AN AVX 512 EXTENSION TO OPENQCD

Jarno rantaharju, Mark Dawson, Ed Bennett and Michele Mesiti

Swansea Academy of Advanced Computing
Introduction

- AVX 512
 - On new Intel chips
 - SIMD operations on 16 floats / 8 doubles
 - 32 floating point registers
Introduction

- **OpenQCD**
 - luscher.web.cern.ch/luscher/openQCD/
 - Widely used, open source
- **Fastsum Extension**
 - Talk by Jonas Glesaaen (Friday at 17:10)
 - Finite temperature, Anisotropy
 - Modules as libraries
An AVX 512 Extension to OpenQCD

- Available at github.com/sa2c/OpenQCD-AVX512
- The Fastsum code: gitlab.com/fastsum/openqcd-fastsum
- Arxiv report: 1806.06043
Implementation

- Targets: KNL and Skylake
- Memory bandwidth bound
 - Attention to register memory use
 - and cache use
 - at the expense of computation
Implementation

- Intrinsics
 - Control of instructions used in C code

    ```c
    v3 = _mm512_mul_ps( v1, v2 );
    ```

 Compiles into

    ```c
    vmulps zmm1, zmm2, zmm5
    ```

- Flexible, can compile on different systems
- Usually a one-to-one correspondence
- Compiler manages registers
Compared Versions

- Skylake:
 - The AVX 512 code with the Intel compiler (ICC)
 - `-O3 -xCORE-AVX512 -mtune=skylake -DAVX512`
 - The original AVX2 code with GCC (AVX)
 - `-O3 -march=skylake-avx512 -DPM -DAVX -DFMA3`
 - ICC assembly and AVX2 code (combined)
 - `-O3 -march=skylake-avx512 -DPM -DAVX -DAVX512 -DAVX512_ASM`
Note

- Assembly files
 - enable including the AVX functions
 - included for convenience for Skylake cores
 - can be easily replaced for other systems
Single Core Performance

Against vanilla baseline

single Precision

Double Precision
Strong Scaling on a Skylake Cluster

$V = 24^3 \times 48$

$V = 24^3 \times 48$
Weak Scaling on a Skylake Cluster

\[V = 24^3 \times N_{\text{cores}} \]
Compared Versions

- **Xeon Phi:**
 - The AVX 512 code with the Intel compiler (ICC)
 - `-xCORE-AVX512 -mtune=skylake -O3 -DAVX512`
 - Standard C code with the Intel compiler (Vanilla)
 - `-xCORE-AVX512 -mtune=skylake -O3`
Single Core Performance on a Xeon phi

![Graph showing performance vs. volume comparing single and double precision.]
Scaling on a Xeon Phi Cluster

Strong Scaling, $V=32^4$

Weak Scaling, $V=32^3 \times 32N$
Wrap-Up

- AVX 512 implementation to openQCD
 - github.com/sa2c/OpenQCD-AVX512
- Targets: KNL and Skylake
 - 5% to 10% improvement in Skylake
 - 20% to 40% against vanilla on Xeon Phi
- Memory bandwidth bottleneck
 - Independent operations might perform better