexibility in folding the lattice sites into a data array. We com-
pare two different data layouts displayed in Fig. 2. To avoid lengthy description,
we assume the single precision case in the following. In the first case (layout 1),
several sites in x-coordinate composes a SIMD vector. This requires the local
lattice size in x-direction to be a multiple of eight. Since the x-coordinate is the
most inner coordinate of our index, it is a simplest extension of a non-vectorized
layout. To minimize performance penalty of boundary copy, the MPI paralleliza-
tion is not applied in x-direction.

The second layout (layout 2) was introduced in Ref. [7]. As the right panel of
Fig. 2 explains, the local lattice is divided into several subdomains each provides
one complex number to one SIMD vector. With our implementation this restricts
the local lattice sizes in y-, z-, and t-directions to be even. While there is no
restriction in x-direction for layout 2, throughout this paper we do not MPI
parallelize in x-direction similarly to the layout 1.

Using Intrinsics. The arithmetic operations on the SIMD variables are explic-
itly managed using the intrinsics. We wrap them in inline functions, which cover

Layout 1 Layout 2
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Fig. 5. Effect of prefetch: performance of the Wilson matrix multiplication with the
layout 1 on a single KNL node. (Color figure online)

node was 340 GFlops (4 MPI proc./node). With the same condition, it becomes
369 GFlops whose improvement is mainly due to the refinement of the prefetch.
Boku et al. [9] reported that on the same machine an even-odd preconditioned
clover matrix multiplication, which adopts different implementation from ours
with the smaller byte-per-flop value of 0.645, runs with about 560 GFlops/node
up to 8,000 KNL nodes. The multi-node result with Grid reported in [8] is 277
GFlops with a local lattice volume 244.

Scaling Property of Matrix Multiplication. Figure 6 shows the weak scal-
ing property up to 32 nodes for the Wilson (left) and the clover (right) matrix
multiplication with a local lattice volume 32× 163. The values are measured by
averaging over successive 1,000 multiplications. As expected from the byte-per-
flop values, the clover matrix is more efficient than the Wilson matrix. For both
the matrices, better performance is observed for 32 or 64 MPI processes per
node (1 process per tile or core) than the other two cases. A similar tendency
is observed in Fig. 5, which corresponds to a strong scaling from 1 node to 16
nodes with a lattice volume 323 × 64.

5.3 Performance of BiCGStab Solver

For both the Wilson and clover matrices, the BiCGStab solver works efficiently.
We compose the solver algorithm with BLAS-like functions to which neither
manual prefetch nor additional compiler option for prefetch is applied. In Fig. 7,
we show the weak scaling plot of performance for the BiCGStab solver with
the Wilson and clover matrices. The performance is an average over 12 times of
solver call for different source vectors. Because of larger byte-per-flop values of

Kanamori & Matsufuru,ICCSA 2018

KNL nodes on Oakforest-PACS

http://bridge.kek.jp/Lattice-code/


Bridge++
• For Skylake, uses the same KNL code. 
• Prefetching has no effect. 
• Cache reuse is important. 

 39

Practical Implementation of Lattice QCD Simulation on SIMD Machines 469

0

100

200

300

400

500

600

700

 1  4  16

layout 1, w/o prefetch

number of nodes

Wilson matrix mult [GFlops/node]

 1  4  16

Clover matrix mult [GFlops/node]
1 proc./node
2 proc./node

36 proc./node

0

100

200

300

400

500

600

700

 1  4  16

layout 1, w/o prefetch

number of nodes

Wilson matrix mult [GFlops/node]

 1  4  16

Clover matrix mult [GFlops/node]
1 proc./node
2 proc./node

36 proc./node

Fig. 8. Weak scaling plots for the Wilson and clover matrix multiplication on ITO. The
local lattice sizes on each node are 32× 16× 12× 12 (top panel) and 64× 32× 24× 24
(bottom).

0

50

100

150

200

250

300

 1  4  16

layout 1, w/o prefetch

number of nodes

Wilson matrix BiCGstab [GFlops/node]

 1  4  16

Clover matrix BiCGstab [GFlops/node]

1 proc./node
2 proc./node

36 proc./node

Fig. 9. Weak scaling plots for the BiCGStab solver with the Wilson and clover matrices
with a 32× 16× 12× 12 local lattice in each node measured on ITO.

Practical Implementation of Lattice QCD Simulation on SIMD Machines 469

0

100

200

300

400

500

600

700

 1  4  16

layout 1, w/o prefetch

number of nodes

Wilson matrix mult [GFlops/node]

 1  4  16

Clover matrix mult [GFlops/node]
1 proc./node
2 proc./node

36 proc./node

0

100

200

300

400

500

600

700

 1  4  16

layout 1, w/o prefetch

number of nodes

Wilson matrix mult [GFlops/node]

 1  4  16

Clover matrix mult [GFlops/node]
1 proc./node
2 proc./node

36 proc./node

Fig. 8. Weak scaling plots for the Wilson and clover matrix multiplication on ITO. The
local lattice sizes on each node are 32× 16× 12× 12 (top panel) and 64× 32× 24× 24
(bottom).

0

50

100

150

200

250

300

 1  4  16

layout 1, w/o prefetch

number of nodes

Wilson matrix BiCGstab [GFlops/node]

 1  4  16

Clover matrix BiCGstab [GFlops/node]

1 proc./node
2 proc./node

36 proc./node

Fig. 9. Weak scaling plots for the BiCGStab solver with the Wilson and clover matrices
with a 32× 16× 12× 12 local lattice in each node measured on ITO.

ITO: SKylake Gold  6154, 18 cores, 
dual-socket, 24.75 MB L3 cache
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Kanamori & Matsufuru,ICCSA 2018



Three Dirac operators on two architectures
With one piece of code

• Uses a high-level language (Fortran in this case) and simple OpenMP SIMD pragmas
• Implemented three Dirac operators: Brillouin, Wilson and Staggered
• Targets different architectures (portability): KNL and core i7 performances reported
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Stephan DURR on 23 Jul 2018 at 5:10 PM
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Grid status update

Boyle, Cossu, Portelli, Yamaguchi + additional contributions

• Continue multicore performance portability
• Intel, AMD multicore & many core
• IBM BlueGene/Q
• NEW U. Regensburg (Meyer/Wettig) ARM/Neon, ARM/SVE

• New Functionality
• Hadrons measurement package (Portelli + others)
• All-to-all and AMA (O’Haigan)
• Wilson/Clover multigrid (Richtmann, talk this conf).

Common source GPU port is functional, but incomplete (Boyle)

• Broadly follow strategy developed in collab. with USQCD ECP project
https://arxiv.org/abs/1710.09409 (Boyle, Clark, DeTar, Lin, Rana, Vaquero)

• 80%-95% of QUDA performance from native code.

• Data parallel site local expressions saturate memory bandwidth

• Compiles for GPU “naturally” using advanced C++ features

Grid Status Update

Peter Boyle 
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• Grid is a C++ Lattice QCD library. [Boyle, Yamaguchi, Cossu & Portelli, arXiv: 1512.03487]
• https://github.com/paboyle/Grid

Poster by Nils MEYER on 24 Jul 2018 at 6:45 PM

Daniel RICHTMANN on 23 Jul 2018 at 4:50 PM

https://github.com/paboyle/Grid


Grid Single-Node Performance
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Grid single node performance

MultiRHS Wilson operator, DWF. Choose optimal local volume on each.

Architecture Cores GF/s (Ls x Dw) peak
Intel Knight’s Landing 7250 68 770 6100

Intel Knight’s Corner 60 270 2400
Intel Skylakex2 48 1200 9200

Intel Broadwellx2 36 800 2700
Intel Haswellx2 32 640 2400
Intel Ivybridgex2 24 270 920
AMD EPYCx2 64 590 3276

AMD Interlagosx4 32 (16) 80 628
1xVolta 84 SM 1900 15700

Notes:

• Dropped to inline assembly for key kernel in KNL and BlueGene/Q

• EPYC is MCM; ran 4 MPI ranks per socket, one per die

• GPU-port not yet production ready Peter Boyle 



DiRAC HPE ICE-XA, hypercube network

• Edinburgh HPE 8600 system, 844 dual socket nodes (March 2018)
• Skylake Silver 4116, 12 core; Omnipath interconnect
• Relatively cheap node: enables high node count and scalability
• Upgrade to over 1400 nodes in 2018/19.

Tesseract performance per node vs nodes, volume
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• 512 nodes topology aware code bidirectional 19GB/s (25GB/s peak)
• 76% wirespeed using every link in system concurrently

• Collaboration w. Intel, Brookhaven Lab: introduced concurrency in Intel MPI, OPA

• https://arxiv.org/pdf/1711.04883.pdf

DiRAC HPE ICE-XA, hypercube network
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Peter Boyle 



Workflow Management Software

• Central SQL database stores all information, 
from ensemble parameters to gauge config 
metadata, correlators, intermediate analysis 
results & final outputs

• Workflow manager (e.g. taxi Python module - 
https://github.com/dchackett/taxi) manages 
simulations and measurements on remote 
machines

• Automation scripts on the back end “close 
the loop”, allow for cyclic workflows that start 
and end in the database.  Enables things like 
automated phase diagram exploration:
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Colorado lattice group* is developing tools for end-to-end workflow 
management and automation:

Wilson finite-T phase diagram for SU(3) 
Nf=2, 123x6.  8200 configs across 138 
ensembles.  Some adjustments and 
debugging through the run, but no 

simulations launched by hand!
*V. Ayyar, D.C. Hackett, W.I. Jay, E.T. Neil

https://github.com/dchackett/taxi


Workflow Management Software

• METAQ -  Bash script that bundles a large number of 
small-node-count jobs. 

• mpi_jm - Other issues motivated a second 
generation job management tool:

• Packing:   Independent CPU and GPU jobs on the 
same nodes.  2GPU with 4 GPU on same node.   

• Interconnect:  Jobs always placed on node sets 
with local connections.  Yields higher and more 
consistent performance.

• Low overhead on service node.   Jobs started 
with MPI_Comm_spawn.  Scheduling and job 
control/monitoring is implemented in C++.

• Job collection/generation and configuration is 
done in Python - very configurable.
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            developed a job management system for efficiently distributing 
work over a large number of compute nodes.

EPJ Web Conf. 175 (2018) 09007 Berkowitz, Jansen, McElvain, and Walker-Loud
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New/Emerging Architectures 

• ARM (Nils Meyer, poster)

• FPGA (2 presentations at this conference)

• Sunway Taihu Light (Ming Gong, poster)

• Quantum Computers (3 presentations at this conference)
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• It’s possible that exascale computers will be based on 
unconventional architectures.  

• Japan already announced that their Post-K exascale computer will 
be based on 512-bit ARM v8 SVE (Scalable Vector Extension) 
instruction set. 
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BMbi`m+iBQM KBtBM; �M/ #`�M+?BM; bi�iBbiB+b U→ G�iiB+2 R3 T`Q+22/BM;bV

! ;2K8
◃ h?2 ;2K8 bBKmH�iQ` Bb � KQ/mH�` TH�i7Q`K 7Q` +QKTmi2` �`+?Bi2+im`2 `2b2�`+?-

2M+QKT�bbBM; bvbi2K@H2p2H �M/ T`Q+2bbQ` �`+?Bi2+im`2 (e)
◃ _AE1L T`QpB/2b mb rBi? �++2bb iQ i?2B` ;2K8 bBKmH�iQ` Q7 i?2 SQbi@E *Sl
◃ q2 QTiBKBx2 Qm` +Q/2 ;mB/2/ #v bBKmH�iBQMb Q7 i?2 SQbi@E *Sl U7mim`2 rQ`FV

Ǵ:`B/Ǵ G�iiB+2 Z*. 7`�K2rQ`F

! :`B/ (d- 3) Bb � TQ`i�#H2 QT2M@bQm`+2 G�iiB+2 Z*. 7`�K2rQ`F r`Bii2M BM *YY RR-
K�BMi�BM2/ #v S2i2` "QvH2 U1/BM#m`;?V �M/ +Q@rQ`F2`b

! h�`;2ib K�bbBp2Hv T�`�HH2H �`+?Bi2+im`2b bmTTQ`iBM; aAJ. Y PT2MJS Y JSA
! AKTH2K2Mib KQ`2 i?�M Ryy i2bib �M/ #2M+?K�`Fb
! Aa�@bT2+B}+ +Q/2 Bb BKTH2K2Mi2/ mbBM; BMi`BMbBM+b �M/ �bb2K#Hv

aAJ. 7�KBHv _2;Bbi2` bBx2
AMi2H aa19 Rk3 #Bi
AMi2H �osf�osk k8e #Bi
AMi2H A*JA- �os8Rk 8Rk #Bi
A"J ZSs k8e #Bi
�_J L2QM Rk3 #Bi
�_J ao1 p�`B�#H2
;2M2`B+ * �`+?Bi2+im`2 BM/2T2M/2Mi- mb2`@/2}M2/ �``�v bBx2

1M�#HBM; ao1 BM :`B/

! q2 mb2 �*G1 7Q` Qm` ao1 BKTH2K2Mi�iBQM iQ �++2bb i?2 ao1 72�im`2b
! q2 KBMBKBx2 BKTHB+�iBQMb Q7 i?2 oG� T`Q;`�KKBM; KQ/2H �M/ #vT�bb `2bi`B+iBQMb

QM mb�;2 Q7 �*G1 /�i� ivT2b
◃ q2 /2+H�`2 i?2 p2+iQ` H2M;i? oG UBM #vi2bV �b � +QKTBH2@iBK2 +QMbi�Mi
◃ amT2`~mQmb HQQTb BKTHB2/ #v oG� �`2 QKBii2/
◃ h?2 p�`B2iv Q7 T`2/B+�iBQMb Bb KBMBKBx2/ iQ }i BMiQ i?2 `2;Bbi2` }H2
◃ h?2 i2KTH�i2/ bi`m+i �+H2Ih= Uh 4 /Qm#H2- 7HQ�iV T`QpB/2b +QMp2MB2Mi

�++2bb iQ �*G1 /2}MBiBQMb- 2X;X- T`2/B+�iBQMb �M/ /�i� ivT2b
! *Q/2 2t�KTH2, i2KTH�i2/ KmHiBTHB+�iBQM Q7 irQ p2+iQ`b Q7 +QKTH2t MmK#2`b

i2KTH�i2 IivT2M�K2 h=
bi`m+i p2+iQ` &

�HB;M�bUoGV h p(oG f bBx2Q7UhV)c ff *@�``�v
'c

bi`m+i JmHi*QKTH2t &
i2KTH�i2 IivT2M�K2 h=
BMHBM2 p2+iQ` Ih= QT2`�iQ`UVU+QMbi p2+iQ` Ih= ��- +QMbi p2+iQ` Ih= �#V &

p2+iQ` Ih= `2bmHic ff `2bmHi p2+iQ`
ivT2M�K2 �+H2 Ih=,,bp2ni xnp- �np- #np- `npc ff �*G1 /�i� ivT2b
bp#QQHni Tc ff T`2/B+�iBQM

T 4 �+H2 Ih=,,�+iBp�i2n�HHn2H2K2MibUVc ff /27BM2 T`2/B+�iBQM
xnp 4 �+H2 Ih=,,x2`QUVc ff xnp I@ 6S x2`Q
�np 4 bpH/RUT- �XpVc ff HQ�/ �np I@ �
#np 4 bpH/RUT- #XpVc ff HQ�/ #np I@ #
`np 4 bp+KH�nxUT- xnp- �np- #np- NyVc ff +QKTH2t KmHiBTHv @�//
`np 4 bp+KH�nxUT- `np- �np- #np- yVc ff
bpbiRUT- `2bmHiXp- `npVc ff biQ`2 `np @= `2bmHi
`2im`M `2bmHic ff `2im`M `2bmHi

'
'c

! aQ7ir�`2 /2p2HQTK2Mi- p2`B}+�iBQM �M/ QTiBKBx�iBQM
◃ q2 BKTH2K2Mi KmHiBTH2 +Q/BM; b+?2K2b 7Q` ao1 U→ G�iiB+2 R3 T`Q+22/BM;bV
◃ q2 p2`B7v b2H2+i2/ i2bib �M/ #2M+?K�`Fb 2KmH�iBM; KmHiBTH2 oG BM i?2 �`KA1
◃ �i T`2b2Mi QM2 +Q/BM; b+?2K2 7�BHb iQ +QKTBH2- �M/ bQK2 i2bib ;Bp2 r`QM;

`2bmHib /m2 iQ ao1 iQQH+?�BM BKK�im`Biv
◃ _mM@iBK2 QTiBKBx�iBQMb rBHH #2 ;mB/2/ #v ;2K8 *Sl bBKmH�iBQM U7mim`2 rQ`FV

! aQm`+2b �p�BH�#H2 �i
?iiTb,ff;Bi?m#X+QKfMK2v2`@m`f:`B/fi`22f72�im`2f�`K@bp2

6mim`2 T2`bT2+iBp2b

! AKT`Qp2/ �M/ KQ`2 K�im`2 /2p2HQTK2Mi 2MpB`QMK2Mi
! 1ti2M/2/ bmTTQ`i Q7 i?2 ao1 Aa� #v +QKTBH2`b- 2X;X- BMbi`m+iBQMb 7Q` +QKTH2t

�`Bi?K2iB+b �M/ +QKTBH2`@;2M2`�i2/ HQ�/fbiQ`2 mbBM; �*G1
! SQbbB#H2 2M/Q`b2K2Mi Q7 ao1 /�i� ivT2b BM H�M;m�;2b HBF2 * �M/ *YY
! q2 biBKmH�i2 /Bb+HQbm`2 Q7 /2i�BHb Q7 �_J@#�b2/ KB+`Q@�`+?Bi2+im`2b �M/ Aa�

T2`7Q`K�M+2 +?�`�+i2`BbiB+b `2H2p�Mi 7Q` >S* +Q/2 /2bB;M

_272`2M+2b
(R) LX ai2T?2Mb 2i �HX- A111 JB+`Q jd Abbm2 k (�`tBp,R3yjXyeR38)
(k) ?iiT,ffrrrX7mDBibmX+QKf;HQ#�Hf�#Qmif`2bQm`+2bfM2rbfT`2bb@`2H2�b2bfkyR3fyekR@yRX?iKH
(j) ǳ�_J * G�M;m�;2 1ti2MbBQMb 7Q` ao1Ǵ- �_J- h2+?X _2TX UkyRdV
(9) ?iiTb,ff/2p2HQT2`X�`KX+QKfT`Q/m+ibfbQ7ir�`2@/2p2HQTK2Mi@iQQHbf?T+f/Q+mK2Mi�iBQM
(8) ?iiT,ffrrrX/vM�KQ`BQXQ`;f
(e) ?iiT,ff;2K8XQ`;f
(d) SX "QvH2 2i �HX- S`Q+22/BM;b Q7 G�hhA*1 R8 UkyReV (�`tBp,R8RkXyj93d)
(3) ?iiTb,ff;Bi?m#X+QKfT�#QvH2f:`B/

amTTQ`i2/ #v i?2 :2`K�M _2b2�`+? 6QmM/�iBQM U.6:V BM i?2 7`�K2rQ`F Q7 a6"fh__@88 MBHbXK2v2`!m`X/2
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G�iiB+2 Z*. QM mT+QKBM; �_J �`+?Bi2+im`2b
LBHb J2v2`∗- .B`F SH2Bi2`∗†- ai27�M aQH#`B;∗- hBHQ q2iiB;∗

∗.2T�`iK2Mi Q7 S?vbB+b- lMBp2`bBiv Q7 _2;2Mb#m`;- :2`K�Mv
†6Q`b+?mM;bx2Mi`mK CɃHB+?- :2`K�Mv

ZS�*1 9 T`QD2+i

! �BKb iQ /2bB;M �M �_J ao1 2MpB`QMK2Mi QTiBKBx2/ 7Q` G�iiB+2 Z*.
◃ S`QiQivT2 �i i?2 lMBp2`bBiv Q7 _2;2Mb#m`;- :2`K�Mv- #v kyky

! Sm`bm2b 2p�Hm�iBQM �M/ 2M?�M+2K2Mi Q7 2tBbiBM; ao1 bQ7ir�`2 iQQH+?�BM �M/
mT+QKBM; ao1 ?�`/r�`2 i2+?MQHQ;B2b 7Q` G�iiB+2 Z*. �TTHB+�iBQMb

! 1M�#H2b G�iiB+2 Z*. +Q/2 QTiBKBx2/ 7Q` ao1 �`+?Bi2+im`2b- 2X;X- i?2 C�T�M2b2
~�;b?BT bmT2`+QKTmi2` ǴSQbi@EǴ �MMQmM+2/ 7Q` kykR

�_J ao1

! h?2 �_J a+�H�#H2 o2+iQ` 1ti2MbBQM Uao1V i�`;2ib i?2 >S* K�`F2i (R)
! E2v 72�im`2b Q7 ao1 ?�`/r�`2

◃ qB/2 p2+iQ` mMBib- `�M;BM; 7`QK Rk3 #Bi iQ ky93 #Bi
◃ o2+iQ`Bx2/ M�iBp2 Re #Bi ~Q�iBM; TQBMi QT2`�iBQMb- BM+Hm/BM; �`Bi?K2iB+b
◃ o2+iQ`Bx2/ �`Bi?K2iB+b Q7 +QKTH2t MmK#2`b
◃ h?2 bBHB+QM T`QpB/2` +?QQb2b i?2 p2+iQ` `2;Bbi2` H2M;i? �M/ /2}M2b i?2

T2`7Q`K�M+2 +?�`�+i2`BbiB+b Q7 i?2 ao1 ?�`/r�`2
◃ h?2 }`bi ao1 ?�`/r�`2 Q{+B�HHv �MMQmM+2/ Bb i?2 SQbi@E- r?B+? +QKT`Bb2b

8Rk #Bi rB/2 p2+iQ` mMBib- 93 +QKTmi2 +Q`2b T2` MQ/2 �M/ ?B;? T2`7Q`K�M+2
bi�+F2/ K2KQ`v (k)

! E2v 72�im`2b Q7 i?2 ao1 BMbi`m+iBQM b2i �`+?Bi2+im`2 UAa�V
◃ ao1 7QHHQrb � p2+iQ`@H2M;i? �;MQbiB+ UoG�V T`Q;`�KKBM; KQ/2H i?�i �/�Tib

Bib2H7 iQ i?2 �p�BH�#H2 p2+iQ` H2M;i? UoGV
◃ oG� T`2/B+�iBQM �HHQrb 7Q` b2H2+iBQM Q7 p2+iQ` 2H2K2Mib iQ #2 mb2/ 7Q`

T`Q+2bbBM;- r?B+? 2M�#H2b- 2X;X- +QKTH2t +QMi`QH ~Qrb rBi?BM HQQTb
◃ amTTQ`i 7Q` bi`m+im`2 HQ�/fbiQ`2- 2X;X- HQ�/ Q7 �M �``�v Q7 irQ@2H2K2Mi

bi`m+im`2b BMiQ irQ p2+iQ`b- rBi? QM2 p2+iQ` T2` bi`m+im`2 2H2K2Mi
◃ h?2 �_J * G�M;m�;2 1ti2MbBQMb 7Q` ao1 U�*G1V BMi`BMbB+b T`QpB/2

+QMp2MB2Mi �++2bb iQ 72�im`2b Q7 i?2 ao1 ?�`/r�`2 BM *f*YY (j)

ao1 +Q/2 2t�KTH2

! /�tTv BM *NN Uyi← yi + a× xi rBi? `2�H QT2`�M/bV
pQB/ /�tTvU/Qm#H2 �- /Qm#H2  `2bi`B+i t- /Qm#H2  `2bi`B+i v- BMi MV &

7Q` UBMi B 4 yc B I Mc BYYV
v(B) 4 v(B) Y �  t(B)c

'
! �bb2K#Hv QmiTmi Q7 i?2 �`K+H�M; R3Xj ao1 +QKTBH2` U�miQ@p2+iQ`Bx�iBQM 2M�#H2/V

r?BH2HQ TRX/- tx`- t3 ff T`2/X 7Q` tnB- vnBc tx`4yc t34Mc xy4�
Ti`m2 TyX/ ff T`2/X 7Q` `2bmHi p2+iQ`

XG""ynk,
H/R/ &xRX/'- TRfx- (tR- tN- HbH Oj) ff T`2/X HQ�/ xR I@ vn&BXX'
H/R/ &xkX/'- TRfx- (tk- tN- HbH Oj) ff T`2/X HQ�/ xk I@ tn&BXX'
7K�/ xRX/- TyfK- xyX/- xkX/ ff T`2/X KmHiBTHv @�//
biR/ &xRX/'- TR- (tk- tN- HbH Oj) ff T`2/X biQ`2 xR @= vn&BXX'
BM+/ tN ff BM+`2K2Mi tN
r?BH2HQ TRX/- tN- t3 ff T`2/X `2K�BMBM; vn&BXX'
#XKB XG""ynk ff +QM/BiBQM�H #`�M+? iQ G""ynk

! .Bb+mbbBQM
◃ �`K+H�M; Bb mM�r�`2 Q7 i?2 oG �M/ QTiBKBx2b 7Q` i?2 oG� T�`�/B;K
◃ h?2 #BM�`v +Q/2 2t2+mi2b 7Q` �HH oG BKTH2K2Mi�iBQMb

ao1 +Q/2 /2p2HQTK2Mi iQQHb

! *QKTBH2`b
◃ �_J T`QpB/2b mb rBi? i?2B` GGoJf+H�M;@#�b2/ �`K+H�M; R3 +QKTBH2`

U2p�Hm�iBQM p2`bBQM �p�BH�#H2 (9)V
◃ _AE1L T`QpB/2b mb rBi? i?2 6mDBibm ao1 +QKTBH2`
◃ q2 i2bi i?2 +QKTBH2`b- biBKmH�i2 #m; }t2b �M/ T`QTQb2 BKT`Qp2K2Mib BM i?2

+QMi2ti Q7 `2b2�`+? +QMi`�+ib
! �_J AMbi`m+iBQM 1KmH�iQ` U�`KA1V

◃ �`KA1 �HHQrb 7Q` 7mM+iBQM�H p2`B}+�iBQM Q7 ao1 #BM�`B2b 2KmH�iBM; i?2 ao1
Aa� rBi? mb2`@/2}M2/ oG U7`22Hv �p�BH�#H2 (9)V

◃ �`KA1 Bb /2bB;M2/ QM iQT Q7 i?2 QT2M@bQm`+2 .vM�KQ_AP iQQHb2i 2M�#HBM;
+Q/2 BMbi`mK2Mi�iBQM �i `mM@iBK2 (8)

◃ q2 +QMi`B#mi2 iQ .vM�KQ_AP 2M�#HBM; �/p�M+2/ ao1 +Q/2 �M�HvbBb- 2X;X-
BMbi`m+iBQM KBtBM; �M/ #`�M+?BM; bi�iBbiB+b U→ G�iiB+2 R3 T`Q+22/BM;bV

! ;2K8
◃ h?2 ;2K8 bBKmH�iQ` Bb � KQ/mH�` TH�i7Q`K 7Q` +QKTmi2` �`+?Bi2+im`2 `2b2�`+?-

2M+QKT�bbBM; bvbi2K@H2p2H �M/ T`Q+2bbQ` �`+?Bi2+im`2 (e)
◃ _AE1L T`QpB/2b mb rBi? �++2bb iQ i?2B` ;2K8 bBKmH�iQ` Q7 i?2 SQbi@E *Sl
◃ q2 QTiBKBx2 Qm` +Q/2 ;mB/2/ #v bBKmH�iBQMb Q7 i?2 SQbi@E *Sl U7mim`2 rQ`FV

Ǵ:`B/Ǵ G�iiB+2 Z*. 7`�K2rQ`F

! :`B/ (d- 3) Bb � TQ`i�#H2 QT2M@bQm`+2 G�iiB+2 Z*. 7`�K2rQ`F r`Bii2M BM *YY RR-
K�BMi�BM2/ #v S2i2` "QvH2 U1/BM#m`;?V �M/ +Q@rQ`F2`b

! h�`;2ib K�bbBp2Hv T�`�HH2H �`+?Bi2+im`2b bmTTQ`iBM; aAJ. Y PT2MJS Y JSA
! AKTH2K2Mib KQ`2 i?�M Ryy i2bib �M/ #2M+?K�`Fb
! Aa�@bT2+B}+ +Q/2 Bb BKTH2K2Mi2/ mbBM; BMi`BMbBM+b �M/ �bb2K#Hv

aAJ. 7�KBHv _2;Bbi2` bBx2
AMi2H aa19 Rk3 #Bi
AMi2H �osf�osk k8e #Bi
AMi2H A*JA- �os8Rk 8Rk #Bi
A"J ZSs k8e #Bi
�_J L2QM Rk3 #Bi
�_J ao1 p�`B�#H2
;2M2`B+ * �`+?Bi2+im`2 BM/2T2M/2Mi- mb2`@/2}M2/ �``�v bBx2

1M�#HBM; ao1 BM :`B/

! q2 mb2 �*G1 7Q` Qm` ao1 BKTH2K2Mi�iBQM iQ �++2bb i?2 ao1 72�im`2b
! q2 KBMBKBx2 BKTHB+�iBQMb Q7 i?2 oG� T`Q;`�KKBM; KQ/2H �M/ #vT�bb `2bi`B+iBQMb

QM mb�;2 Q7 �*G1 /�i� ivT2b
◃ q2 /2+H�`2 i?2 p2+iQ` H2M;i? oG UBM #vi2bV �b � +QKTBH2@iBK2 +QMbi�Mi
◃ amT2`~mQmb HQQTb BKTHB2/ #v oG� �`2 QKBii2/
◃ h?2 p�`B2iv Q7 T`2/B+�iBQMb Bb KBMBKBx2/ iQ }i BMiQ i?2 `2;Bbi2` }H2
◃ h?2 i2KTH�i2/ bi`m+i �+H2Ih= Uh 4 /Qm#H2- 7HQ�iV T`QpB/2b +QMp2MB2Mi

�++2bb iQ �*G1 /2}MBiBQMb- 2X;X- T`2/B+�iBQMb �M/ /�i� ivT2b
! *Q/2 2t�KTH2, i2KTH�i2/ KmHiBTHB+�iBQM Q7 irQ p2+iQ`b Q7 +QKTH2t MmK#2`b

i2KTH�i2 IivT2M�K2 h=
bi`m+i p2+iQ` &

�HB;M�bUoGV h p(oG f bBx2Q7UhV)c ff *@�``�v
'c

bi`m+i JmHi*QKTH2t &
i2KTH�i2 IivT2M�K2 h=
BMHBM2 p2+iQ` Ih= QT2`�iQ`UVU+QMbi p2+iQ` Ih= ��- +QMbi p2+iQ` Ih= �#V &

p2+iQ` Ih= `2bmHic ff `2bmHi p2+iQ`
ivT2M�K2 �+H2 Ih=,,bp2ni xnp- �np- #np- `npc ff �*G1 /�i� ivT2b
bp#QQHni Tc ff T`2/B+�iBQM

T 4 �+H2 Ih=,,�+iBp�i2n�HHn2H2K2MibUVc ff /27BM2 T`2/B+�iBQM
xnp 4 �+H2 Ih=,,x2`QUVc ff xnp I@ 6S x2`Q
�np 4 bpH/RUT- �XpVc ff HQ�/ �np I@ �
#np 4 bpH/RUT- #XpVc ff HQ�/ #np I@ #
`np 4 bp+KH�nxUT- xnp- �np- #np- NyVc ff +QKTH2t KmHiBTHv @�//
`np 4 bp+KH�nxUT- `np- �np- #np- yVc ff
bpbiRUT- `2bmHiXp- `npVc ff biQ`2 `np @= `2bmHi
`2im`M `2bmHic ff `2im`M `2bmHi

'
'c

! aQ7ir�`2 /2p2HQTK2Mi- p2`B}+�iBQM �M/ QTiBKBx�iBQM
◃ q2 BKTH2K2Mi KmHiBTH2 +Q/BM; b+?2K2b 7Q` ao1 U→ G�iiB+2 R3 T`Q+22/BM;bV
◃ q2 p2`B7v b2H2+i2/ i2bib �M/ #2M+?K�`Fb 2KmH�iBM; KmHiBTH2 oG BM i?2 �`KA1
◃ �i T`2b2Mi QM2 +Q/BM; b+?2K2 7�BHb iQ +QKTBH2- �M/ bQK2 i2bib ;Bp2 r`QM;

`2bmHib /m2 iQ ao1 iQQH+?�BM BKK�im`Biv
◃ _mM@iBK2 QTiBKBx�iBQMb rBHH #2 ;mB/2/ #v ;2K8 *Sl bBKmH�iBQM U7mim`2 rQ`FV

! aQm`+2b �p�BH�#H2 �i
?iiTb,ff;Bi?m#X+QKfMK2v2`@m`f:`B/fi`22f72�im`2f�`K@bp2

6mim`2 T2`bT2+iBp2b

! AKT`Qp2/ �M/ KQ`2 K�im`2 /2p2HQTK2Mi 2MpB`QMK2Mi
! 1ti2M/2/ bmTTQ`i Q7 i?2 ao1 Aa� #v +QKTBH2`b- 2X;X- BMbi`m+iBQMb 7Q` +QKTH2t

�`Bi?K2iB+b �M/ +QKTBH2`@;2M2`�i2/ HQ�/fbiQ`2 mbBM; �*G1
! SQbbB#H2 2M/Q`b2K2Mi Q7 ao1 /�i� ivT2b BM H�M;m�;2b HBF2 * �M/ *YY
! q2 biBKmH�i2 /Bb+HQbm`2 Q7 /2i�BHb Q7 �_J@#�b2/ KB+`Q@�`+?Bi2+im`2b �M/ Aa�

T2`7Q`K�M+2 +?�`�+i2`BbiB+b `2H2p�Mi 7Q` >S* +Q/2 /2bB;M

_272`2M+2b
(R) LX ai2T?2Mb 2i �HX- A111 JB+`Q jd Abbm2 k (�`tBp,R3yjXyeR38)
(k) ?iiT,ffrrrX7mDBibmX+QKf;HQ#�Hf�#Qmif`2bQm`+2bfM2rbfT`2bb@`2H2�b2bfkyR3fyekR@yRX?iKH
(j) ǳ�_J * G�M;m�;2 1ti2MbBQMb 7Q` ao1Ǵ- �_J- h2+?X _2TX UkyRdV
(9) ?iiTb,ff/2p2HQT2`X�`KX+QKfT`Q/m+ibfbQ7ir�`2@/2p2HQTK2Mi@iQQHbf?T+f/Q+mK2Mi�iBQM
(8) ?iiT,ffrrrX/vM�KQ`BQXQ`;f
(e) ?iiT,ff;2K8XQ`;f
(d) SX "QvH2 2i �HX- S`Q+22/BM;b Q7 G�hhA*1 R8 UkyReV (�`tBp,R8RkXyj93d)
(3) ?iiTb,ff;Bi?m#X+QKfT�#QvH2f:`B/

amTTQ`i2/ #v i?2 :2`K�M _2b2�`+? 6QmM/�iBQM U.6:V BM i?2 7`�K2rQ`F Q7 a6"fh__@88 MBHbXK2v2`!m`X/2
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G�iiB+2 Z*. QM mT+QKBM; �_J �`+?Bi2+im`2b
LBHb J2v2`∗- .B`F SH2Bi2`∗†- ai27�M aQH#`B;∗- hBHQ q2iiB;∗

∗.2T�`iK2Mi Q7 S?vbB+b- lMBp2`bBiv Q7 _2;2Mb#m`;- :2`K�Mv
†6Q`b+?mM;bx2Mi`mK CɃHB+?- :2`K�Mv

ZS�*1 9 T`QD2+i

! �BKb iQ /2bB;M �M �_J ao1 2MpB`QMK2Mi QTiBKBx2/ 7Q` G�iiB+2 Z*.
◃ S`QiQivT2 �i i?2 lMBp2`bBiv Q7 _2;2Mb#m`;- :2`K�Mv- #v kyky

! Sm`bm2b 2p�Hm�iBQM �M/ 2M?�M+2K2Mi Q7 2tBbiBM; ao1 bQ7ir�`2 iQQH+?�BM �M/
mT+QKBM; ao1 ?�`/r�`2 i2+?MQHQ;B2b 7Q` G�iiB+2 Z*. �TTHB+�iBQMb

! 1M�#H2b G�iiB+2 Z*. +Q/2 QTiBKBx2/ 7Q` ao1 �`+?Bi2+im`2b- 2X;X- i?2 C�T�M2b2
~�;b?BT bmT2`+QKTmi2` ǴSQbi@EǴ �MMQmM+2/ 7Q` kykR

�_J ao1

! h?2 �_J a+�H�#H2 o2+iQ` 1ti2MbBQM Uao1V i�`;2ib i?2 >S* K�`F2i (R)
! E2v 72�im`2b Q7 ao1 ?�`/r�`2

◃ qB/2 p2+iQ` mMBib- `�M;BM; 7`QK Rk3 #Bi iQ ky93 #Bi
◃ o2+iQ`Bx2/ M�iBp2 Re #Bi ~Q�iBM; TQBMi QT2`�iBQMb- BM+Hm/BM; �`Bi?K2iB+b
◃ o2+iQ`Bx2/ �`Bi?K2iB+b Q7 +QKTH2t MmK#2`b
◃ h?2 bBHB+QM T`QpB/2` +?QQb2b i?2 p2+iQ` `2;Bbi2` H2M;i? �M/ /2}M2b i?2

T2`7Q`K�M+2 +?�`�+i2`BbiB+b Q7 i?2 ao1 ?�`/r�`2
◃ h?2 }`bi ao1 ?�`/r�`2 Q{+B�HHv �MMQmM+2/ Bb i?2 SQbi@E- r?B+? +QKT`Bb2b

8Rk #Bi rB/2 p2+iQ` mMBib- 93 +QKTmi2 +Q`2b T2` MQ/2 �M/ ?B;? T2`7Q`K�M+2
bi�+F2/ K2KQ`v (k)

! E2v 72�im`2b Q7 i?2 ao1 BMbi`m+iBQM b2i �`+?Bi2+im`2 UAa�V
◃ ao1 7QHHQrb � p2+iQ`@H2M;i? �;MQbiB+ UoG�V T`Q;`�KKBM; KQ/2H i?�i �/�Tib

Bib2H7 iQ i?2 �p�BH�#H2 p2+iQ` H2M;i? UoGV
◃ oG� T`2/B+�iBQM �HHQrb 7Q` b2H2+iBQM Q7 p2+iQ` 2H2K2Mib iQ #2 mb2/ 7Q`

T`Q+2bbBM;- r?B+? 2M�#H2b- 2X;X- +QKTH2t +QMi`QH ~Qrb rBi?BM HQQTb
◃ amTTQ`i 7Q` bi`m+im`2 HQ�/fbiQ`2- 2X;X- HQ�/ Q7 �M �``�v Q7 irQ@2H2K2Mi

bi`m+im`2b BMiQ irQ p2+iQ`b- rBi? QM2 p2+iQ` T2` bi`m+im`2 2H2K2Mi
◃ h?2 �_J * G�M;m�;2 1ti2MbBQMb 7Q` ao1 U�*G1V BMi`BMbB+b T`QpB/2

+QMp2MB2Mi �++2bb iQ 72�im`2b Q7 i?2 ao1 ?�`/r�`2 BM *f*YY (j)

ao1 +Q/2 2t�KTH2

! /�tTv BM *NN Uyi← yi + a× xi rBi? `2�H QT2`�M/bV
pQB/ /�tTvU/Qm#H2 �- /Qm#H2  `2bi`B+i t- /Qm#H2  `2bi`B+i v- BMi MV &

7Q` UBMi B 4 yc B I Mc BYYV
v(B) 4 v(B) Y �  t(B)c

'
! �bb2K#Hv QmiTmi Q7 i?2 �`K+H�M; R3Xj ao1 +QKTBH2` U�miQ@p2+iQ`Bx�iBQM 2M�#H2/V

r?BH2HQ TRX/- tx`- t3 ff T`2/X 7Q` tnB- vnBc tx`4yc t34Mc xy4�
Ti`m2 TyX/ ff T`2/X 7Q` `2bmHi p2+iQ`

XG""ynk,
H/R/ &xRX/'- TRfx- (tR- tN- HbH Oj) ff T`2/X HQ�/ xR I@ vn&BXX'
H/R/ &xkX/'- TRfx- (tk- tN- HbH Oj) ff T`2/X HQ�/ xk I@ tn&BXX'
7K�/ xRX/- TyfK- xyX/- xkX/ ff T`2/X KmHiBTHv @�//
biR/ &xRX/'- TR- (tk- tN- HbH Oj) ff T`2/X biQ`2 xR @= vn&BXX'
BM+/ tN ff BM+`2K2Mi tN
r?BH2HQ TRX/- tN- t3 ff T`2/X `2K�BMBM; vn&BXX'
#XKB XG""ynk ff +QM/BiBQM�H #`�M+? iQ G""ynk

! .Bb+mbbBQM
◃ �`K+H�M; Bb mM�r�`2 Q7 i?2 oG �M/ QTiBKBx2b 7Q` i?2 oG� T�`�/B;K
◃ h?2 #BM�`v +Q/2 2t2+mi2b 7Q` �HH oG BKTH2K2Mi�iBQMb

ao1 +Q/2 /2p2HQTK2Mi iQQHb

! *QKTBH2`b
◃ �_J T`QpB/2b mb rBi? i?2B` GGoJf+H�M;@#�b2/ �`K+H�M; R3 +QKTBH2`

U2p�Hm�iBQM p2`bBQM �p�BH�#H2 (9)V
◃ _AE1L T`QpB/2b mb rBi? i?2 6mDBibm ao1 +QKTBH2`
◃ q2 i2bi i?2 +QKTBH2`b- biBKmH�i2 #m; }t2b �M/ T`QTQb2 BKT`Qp2K2Mib BM i?2

+QMi2ti Q7 `2b2�`+? +QMi`�+ib
! �_J AMbi`m+iBQM 1KmH�iQ` U�`KA1V

◃ �`KA1 �HHQrb 7Q` 7mM+iBQM�H p2`B}+�iBQM Q7 ao1 #BM�`B2b 2KmH�iBM; i?2 ao1
Aa� rBi? mb2`@/2}M2/ oG U7`22Hv �p�BH�#H2 (9)V

◃ �`KA1 Bb /2bB;M2/ QM iQT Q7 i?2 QT2M@bQm`+2 .vM�KQ_AP iQQHb2i 2M�#HBM;
+Q/2 BMbi`mK2Mi�iBQM �i `mM@iBK2 (8)

◃ q2 +QMi`B#mi2 iQ .vM�KQ_AP 2M�#HBM; �/p�M+2/ ao1 +Q/2 �M�HvbBb- 2X;X-
BMbi`m+iBQM KBtBM; �M/ #`�M+?BM; bi�iBbiB+b U→ G�iiB+2 R3 T`Q+22/BM;bV

! ;2K8
◃ h?2 ;2K8 bBKmH�iQ` Bb � KQ/mH�` TH�i7Q`K 7Q` +QKTmi2` �`+?Bi2+im`2 `2b2�`+?-

2M+QKT�bbBM; bvbi2K@H2p2H �M/ T`Q+2bbQ` �`+?Bi2+im`2 (e)
◃ _AE1L T`QpB/2b mb rBi? �++2bb iQ i?2B` ;2K8 bBKmH�iQ` Q7 i?2 SQbi@E *Sl
◃ q2 QTiBKBx2 Qm` +Q/2 ;mB/2/ #v bBKmH�iBQMb Q7 i?2 SQbi@E *Sl U7mim`2 rQ`FV

Ǵ:`B/Ǵ G�iiB+2 Z*. 7`�K2rQ`F

! :`B/ (d- 3) Bb � TQ`i�#H2 QT2M@bQm`+2 G�iiB+2 Z*. 7`�K2rQ`F r`Bii2M BM *YY RR-
K�BMi�BM2/ #v S2i2` "QvH2 U1/BM#m`;?V �M/ +Q@rQ`F2`b

! h�`;2ib K�bbBp2Hv T�`�HH2H �`+?Bi2+im`2b bmTTQ`iBM; aAJ. Y PT2MJS Y JSA
! AKTH2K2Mib KQ`2 i?�M Ryy i2bib �M/ #2M+?K�`Fb
! Aa�@bT2+B}+ +Q/2 Bb BKTH2K2Mi2/ mbBM; BMi`BMbBM+b �M/ �bb2K#Hv

aAJ. 7�KBHv _2;Bbi2` bBx2
AMi2H aa19 Rk3 #Bi
AMi2H �osf�osk k8e #Bi
AMi2H A*JA- �os8Rk 8Rk #Bi
A"J ZSs k8e #Bi
�_J L2QM Rk3 #Bi
�_J ao1 p�`B�#H2
;2M2`B+ * �`+?Bi2+im`2 BM/2T2M/2Mi- mb2`@/2}M2/ �``�v bBx2

1M�#HBM; ao1 BM :`B/

! q2 mb2 �*G1 7Q` Qm` ao1 BKTH2K2Mi�iBQM iQ �++2bb i?2 ao1 72�im`2b
! q2 KBMBKBx2 BKTHB+�iBQMb Q7 i?2 oG� T`Q;`�KKBM; KQ/2H �M/ #vT�bb `2bi`B+iBQMb

QM mb�;2 Q7 �*G1 /�i� ivT2b
◃ q2 /2+H�`2 i?2 p2+iQ` H2M;i? oG UBM #vi2bV �b � +QKTBH2@iBK2 +QMbi�Mi
◃ amT2`~mQmb HQQTb BKTHB2/ #v oG� �`2 QKBii2/
◃ h?2 p�`B2iv Q7 T`2/B+�iBQMb Bb KBMBKBx2/ iQ }i BMiQ i?2 `2;Bbi2` }H2
◃ h?2 i2KTH�i2/ bi`m+i �+H2Ih= Uh 4 /Qm#H2- 7HQ�iV T`QpB/2b +QMp2MB2Mi

�++2bb iQ �*G1 /2}MBiBQMb- 2X;X- T`2/B+�iBQMb �M/ /�i� ivT2b
! *Q/2 2t�KTH2, i2KTH�i2/ KmHiBTHB+�iBQM Q7 irQ p2+iQ`b Q7 +QKTH2t MmK#2`b

i2KTH�i2 IivT2M�K2 h=
bi`m+i p2+iQ` &

�HB;M�bUoGV h p(oG f bBx2Q7UhV)c ff *@�``�v
'c

bi`m+i JmHi*QKTH2t &
i2KTH�i2 IivT2M�K2 h=
BMHBM2 p2+iQ` Ih= QT2`�iQ`UVU+QMbi p2+iQ` Ih= ��- +QMbi p2+iQ` Ih= �#V &

p2+iQ` Ih= `2bmHic ff `2bmHi p2+iQ`
ivT2M�K2 �+H2 Ih=,,bp2ni xnp- �np- #np- `npc ff �*G1 /�i� ivT2b
bp#QQHni Tc ff T`2/B+�iBQM

T 4 �+H2 Ih=,,�+iBp�i2n�HHn2H2K2MibUVc ff /27BM2 T`2/B+�iBQM
xnp 4 �+H2 Ih=,,x2`QUVc ff xnp I@ 6S x2`Q
�np 4 bpH/RUT- �XpVc ff HQ�/ �np I@ �
#np 4 bpH/RUT- #XpVc ff HQ�/ #np I@ #
`np 4 bp+KH�nxUT- xnp- �np- #np- NyVc ff +QKTH2t KmHiBTHv @�//
`np 4 bp+KH�nxUT- `np- �np- #np- yVc ff
bpbiRUT- `2bmHiXp- `npVc ff biQ`2 `np @= `2bmHi
`2im`M `2bmHic ff `2im`M `2bmHi

'
'c

! aQ7ir�`2 /2p2HQTK2Mi- p2`B}+�iBQM �M/ QTiBKBx�iBQM
◃ q2 BKTH2K2Mi KmHiBTH2 +Q/BM; b+?2K2b 7Q` ao1 U→ G�iiB+2 R3 T`Q+22/BM;bV
◃ q2 p2`B7v b2H2+i2/ i2bib �M/ #2M+?K�`Fb 2KmH�iBM; KmHiBTH2 oG BM i?2 �`KA1
◃ �i T`2b2Mi QM2 +Q/BM; b+?2K2 7�BHb iQ +QKTBH2- �M/ bQK2 i2bib ;Bp2 r`QM;

`2bmHib /m2 iQ ao1 iQQH+?�BM BKK�im`Biv
◃ _mM@iBK2 QTiBKBx�iBQMb rBHH #2 ;mB/2/ #v ;2K8 *Sl bBKmH�iBQM U7mim`2 rQ`FV

! aQm`+2b �p�BH�#H2 �i
?iiTb,ff;Bi?m#X+QKfMK2v2`@m`f:`B/fi`22f72�im`2f�`K@bp2

6mim`2 T2`bT2+iBp2b

! AKT`Qp2/ �M/ KQ`2 K�im`2 /2p2HQTK2Mi 2MpB`QMK2Mi
! 1ti2M/2/ bmTTQ`i Q7 i?2 ao1 Aa� #v +QKTBH2`b- 2X;X- BMbi`m+iBQMb 7Q` +QKTH2t

�`Bi?K2iB+b �M/ +QKTBH2`@;2M2`�i2/ HQ�/fbiQ`2 mbBM; �*G1
! SQbbB#H2 2M/Q`b2K2Mi Q7 ao1 /�i� ivT2b BM H�M;m�;2b HBF2 * �M/ *YY
! q2 biBKmH�i2 /Bb+HQbm`2 Q7 /2i�BHb Q7 �_J@#�b2/ KB+`Q@�`+?Bi2+im`2b �M/ Aa�

T2`7Q`K�M+2 +?�`�+i2`BbiB+b `2H2p�Mi 7Q` >S* +Q/2 /2bB;M

_272`2M+2b
(R) LX ai2T?2Mb 2i �HX- A111 JB+`Q jd Abbm2 k (�`tBp,R3yjXyeR38)
(k) ?iiT,ffrrrX7mDBibmX+QKf;HQ#�Hf�#Qmif`2bQm`+2bfM2rbfT`2bb@`2H2�b2bfkyR3fyekR@yRX?iKH
(j) ǳ�_J * G�M;m�;2 1ti2MbBQMb 7Q` ao1Ǵ- �_J- h2+?X _2TX UkyRdV
(9) ?iiTb,ff/2p2HQT2`X�`KX+QKfT`Q/m+ibfbQ7ir�`2@/2p2HQTK2Mi@iQQHbf?T+f/Q+mK2Mi�iBQM
(8) ?iiT,ffrrrX/vM�KQ`BQXQ`;f
(e) ?iiT,ff;2K8XQ`;f
(d) SX "QvH2 2i �HX- S`Q+22/BM;b Q7 G�hhA*1 R8 UkyReV (�`tBp,R8RkXyj93d)
(3) ?iiTb,ff;Bi?m#X+QKfT�#QvH2f:`B/

amTTQ`i2/ #v i?2 :2`K�M _2b2�`+? 6QmM/�iBQM U.6:V BM i?2 7`�K2rQ`F Q7 a6"fh__@88 MBHbXK2v2`!m`X/2
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CG on FPGA devices

Conjugate gradient algorithm on FPGA devices
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1. Introduction

Results of porting parts of the Lattice Quantum Chromodynamics code on modern FPGA devices are presented. A single-node, double precision

implementation of the Conjugate Gradient algorithm is used to invert numerically the Dirac-Wilson operator on a 4-dimensional grid on a Xilinx Zynq

evaluation board. The code is divided into two software/hardware parts in such a way that the entire multiplication by the Dirac operator is
performed in programmable logic, and the rest of the algorithm runs on the ARM cores. Optimized data blocks are used to e�ciently use data
movement infrastructure enabling single stencil evaluation every 1 clock cycle. We show that the FPGA implementation can o�er superior performance
compared to that obtained using Intel Xeon Phi KNL while consuming 6.4 W (logic: 3.1 W, ARM: 3.3 W).

2. FPGA and SDx environment

Modern Field Programmable Gate Arrays
(FPGA) present a number of game-changing
features that can make a strong impact on
how computing resources for HPC are being de-
signed. Most significant features are:

• Natural parallelization
• Streamlined processing
• Dynamic reconfiguration
• Direct access to network transceivers
• No OS overhead

Xilinx Zynq example:

© Copyright 2016–2017 Xilinx
.
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Zynq® UltraScale+™ MPSoCs: EG Block Diagram

Software Defined X programming environment
allows to compile C/C++ code for Multi-
Processor devices: processing system (PS) and
programmable logic (PL).

Xilinx SDx workflow example:

3. Zynq MPSoC internal structure 4. Conjugate gradient algorithm

Dirac equation to be solved reads

DAB
–— (n, m)Â—

B(m) = ÷–
A(n).

The simplest conjugate gradient algorithm writ-
ten in pseudocode

Â Ω Â0
r Ω ÷ ≠ DD†Â
p Ω r
while |r| Ø rmin do

rold Ω |r|
– Ω rold

Èp|DD†|pÍ
Â Ω Â + –p
r Ω r ≠ –DD†p
— Ω |r|

rold

p Ω r + —p
end while

5. Details

Dirac matrix multiplication: example compiled
on Zynq XCZU9EG device

1. a block 63 ◊ 8 of gauge field matrices and
fermion vector is copied from DDR at the
beginning of each function call

2. the block is separated into two indepen-
dent 63 ◊ 4 subblocks, including doubling
the boundary data, increasing data local-
ity

3. pipelined stencil multiplication for each
site is performed thanks to optimized data
availability

4. the resulting fermion vector is returned to
DDR

6. Timings

Execution timeline (PL cycles @ 150 MHz cap-
tured on Zynq XCZU9EG device): data import,
evaluation, result export. Achieved bandwidth
DDR æ PL using 4 channels: 1.2GBs / channel.

7. Resource consumption versus parallel execution

limit latency interval bram dsp � [106] lut [106] uram (based on DSP)
4 149 1 508 6960 1.58 0.99 696 xcvu11p (¥ 32k$)
3 151 2 448 4320 0.97 0.64 696 xcku115 (¥ 8k$)
2 151 2 428 3480 0.83 0.57 696 xczu15 (¥ 4.5k$)
1 162 4 412 1740 0.47 0.35 696 xc7k480 (¥ 4.5k$)

250 120 1388 546 0.13 0.09 ≠ xczu9eg (¥ 2.5k$)
(76%) (21%) (24%) (34%) accelerator
(95%) (21%) (31%) (40%) full project

8. Performance in GFLOPs

Estimates with * are based on the Zynq
XCZU9EG board transfer infrastructure and as-
sume 500MHz clock.

only compute with transfer
4 752 32*
3 376 30*
2 376 30*
1 188 28*

2.1 1.3

9. Further steps

Extension to multiple nodes:
• openAMP allows to address memory in a heterogeneous system (many FPGA devices)
• ARM hosts not needed on compute nodes
• benefit from multilane, multigigabit transceivers (network layers implemented in logic)

Work supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TRR 55, by the Polish NCN
grant No. UMO-2016/21/B/ST2/01492, by the Foundation for Polish Science grant no. TEAM/2017-4/39
and by the Polish Ministry for Science and Higher Education grant no. 7150/E-338/M/2018

Run entirely on 
programmable logic

The rest run on ARM
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1. a block 63 ◊ 8 of gauge field matrices and
fermion vector is copied from DDR at the
beginning of each function call

2. the block is separated into two indepen-
dent 63 ◊ 4 subblocks, including doubling
the boundary data, increasing data local-
ity

3. pipelined stencil multiplication for each
site is performed thanks to optimized data
availability

4. the resulting fermion vector is returned to
DDR

6. Timings

Execution timeline (PL cycles @ 150 MHz cap-
tured on Zynq XCZU9EG device): data import,
evaluation, result export. Achieved bandwidth
DDR æ PL using 4 channels: 1.2GBs / channel.

7. Resource consumption versus parallel execution

limit latency interval bram dsp � [106] lut [106] uram (based on DSP)
4 149 1 508 6960 1.58 0.99 696 xcvu11p (¥ 32k$)
3 151 2 448 4320 0.97 0.64 696 xcku115 (¥ 8k$)
2 151 2 428 3480 0.83 0.57 696 xczu15 (¥ 4.5k$)
1 162 4 412 1740 0.47 0.35 696 xc7k480 (¥ 4.5k$)

250 120 1388 546 0.13 0.09 ≠ xczu9eg (¥ 2.5k$)
(76%) (21%) (24%) (34%) accelerator
(95%) (21%) (31%) (40%) full project

8. Performance in GFLOPs

Estimates with * are based on the Zynq
XCZU9EG board transfer infrastructure and as-
sume 500MHz clock.

only compute with transfer
4 752 32*
3 376 30*
2 376 30*
1 188 28*

2.1 1.3

9. Further steps

Extension to multiple nodes:
• openAMP allows to address memory in a heterogeneous system (many FPGA devices)
• ARM hosts not needed on compute nodes
• benefit from multilane, multigigabit transceivers (network layers implemented in logic)
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Zynq® UltraScale+™ MPSoCs: EG Block Diagram
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• Master code: runs on MPE
• Communications
• Input/Output

• Slave code: runs on CPE (64 cores)
• DSlash
• MinRes Inverters

• Metaprogramming and genetic algorithms 
are used to investigate the feasibility of 
automatic code optimization

• Interface to Chroma and other packages is 
work in progress

Lattice QCD on Sunway Taihu Light

• Sunway Taihu-Light: #2 on Top 500 
• Custom architecture
• May be one of the architectures for 

China’s exascale supercomputers
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Poster by Ming GONG on 24 Jul 2018 at 6:45 PM

Source: hpcwire.com

http://hpcwire.com


Quantum Computing

• Can quantum computers play a role in 
lattice QCD simulations?

• Increases in the number of qubits and the 
fidelity of quantum gates are reaching a 
threshold of becoming useful sandboxes 
for theoretical developments. 

• Parallel presentations at this conference: 

• Plenary by John Preskill later at 11:45am.

 51

Patrick DREHER on 24 Jul 2018 at 4:50 PM: 
SU(2) Quantum Link Model 

Yannick MEURICE on 26 Jul 2018 at 9:10 AM: 
Tensorial Formulation 

Jesse STRYKER on 25 Jul 2018 at 3:00 PM: 
Hamiltonian Framework



4. Summary and Outlook
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Summary and Outlook

• As we approach the physical and continuum limit in lattice QCD simulations, 
algorithms need to be improved. 

• Ongoing activities to reduce the critical slowing down in HMC

• Block solvers, multigrid solvers can accelerate Dirac matrix inversions dramatically. 

• Algorithms and machines are no longer separate topics. 

• Algorithms need to be aware of the hardware architectures and configurations. 

• Communication avoiding algorithms are likely essential for good strong scaling on pre-
exascale and exascale machines.

• Exciting new possibilities for the upcoming machines.

• LQCD needs to be ready, both in terms of algorithms and software. 
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