Ensemble Quasi-Newton HMC

Xiao-Yong Jin and James Osborn
Argonne National Laboratory

July 23, 2018
The 36th International Symposium on Lattice Field Theory
East Lansing, MI
Reduce critical slowing down

- Part of US DOE-funded Exascale Computing Project (ECP)
- Support research in lattice QCD to prepare for exascale
- Reducing critical slowing down, lead by Norman Christ, is part of the USQCD's effort in ECP
- See Norman's slides for a list of people actively involved
Outline

• Generate ensemble assisted Markov chains
• Apply Quasi-Newton HMC
• Test on 2D U(1) pure gauge theory (work in progress)
Generate multiple Markov chains

- Can we exchange information between chains?
- Use info from other chains
- Extra info from itself (not explored in this talk)
- Any advantage?
Generate the next state of each Markov chain with information from other chains: $\mathcal{F}(\text{a set of configs})$

Detailed balance: evolve backward from $(3',2',1',0')$
Ensemble assisted Markov chains: in parallel

• Embedding Markov chains in Markov chains
Ensemble assisted Markov chains: multi-state

- Embedding Markov chains in Markov chains
What kind of information from other chains?

- How do we generate the next state?
- Modify MD evolution
 - “Quasi-Newton MCMC” — Zhang & Sutton (2011)
 - “Quasi-Newton Langevin” — Simsekli et al (2016)
- Modify Metropolis-Hastings
 - “Multi-try” — Liu, Liang, and Wong (2000)
- Other techniques? Machine learning!!!
Quasi-Newton method for HMC Hamiltonian

- BFGS approximation of the Hessian: \(G's = y \)
 Update an old approximation to a new one
 \[
 G' = G + \frac{yy^\dagger - Gss^\dagger G}{y^\dagger s - s^\dagger Gs} \\
 s = \ln U'U^\dagger \
 y = \nabla S(U') - \nabla S(U)
 \]

- Approximate Hessian from configs of other MC
 Repeatedly apply the update according to \(N_{\text{stream}} \)

- Use the approximate Hessian for the mass matrix
 \[
 H = S(U) + \frac{1}{2} p^\dagger G^{-1} p
 \]

- Note: Fourier acceleration\(\approx \)Local free field Hessian
Quasi-Newton method

• Avoids the slow down of the steepest decent in narrow valleys

• Caveat in the current study:
 • The approximated Hessian is global
 • We do not use the current location
Benefits of rank-2 update (BFGS style)

- Factorizable matrix (Brodlie et al 1973)
- Initializing random momenta
 \[G' = G + ww^\dagger - zz^\dagger \rightarrow G' = (1 - uu^\dagger)G(1 - vu^\dagger) \]
- Exactly invertible
- MD evolution
- Computing the kinetic energy
 \[G'^{-1} = \left(1 - \frac{vu^\dagger}{v^\dagger u - 1}\right)G^{-1}\left(1 - \frac{uv^\dagger}{v^\dagger u - 1}\right) \]
Gauge fixing of 2D U(1) lattice

- Removes exact zero modes from the real Hessian
- Frozen degrees of freedom take the same values
- We choose maximal tree gauge fixing
- Fix two more non-gauge degree of freedom
Regulate the approximated Hessian matrix

- Remove low modes in the approximate global Hessian
- Add one more term to keep the rank-2 update

\[G' = G + \frac{yy^\dagger}{y^\dagger s} - \left(1 - \lambda \frac{s^\dagger s}{s^\dagger Gs} \right) \frac{Gss^\dagger G}{s^\dagger Gs} \]

- Works in practice, but not a strict bound
- Caveat:
 - Mildly violates \(G's = y \)
 - Still no upper bound
Test on 2D U(1) theory (work in progress)

• Fixed $\beta = 5.8$, lattice size 32×32

• Serial version of the ensemble Markov chain

• Second order Omelyan integrator (did not tune λ)

• Look at the autocorrelation of the topological susceptibility, $\langle Q^2/V \rangle$

• Topological charge, $Q = \frac{1}{2\pi} \sum_x \text{Arg} \square_x$

 $\text{Arg} : \mathbb{C} \mapsto (-\pi, \pi)$

• Topological charge is exact integer with periodic boundary conditions
Acceptance tuning

- HMC
- 8 streams
- \(\lambda = 0.1 \)
- QNHMC \(\lambda = 0.01 \)

- 8 streams
- QNHMC \(\lambda = 0.1 \)
- 16 streams
- QNHMC \(\lambda = 0.01 \)
Autocorrelation of topological susceptibility

Trajectory length has no effect on HMC

<2× for Gfix HMC (update half lattice)
Autocorrelation of topological susceptibility

Cost grows if allow lower eigenmodes
We need more tuning
Summary & Outlook

• We devise an algorithm creating multiple Markov chains in parallel
 Allow exchange of information while generating the Markov chains

• We modify HMC to use information from neighboring Markov chains
 BFGS approximated Hessian as the mass matrix of the MD Hamiltonian
 Use a custom regulator for the approximated Hessian for stability

• We still need more tuning and testing (parameters / observables)

• Ways to improve the algorithm
 • Exploit the ensemble of Markov chains (multi-scale?)
 • Other method for constructing the mass matrix
 • Use other information / observables to augment MD / Metropolis

• Machine learning!