Multilevel integration for meson propagators

Leonardo Giusti1, Tim Harris1, Alessandro Nada2, Stefan Schaefer2

1 Università di Milano-Bicocca & INFN, Milano-Bicocca \quad 2 NIC, DESY Zeuthen

23rd July 2018

“36th Annual Symposium in Lattice Field Theory” – Lattice 2018

East Lansing, Michigan, U.S.A., 22-28 July 2018
Signal-to-noise ratio problem

Signal of a two-point function (e.g. for the \textit{rho} meson) \cite{Parisi; 1983}, \cite{Lepage; 1989}

\[C_\rho(y_0 - x_0) \propto e^{-m_\rho |y_0 - x_0|} \]

while its variance gets contribution from

\[\sigma_\rho^2(C_\rho(y_0 - x_0)) \propto e^{-2m_\pi |y_0 - x_0|} \]

and so the ratio is \textbf{exponentially} suppressed at large source-sink distances

\[\frac{C_\rho(y_0 - x_0)}{\sigma_\rho(y_0 - x_0)/\sqrt{N}} \propto \sqrt{N}e^{-(m_\rho - m_\pi)|y_0 - x_0|} \]

\(\rightarrow \) particularly severe at small pion masses
Signal-to-noise ratio problem

Signal of a two-point function (e.g. for the rho meson) \[[Parisi; 1983],[Lepage; 1989] \]

\[C_\rho(y_0 - x_0) \propto e^{-m_\rho|y_0-x_0|} \]

while its variance gets contribution from

\[\sigma^2_\rho(C_\rho(y_0 - x_0)) \propto e^{-2m_\pi|y_0-x_0|} \]

and so the ratio is **exponentially** suppressed at large source-sink distances

\[
\frac{C_\rho(y_0 - x_0)}{\sigma_\rho(y_0 - x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(m_\rho-m_\pi)|y_0-x_0|} \\
\rightarrow \text{particularly severe at small pion masses}
\]

Same problem for

nucleon correlators

\[
\frac{C_N(y_0 - x_0)}{\sigma_N(y_0 - x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(m_N-\frac{3}{2}m_\pi)|y_0-x_0|}
\]
Signal-to-noise ratio problem

Signal of a two-point function (e.g. for the \(\text{rho} \) meson) \([\text{Parisi; 1983}],[\text{Lepage; 1989}]\)

\[C_\rho(y_0 - x_0) \propto e^{-m_\rho |y_0 - x_0|} \]

while its variance gets contribution from

\[\sigma_\rho^2(C_\rho(y_0 - x_0)) \propto e^{-2m_\pi |y_0 - x_0|} \]

and so the ratio is \textbf{exponentially} suppressed at large source-sink distances

\[\frac{C_\rho(y_0 - x_0)}{\sigma_\rho(y_0 - x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(m_\rho - m_\pi)|y_0 - x_0|} \]

\(\rightarrow \) particularly severe at small pion masses

Same problem for

nonzero momentum correlators

\[\frac{C_{\pi,p}(y_0 - x_0)}{\sigma_{\pi,p}(y_0 - x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(E_\pi(p) - m_\pi)|y_0 - x_0|} \]
Multilevel integration

- A way of dealing with an exponentially vanishing signal-to-noise ratio is through a **multilevel integration scheme**
- Exploiting the locality of the theory, regions that are far away can be updated independently

Simplest case: two-level algorithm with two regions

- **Level-0**: n_0 realizations of boundary between two regions (later: “frozen region”)
- **Level-1**: the two regions are independently updated n_1 for each of the n_0 boundaries
- $n_0 \times n_1^2$ configurations for the cost of $n_0 \times n_1$
- $n_{\text{reg}} > 2 \rightarrow n_1^{n_{\text{reg}}}$ samples - the error goes like

$$
\delta(C) \sim n_1^{-\frac{n_{\text{reg}}}{2}} e^{-m\pi|y_0-x_0|}
$$
A way of dealing with an exponentially vanishing signal-to-noise ratio is through a **multilevel integration scheme**.

Exploiting the locality of the theory, regions that are far away can be updated independently.

Simplest case: two-level algorithm with two regions.

- **Level-0**: n_0 realizations of boundary between two regions (later: “frozen region”)
- **Level-1**: the two regions are independently updated n_1 for each of the n_0 boundaries
- $n_0 \times n_1^2$ configurations for the cost of $n_0 \times n_1$
- $n_{\text{reg}} > 2 \rightarrow n_1^{n_{\text{reg}}}$ samples - the error goes like

$$
\delta(C) \sim n_1^{\frac{n_{\text{reg}}}{2}} e^{-m_\pi |y_0 - x_0|}
$$

This is feasible if **both the action and the observable can be factorized**.

Solutions in pure-gauge theory:

- multihit [Parisi, Petronzio & Rapuano; 1983]
- multilevel for Wilson loops and Polyakov loop correlators [Lüscher & Weisz; 2001]
- also [Meyer; 2002] and [Giusti & Della Morte; 2008, 2010]
After Wick’s theorem it’s not obvious how the QCD action and the observable (propagator) can be factorized.

→ breakthrough in the development of a multilevel integration scheme for fermions [Cè, Giusti & Schaefer; 2016, 2017].

→ both the determinant and the propagator can be completely factorized

Setup: overlapping domains Ω_0^* and Ω_1^*
The exact propagator can be written as

\[Q^{-1} = -Q_{\Omega_1^*}^{-1} Q_{\Lambda_1,0} \frac{1}{1 - \omega} Q_{\Omega_0^*}^{-1} \]

with \(Q = \gamma_5 D \) and where

\[\omega = Q_{\Omega_0^*}^{-1} Q_{\Lambda_1,2} Q_{\Omega_1^*}^{-1} Q_{\Lambda_1,0} \]

Fully factorized approximation:

\[Q^{-1} \simeq -Q_{\Omega_1^*}^{-1} Q_{\Lambda_1,0} Q_{\Omega_0^*}^{-1} \]
A new method with noise sources

A viable method is needed to compute C_{Γ}^{fact} efficiently in a multilevel integration scheme

$$C_{\Gamma}^{\text{fact}}(y_0, x_0) = \text{Tr} \left\{ Q^{-1}_{\Omega_0^*}(\cdot, x_0) \Gamma Q^{-1}_{\Omega_0^*}(x_0, \cdot) Q_{\Lambda_1,0} Q^{-1}_{\Omega_1^*}(\cdot, y_0) \Gamma Q^{-1}_{\Omega_1^*}(y_0, \cdot) Q_{\Lambda_1,0} \right\}$$

Naively one would store $\sim (V_3)^2$ (or $(V_3)^3$ for baryons) complex numbers... \rightarrow not feasible

Our new proposal exploits the newly factorized observable by putting noise sources in the middle of the lattice

\rightarrow right next to the boundary of the frozen region, i.e.

$$C_{\Gamma}^{\text{fact}}(y_0, x_0) = \frac{1}{N_\eta} \sum_{i}^{N_\eta} \text{Tr} \left\{ Q^{-1}_{\Omega_0^*}(\cdot, x_0) \Gamma Q^{-1}_{\Omega_0^*}(x_0, \cdot) \eta_i \eta_i^\dagger Q_{\Lambda_1,0} Q^{-1}_{\Omega_1^*}(\cdot, y_0) \Gamma Q^{-1}_{\Omega_1^*}(y_0, \cdot) Q_{\Lambda_1,0} \right\}$$

\rightarrow the meson propagator can be computed sequentially \rightarrow only $\sim V_3$ complex numbers to be saved
$$\text{Tr} \left\{ Q_{\Omega_1}^{-1} Q_{\Lambda_{1,0}} Q_{\Omega_0}^{-1} \Gamma Q_{\Omega_0}^{-1} \eta \eta^\dagger Q_{\Lambda_{1,0}} Q_{\Omega_1}^{-1} \Gamma \right\}$$
\[\text{Tr} \left\{ Q_{\Omega_1}^{-1} Q_{\Lambda_1,0} Q_{\Omega_0}^{-1} \Gamma Q_{\Omega_0}^{-1} \eta \eta^\dagger Q_{\Lambda_1,0} Q_{\Omega_1}^{-1} \Gamma \right\} \]
\[\text{Tr} \left\{ Q_{\Omega_1^*}^{-1} Q_{\Lambda,0} Q_{\Omega_0^*}^{-1} \Gamma Q_{\Omega_0^*}^{-1} \eta \eta^\dagger Q_{\Lambda,0} Q_{\Omega_1^*}^{-1} \Gamma \right\} \]
\[\text{Tr} \left\{ Q_{\Omega_1}^{-1} Q_{\Lambda_1,0}^{-1} \Gamma Q_{\Omega_0}^{-1} \eta \eta^\dagger Q_{\Lambda_1,0}^{-1} \Gamma \right\} \]
\[\text{Tr} \left\{ Q_{\Omega_1}^{-1} Q_{\Lambda_{1,0}}^{-1} \Gamma Q_{\Omega_0}^{-1} \eta \eta^\dagger Q_{\Lambda_{1,0}}^{-1} Q_{\Omega_1}^{-1} \Gamma \right\} \]
A test in quenched QCD

The quenched theory suffers from the S-N ratio problem as well → perfect playground for a multilevel test

<table>
<thead>
<tr>
<th>β</th>
<th>L/a</th>
<th>T/a</th>
<th>κ</th>
<th>c_{SW}</th>
<th>m_{PS} (MeV)</th>
<th>a (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>32</td>
<td>96</td>
<td>0.1352</td>
<td>1.61375</td>
<td>580</td>
<td>0.068</td>
</tr>
</tbody>
</table>

→ periodic boundary conditions

Multilevel simulation with

- two active regions connected by two frozen regions of width $\Delta = 8a$
- $n_0 = 50$ level-0 updates \times $n_1 = 16$ level-1 updates
- $N_\eta = 40$ noise sources
- $\Gamma = \gamma_i$ with $i = 1, 2, 3$

The factorized meson propagator is an approximation: also the rest (whose size depends on Δ) has to be computed. Strategy of the calculation:

$$\langle C_\rho \rangle = \langle C_{\rho}^{\text{fact}} \rangle_{\text{ML}} + \langle C_{\rho}^{\text{ex}} - C_{\rho}^{\text{fact}} \rangle_{\text{SMC}}$$
Vector-vector correlator

\[x_0 = 24a \quad \Delta = 8a \]

\[C_{\text{vector}}(y_0/a) \]

\[\begin{array}{cccc}
10^{-12} & 10^{-11} & 10^{-10} & 10^{-9} \\
40 & 48 & 56 & 64 & 72 & 80 & 88 \\
\end{array} \]

\[C^{(\text{exact})}_{\text{SMC}} \quad C^{(\text{fact})}_{\text{ML}} \]

Alessandro Nada (DESY)
Multilevel integration for meson propagators
23/07/2018
Vector-vector correlator: ML gain

\[\sigma^2_{\text{ML}} / \sigma^2_{\text{SMC}} \]

\[y_0 / a = 24a \quad \Delta = 8a \]

ML gain

\[1/16 \]

0.00 0.25 0.50 0.75 1.00 1.25

\[40 48 56 64 72 80 88 \]
The correction term

\[x_0 = 24a \quad \Delta = 8a \]

\[\frac{C_{\text{vector}}(y_0/a)}{a} = 24a \]

\[C^{(\text{fact})} - C^{(\text{exact})} \]

<table>
<thead>
<tr>
<th>Value</th>
<th>x-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>
The correction term: error

\(x_0 = 24a \quad \Delta = 8a \)

\[
\begin{align*}
\text{error} & / a \\
x_0 & = 24a \\
\Delta & = 8a \\
\delta & \text{(fact)} \\
\delta & \text{(fact)ML} \\
\delta & \text{(corr)}
\end{align*}
\]
Conclusions

- new method to directly compute the factorized form of the connected propagator \textit{sequentially} (with 2 active regions)

- clear improvement with respect to previous method (projection to deflated modes)

- theoretical gain of multilevel (~ 16 in the cost) reached far away enough from the frozen region

- the rest of the propagator is computed with standard MC \rightarrow in this case it is quite small $\sim 3 - 5\%$ for $\Delta = 8$

- if it is large and/or with large error \rightarrow multilevel also on the rest

- next: advancements for disconnected propagator by Tim
Thanks for your attention!
Factorization of the quark propagator

- Decomposition of Hermitian Wilson-Dirac operator $Q = \gamma_5 D$ [Lüscher; 2003]

$$Q = \begin{pmatrix} Q\Gamma & Q\partial\Gamma \\ Q\partial\Gamma^* & Q\Gamma^* \end{pmatrix}$$

- Schur complement

$$S\Gamma = Q\Gamma - Q\partial\Gamma Q\Gamma^* Q\partial\Gamma^*$$

If $\Gamma = \Lambda_0$ and $\Gamma^* = \Omega_1^*$ we can write

$$Q^{-1} = \begin{pmatrix} S^{-1}_{\Lambda_0} - S^{-1}_{\Lambda_0} Q\Lambda_{1,0} Q\Omega_{1,0}^* Q\Omega_{1,0}^* & -S^{-1}_{\Lambda_0} Q\Lambda_{1,0} Q\Omega_{1,0}^* \\ -Q^{-1}_{\Omega_1^*} Q\Lambda_{1,0} S^{-1}_{\Lambda_0} & Q^{-1}_{\Omega_1^*} + Q^{-1}_{\Omega_1^*} Q\Lambda_{1,0} S^{-1}_{\Lambda_0} Q\Lambda_{1,0} Q\Omega_{1,0}^* \end{pmatrix}$$

and noting that

$$S^{-1}_{\Lambda_0} = P_{\Lambda_0} Q^{-1} P_{\Lambda_0} = P_{\Lambda_0} Q^{-1}_{\Omega_0} P_{\Lambda_0} + ...$$

we get (bottom left element)

$$Q^{-1} \approx -Q^{-1}_{\Omega_1^*} Q\Lambda_{1,0} Q\Omega_{1,0}^*$$
Vector-vector correlator

\[x_0 = 32a \quad \Delta = 8a \]

\[
\begin{array}{cccccc}
10^{-12} & 10^{-11} & 10^{-10} & 10^{-9} & 10^{-8} & 10^{-7} \\
40 & 48 & 56 & 64 & 72 & 80 & 88
\end{array}
\]

\(C^{(\text{exact})}_{\text{SMC}} \)

\(C^{(\text{fact})}_{\text{ML}} \)

Alessandro Nada (DESY)
Multilevel integration for meson propagators
23/07/2018
Vector-vector correlator: ML gain

\[\frac{\sigma^2_{ML}}{\sigma^2_{SMC}} \]

\[y_0 / a \quad x_0 = 32a \quad \Delta = 8a \]

\[0.00 \quad 0.25 \quad 0.50 \quad 0.75 \quad 1.00 \quad 1.25 \]

\[40 \quad 48 \quad 56 \quad 64 \quad 72 \quad 80 \quad 88 \]

Alessandro Nada (DESY)
Factorizing the two–point function was previously attempted in different ways:

- placing two different noise sources to cut the two quark lines → in practice the variance is extremely large, due to the presence of disconnected diagrams which do not benefit from volume averaging

- cut the two lines with N orthonormal vectors which can be used to project the propagator → memory problem under control ($V_3^2 \rightarrow N^2$

- it is a viable (but expensive) possibility. successfully implemented using
 - local deflation subspace
 - generating eigenvectors of the Dirac operator restricted to a block of width 2Δ