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The QCD phase diagram: outstanding issues

@ The QCD phase diagram is
just beginning to be
unraveled.

@ Two underlying
mechanisms: confinement
and chiral symmetry
breaking is not yet
completely understood.
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@ Lattice techniques are
allowing us to draw lines
and points on this plot

@ Even more exciting as it
allowing us to understand ot Neutron stars
deeper the microscopic
mechanisms.

Baryon density

[Courtesy www.bnl.gov]
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Towards understanding the phase diagram: key ingredients

@ Symmetries and order parameters.
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The phase diagram at iz =0

@ For finite quark masses, no unique order parameter.
@ Now well established that ;15 = 0 chiral symmetry restoration occurs via
crossover transition.

@ However remnants of chiral symmetry are quite strong in observables.
Important update in T, from chiral observables [see talk by P. Steinbrecher, Wed 16:10]
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The phase diagram at iz =0

@ EoS is close to the perturbative behaviour for T > 5T, but close to the edge

of the error band [See talk by J. Weber, Thurs 8:50]
@ Screening masses of scalar/ pseudo-scalar excitations show deviation from

perturbation theory
@ Dynamical effects of charm quarks included till 1 GeV — important EoS

during cosmological evolution.
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The phase diagram at iz =0

@ Recent update EoS with Wilson fermions
measurement of T. from chiral observables,

@ Energy-Mom. tensor extracted using gradient flow. A peak in chiral
susceptibility observed even with Wilson fermions at m,. ~ 400 MeV. New
results on EM tensor correlators

@ EM Tensor correlators calculated with better precision in pure glue
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Since m,,, my << Ngcp is UL(2) x Ur(2) a good symmetry of QCD?

o UL(2) X UR(2) — 5U(2)\/ X 5U(2)A X UB(]_)X UA(].)
@ s Ua(1) effectively restored at T.? — can change the universality class of

the second order phase transition at ;g = 0 or first order?
Either O(4) or U.(2) x Ur(2)/Uv(2)

New symmetries in high 77 Anderson Transition at finite 77

Ua(1) not an exact symmetry— what observables to look for?

Degeneracy of the 2-point correlators — higher point correlation
functions imp

Voo [, 4m7 p(X, my)
- dA— L0 7
XX / (A2 + m2)2

Sufficient condition for restoration in chiral limit:
p(A) ~ N

Sayantan Sharma Lattice 2018, Michigan State University, East Lansing




Update on Eigenvalue spectrum of QCD Dirac operator

o p(A) ~ A

Ne - for QCD spectrum with Highly improved
1l - Staggered quarks towards the chiral limit
o0ds ©

i measured with overlap operator for T < 1.1T7..
-+ " [ See talk by Lukas Mazur, Tues. 14:20]

. %t?ﬂg? @ role of non-analyticities? Seem to be reduced
= 1057 but survive in the chiral limit with HISQ.

0.0 T T T T

0 1 f/ 3 4 [ HotQCD collaboration, 1205.3535, V. Dick et. al. 1502.06190 |

@ Non-Analyticities sensitive to lattice cut-off effects. Reduces with lattice
SpaCIng See talk by K. Suzuki, Tues. 14:00, also 1711.09239
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Update on Eigenvalue spectrum of QCD Dirac operator

o p(A) ~ A
Ne mem for QCD spectrum with Highly improved
. Staggered quarks towards the chiral limit
o I o . measured with overlap operator for T < 1.17,.
E’ 5 Segatfer”
10 $ T = 0.99T,

trooor | @ role of non-analyticities? Seem to be reduced
= L05T, but survive in the chiral limit with HISQ.

: ; .
0 1 2 3 4
Ams

@ Not due to partial quenching: HISQ spectrum on the finest lattices show
such a peak — continuum limit needed to resolve this issue!

N=16
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@ Zero modes show strong lattice cut-off dependence
. Will not contribute in thermodynamic limit!

@ Non-analytic part still needs careful study. Analytic part of the spectrum
strongly suggest that Ua(1) is broken!

@ New update on volume dependence

— in the chiral limit
is vol. dep. milder?
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@ Zero modes show strong lattice cut-off dependence
[G. Cossu et al, 13, A Tomiva et al, 15.16]. Will not contribute in thermodynamic limit!
@ Non-analytic part still needs careful study. Analytic part of the spectrum
strongly suggest that Ua(1) is broken! [sce talk by L Mazur, Tues]
[ V. Dick, et. al, 1502.06190, 1602.02197, G. Cossu et. al., 1510.07395, K. Suzuki et. al. 1711.09239 |
@ New update on volume dependence [see taik by kK Suzuki, Tues] — in the chiral limit
is vol. dep. milder?

LQCD, prelim

U(1), susceptibility (volume effect)

0.14 A% on OV 24x12
A% on OV 32x12 —&—
0.12 A% on OV 48x12 —4—
o1 Ni=12, p=4.3
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=For small m, V-dependence seems to be small
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From Dirac spectrum to Topological fluctuations
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Towards interpreting these findings

@ Going beyond the interacting instanton liquid? Can there be instanton-dyons
present ~ T. due to non-trivial eigenvalues of Polyakov loop.
Hints from over-improved cooling studies from the lattice

@ Using twisted boundary conditions of the valence fermionic (overlap)
operator can move the zero modes from one instanton-dyon to other.

— fall off of density profiles at large distances can be a way to distinguish
between them?
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Towards interpreting these findings

e Anti periodic fermionic zero modes at 1.087,. with Overlap Dirac Operator
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Improving topological tunneling at high temperatures

@ High temperatures — topological tunneling becomes rarer. Similar to going
to finer lattice spacings.

@ New techniques developed : Reweighting ensembles with coarse grained
definition of @
allows to go T ~ 4T, with N, = 10 lattices with reasonable cost.
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Improving topological tunneling at high temperatures

@ High temperatures — topological tunneling becomes rarer. Similar to going
to finer lattice spacings.

@ Reweighting applied in full QCD improves  measurement at high T
— finite vol. dependence under control

@ Many other techniques discussed : Metadynamics, Open boundary

conditions..

Sayantan Sharma

Bonati ez al.
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Towards understanding the Columbia plot

<—7y—— Nf=20CD

m< 5MeV ? [JLQCD 18]
ms 1st order? UA(1) restored

1st order

e Approaching chiral limit at fixed m;

e Nf =2 QCD updates with overlap
mu=md valence on overlap sea via
reweighting

ms/160 (Nt=8 HISQ, 2018)
/ critical scaling
4_.—\. Physical point
ms/40, Eigenvalue spectrum (HISQ, 18
UA(1) broken

e HISQ eigenvalue spectrum for 2+1
QCD towards chiral limit

e From spectral density extract T,
order of transition in my; — 0

O(4)?
—
Tricritical? ms<<95 Nlev M_pi<50 MeV (Nt=6, HISQ, 2017)
4 /
mu ,/
mu,s=0 771
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Towards understanding the Columbia plot

ms

o(4)?

Tricritical? ms<<95

<—7y—— Nf=20CD

¢

eV

m< 5MeV ? [JLQCD 18]
1st order? UA(1) restored

ms/160 (Nt=8 HISQ, 2018)

ms/40, Eigenvalue spectrum (HISQ, 18
UA(1) broken

Crossover

«—

1st order

critical scaling
/ mu=md
\ e Physical point

M_pi<50 MeV (Nt=6, HISQ, 2017)

mu,s=0

mu ,/
1T

M
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300

Approaching chiral limit at
physical mg
New: Scaling analysis of chiral condensate with Highly

Improved Staggered quarks on finer lattices
N, =8,12.

Peak of x; decreases with volume ruling out 1st order
transition for m,; > 80 MeV.
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Towards understanding the Columbia plot

o(4)?

Tricritical? ms<<95 NeV

<—7y—— Nf=20CD

m< 5MeV ? [JLQCD 18]

ms 1st order? UA(1) restored

ms/160 (Nt=8 HISQ, 2018)

/ critical scaling

ms/40, Eigenvalue spectrum (HISQ, 18
UA(1) broken

e Physical point

¢ /

1st order

mu=md

Crossover

M_pi<50 MeV (Nt=6, HISQ, 2017)

mu,s=0

Sayantan Sharma
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@ Approaching chiral limit at
physical mg

@ Scaling seems to be consistent
with O(2) rather than Z,.
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Towards understanding the Columbia plot

<—7y—— Nf=20CD

m< 5MeV ? [JLQCD 18] 1st order
ms || 1st order? UA(1) restored
’/
ms/160 (Nt=8 HISQ, 2018)
critical scaling
/ mu=md
< \ e Physical point
ms/40, Eigenvalue spectrum (HISQ, 18)
UA(1) broken
Crossover
0(4)?
Tricritical? ms<<95 eV M_pi<50 MeV (Nt=6, HISQ, 2017)
L /
mu ;4
mu,s=0 T

Along Nf = 3 line
N¢ = 3 QCD scaling analysis with HISQ
Reweighting expansion with 2 + N¢ flavors.

Ny = 3 QCD with Wilson fermions give mpg < 170
MeV

The m¢, could be extremely small for Ny = 3, 4

New update on Ny = 4 phase diagram with Wilson
clover fermions

Very challenging! need to go to continuum limit..scope
for new lattice techniques.
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Towards understanding the Columbia plot

e /Nf as a continuous parameter

<“——— Ni=2 OCD e Upper boun_d on tricrit. scaling
msl[  oemecom 1st order N¢ < 2 — first order transition for
f N¢ = 27 Check at finer lattices?

ms/160 (Nt=8 HISQ, 2018)

critical scaling
: mu=md
- \ e Physical point Chiral Z; boundary in the (m,N¢) plane

ms/40, Eigenvalue spectrum (HISQ, 18
UA(1) broken 0.08

Crossover 0.06
Z0.04
0(4)?
0.02
Tricritical? ms<<95 eV M_pi<50 MeV (Nt=6, HISQ, 2017)
[ 3 0
— . .
mu ,/
mu,s=0 77
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Adding a new axis to the Columbia plot: Imaginary 1

e For ug/ T = i(2n+ 1)m an exact Z»
symmetry. Spontaneously broken at
Roberge-Weiss Tryy. Order
parameter: ImL

Intermediate quark mass

O(4)7 = Crossover Conjectured phase diagrams
Tri o rane in the imaginary
| mu chemical potential plane
- an’( L z% swg'?grlder

small quark mass

Imaginary chem. pot.

Y=L T

1sto
Bonati et. al. 18, M_pi> 50 MeV

1st G Different scenarios
\ for different quark masses
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Adding a new axis to the Columbia plot: Imaginary 1

e N. =4 QCD with stout fermions, no
sign of first order RW transition for
m; > 50 MeV.

ms
5
"€ o Physical poi e Most plausibly the chiral and RW
end-point occur at the same T7
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| mu
) —————— : :
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| |[— Linear Fitto Tew -
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Adding a new axis to the Columbia plot: Imaginary 1

e Under 2o, Re L -+ ReL,Im L — -Im

L.
ms
= . .
%L o Physical poi e Im L.shows Z5 scaling with HISQ
fermions at . = 4! What about Rel?
O(4)7 | Crossover
TS
| mu
0.25
Imaginary chem. pot. line: (2) scaling curve
T, = 201.0(3) MeV
02}
Eiz‘j 0.15 q
U=1 T &
Isto E o1
Bonati et. al. 18, M_pi> 50 MgV v
] 0.05 1
1st 0
\ K -4 2 0 2 4 6
222 N2V (T-TIT,
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Adding a new axis to the Columbia plot: Imaginary 1

e Under 2o, Re L -+ ReL,Im L — -Im

L.
ms
L Physical poi e Im L shows Z; scaling with HISQ
fermions at . = 4! What about Rel?
O(4)7 | Crossover
o
| mu

. 0.0045

Imaginary chem. pot. 0.004 line: Z(2) scaling curve q;y q
T, = 202.6(4) MeV
0.0035 F v E|
R 0.003 | Ny=24 = ° o ]
1 o 0.0025 | 16 & El
p=1L T z
< 0.002 © 12 @ |
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Curvature of the chiral crossover line

Te(ps) 1 . 1y . _PB
T.0) 17 F2Top ~ RTop

@ For strangess neutral system, x> = 0.0120(20) with Taylor series and HISQ

fermions.
0.040 —— ‘ ‘ ‘ :
0.030 | . '} 1
0.020 | + WX om ]
0.010 | ¥ $ + Ry
0.000 |- + + ]
-0.010 L :
X=B B S I Q
77,5:0
e 04
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Curvature of the chiral crossover line

@ Telwe) _ g _ o Hb_ _ . I
7e(0) 2T(0)2 4707

@ Consistent with imaginary chemical potential method and stout fermions
k2 = 0.0135(20)
@ removes earlier possible tension between two methods!

Taylor 1o Kaczmarek et al. PRD (2011) p4, u=0
+0(2)
Taylor F {  Endrodi et al. JHEP (2011) stout2, p=0
Im. p Ceaetal. PRD (2014) } o i HISQ, pg=py
Im. p 0 Bonati et al. PRD (2014) stout2, u=0, 1y
Im. p —©—1  Bonatietal. PRD (2015) stout2, P =0, 1,

. stout5, S=0,
Im. p Bellwied et al. PLB (2015) —6&— =04
Im. p Cea et al. PRD (2015) € i HISQ. p=y
Taylor ' o i Hegde et al. (Lattice 2015) HISQ, $=0
+0(2)
Taylor N i Bonati et al. 1805.02960 stout2, =0

A\
Taylor H i hotQCD M201 HISQ, S=0,
(\cﬁ* ' ' wreq Q/B=0.4
0 0.005 0.01 0.015 0.02 0.025 0.03
K
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Curvature of the chiral crossover line

Te(ps) 1 . i B
® T =1 reTop Ty

@ Chiral observables show little curvature as a function of ;g < 250 MeV.

@ Need much higher order series in pug?

100.0 — "
w00 Xd1sc/fK ¥ . Up = 0.0 MeV
0 F : 125.0 MeV = |
ol V4 \ 200.0 MeV - |
. = SN, =38, 0(u) |
N\

ns =0, 12 =04 N

20.0 | "’ |
T [MeV]
0.0 ; ‘ ‘

135 145 155 165 175 185 195
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Critical-end point search from Lattice

@ The Taylor series for x5 (1) should diverge at the critical point for
Nf = 2. On finite lattice XzB peaks, ratios of Taylor coefficients equal,
indep. of volume.

@ The radius of convergence determines location of the critical point.

B
X2n
~B

X2n+2

@ Definition: rn, = ,\/2n(2n —1)

e Strictly defined for n — oco. How large n could be on a finite lattice?
e Signal to noise ratio deteriorates for higher order \ 2.
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Critical-end point search from Lattice
@ Current bound for CEP: pg/T > 3 for 135 < T < 150 MeV

@ The r, extracted by analytic continuation of imaginary 1z data
consistent with this bound.
@ Results with a lower bound? — need to
understand the systematics in these studies. Ultimately all estimates will
agree in the continuum limit!

9 r -
2017: lower bound for r M
8 estimator r§
DElia et al., 2016, r§ A«
k7t Datta et al., 2016 ©
u:?_ae t Fodor, Katz, 2004 ‘@
I T e
=5 ¢F +
2
<
E4a
$3f
<c2 H P ——
1t disfavored region for the
0 ) location of a critical poin; ) )
135 140 145 150 155

T [MeV]
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Summary and Outlook

@ Lattice QCD allows us to calculate bulk thermodynamic quantities, X, With
very high precision for a wide range of temp. with updated estimates on T..
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Summary and Outlook

@ Lattice QCD allows us to calculate bulk thermodynamic quantities, X, With
very high precision for a wide range of temp. with updated estimates on T..

@ Beginning to explore finite 115 region with new results on the curvature of
chiral crossover line.

@ Latest bounds on the critical end-point LQCD data suggest
sl )/ T > 3 in the region T = 145 — 150 MeV.

@ Lattice methods now give more insights on the Columbia plot — ultimately
allow us to understand the phase diagram for Ny =2 4+ 1 QCD.

@ Increased sophistication towards understanding the fate of Ua(1) towards
the chiral limit for QCD — ultimately will lead to our understanding of the
deeper relation between anomalies and underlying topology in QCD.
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